A New Parallel 'Algorlth for Connected
Components in Dynamic Graphs (2013)

e

— R ‘.,."

By Robert McColl, Oded Green'Dcwd A Bcuder. .}1" &

Presentation by Qing Fen i X, ’

Mar 312022 e ,¥ ;
. \}

Dynamic Graph Algorithm

A dynamic graph can be viewed as a discrete
sequence of static graphs.

Relationships represented in the graph are changing
quickly, making computation on static snapshots
expensive. Hence a demand for:

Algorithms for dynamic graphs in
which edges can be inserted or deleted.

Friendship ...

facebook BB :

Message ...

Eg. Social Networks

A New Parallel ALgorithm for Connected Components in Dynamic Graphs
MIT 6.827 Algorithm Engineering | Qing Feng

Connected Components

Given an undirected graph G = (V, E):
A connected component (CC) C< V ensures that for
each s, t € C there is a path between s and t.

Each CC can be detected by an DFS or BFS.
Conducting a full-DFS/BFS on each static snapshot
takes O(V+E) time and space.

Connected Components

Considering connected components of dynamic
graphs, edge insertions may join two different
components, and edge deletions may split one
component into two.

Intuitively:

Given the graph G and the components labels C,
determining if an insertion has joined two
components can be done in O(1) time.

DELETION BATCH
INSERTION BATCH

However, determining if an deletion splits a
component will potentially lead to a SPSP taking
worst case O(V+E) time.

Can aggregate updates into a batch over time or
until a number are collected which can then be
applied in parallel, to reduce redundant computation.

A New Parallel ALgorithm for Connected Components in Dynamic Graphs
MIT 6.827 Algorithm Engineering | Qing Feng

CC Algorithm for Dynamic Graphs

McColl et al present a parallel algorithm for CC in
dynamic graphs with below attributes:

Correctness: Results are correct and consistent at fixed points in time for the graph meanwhile
Parallel: minimize synchronization and communication

Time efficient: At least asymptotically equivalent with better performance in practice

Space efficient: preferably 0(v) extra storage as graph itself covers O(V+E)

Data Structure

The main approach is to maintain a “parent-neighbor” subgraph structure based on BFS trees.

For each vertex, parents are its adjacent vertices that are in the level above and neighbors are ones that
are in the same level. Use an array to store parents and neighbors with an constant upper bound to keep
extra space O(V).

Table 1
THE DATA STRUCTURES MAINTAINED WHILE TRACKING DYNAMIC CONNECTED COMPONENTS

| Name | Description | Type | Size (Elements)

C Component labels array o(Vv)

Size Component sizes array o(V)
| Level ____|_ __Approximate distance from the root __________________________________|___ array_________|___ owv) . .
L.BN_ _____|__: Parents and neighbors of each vertex _________________________________|___ array of arrays | O(V -threshpy) = O(V) | |

Count Counts of parents and neighbors array o(V)

threshpn Maximum count of parents and neighbors for a given vertex value 0O(1)

E, Batch of edges to be inserted into graph array O(batch size)

Er Batch of edges to be deleted from graph array O(batch size)

A New Parallel ALgorithm for Connected Components in Dynamic Graphs
MIT 6.827 Algorithm Engineering | Qing Feng

Main Idea

The high level idea is that upon deleting an
edge, using the data structure introduced
above, it is desirable to be able to determine
“safe” deletion in O(1) time correctly, and
minimize the examination of “unsafe” deletion
which is actually safe.

For example, vertex B has 2 parents D and J, and
neighbor E. Deletion of (B, D) or (B, J) or (B, E) is
safe as there are alternative paths to root.

Can use parents and neighbors’ level value to
determine deletion safety. Negative level value
indicates vertices that may have lost all their
parents but still have neighbors so other vertices
cannot rely on it for path to root.

voorl

A New Parallel ALgorithm for Connected Components in Dynamic Graphs
MIT 6.827 Algorithm Engineering | Qing Feng

Algorithm 1 A parallel breadth-first traversal that
extracts the parent-neighbor subgraph.

Build PN subgraph nput: G(V, B)

Output: C,4, Size, Level, PN, Count

1: for v € V do
2 Level[v] < oo, Count[v] < 0
Use a parallel BFS to extract the BFS trees. 3: for v € V do
For each vertex, store a list of parents and 4 if Level[v] = oo then
neighbors. 3: Q[0] « v, Qstart + 0, Qeng + 1
6: Level[v] «+ 0, C;g[v] + v
Distinguish parents and neighbors with marks. g Whﬂz? Qsta:i 55 Qena do
Positive label for parents while negative label for o i Qsti’:td t0 Qsz0p in parallel do
neighbors. 10: for each neighbor d of Q[i] do
11: if Level[d] = oo then
The list may be filled as there is a constant i% 8[Qend] 5 d -
: end end
upper bound. 14: Level[d] < Level[Q[i]] + 1
15: . Culdl < CualQUE
16: 7 if Count[d] < threshpn then ™\
17: if Level[Q[i]] < Level[d] then

! PN4[Count[d]] + Qli]
19; i Count[d] + Count[d] + 1

20: else if Level[Q[i]] = Level[d] then
21 PNg[Count[d]] + —Qli]

22: N Count[d] - Count[d| +1 ___/
23: Qstart €— Qstop

24: Size[v] + Qend

A New Parallel ALgorithm for Connected Components in Dynamic Graphs
MIT 6.827 Algorithm Engineering | Qing Feng

Algorithm 2 The algorithm for updating the
parent-neighbor subgraph for inserted edges.

Input: G(V, E), E1, Cia, Size, Level, PN, Count

Edge Insertion Output: Ciq4, Size, Level, PN, Count

1: for all(s,d) € Ey in parallel do E + E U (s, d)

2: insert(E, (s, d))
3: i£C (s =Ciald|then ~ "~~~ "~ """~ .
4: , if Level[s] > 0 then A
5./ if Level[d] < O then K
6: ! /I d is not “safe” H
T if Level[s] < —Lewvel[d)] then !
8 if Count[d] < threshpy then
9: | PNy[Count[d]] + s |
10: ! Count[d] + Count[d] +1 ,
11: else !
12: PNg[0] + s !
13: Level[d] + —Level[d] !
14. else '
---15:-4 if Count[d] < threshpy then !
1) Intra-connecting 2)Inter-connecting 16: if Level[s] < Level[d] then 1
17: PNg4[Count[d]] + s i
18: Count[d] + Count[d] + 1 |
i i i ith i 19: else if Level[s] = Level[d] then !
To insert (s, d), the edge is either with in a CC 12 PNd[Cwlnt[dH meid] :

(intra-connecting) or between CCs (inter-connecting). T Count|d] + Count|d] + 1

22: else if Level[s] < Level[d] then
The first case can be handled in parallel. If d’s PN is not full, try 5 e
to add s as a parent or neighbor. If d’s PN is filled and s is a o) PNV3[i] « s, ;
. S E e e s 6: N Break for-loop)/
parent, replace a neighbor with s. 2. B B\esd
28: forall(s,d) € Erdo .
The latter is handled serially that a parallel BFS starts atthe S el o D
joining vertex to relabel the smaller CC and add vertices to the | g; I gz‘ze{zl] el i
, I % i1ze[d] + Sizeld] +
larger CC's BFS tree. '--337-n Cials] « Ciald], PN,[0] + d

Level[s] + abs(Level[d]) + 1, Count[s] + 1
else
\ connectComponent(Input, s, d) ,

A New Parallel ALgorithm for Connected Components in Dynamic Ggg
MIT 6.827 Algorithm Engineering | Qing Feng 36:

Algorithm 3 The algorithm for updating the
parent-neighbor subgraph for deleted edges.

[]
Edge Deletion Input: G(V, E), Er, Cia, Size, Level, PN, Count
Output: _Clia, Size, Level, PN, Count ________
. 1: for all(s,d) € Eg in parallel do N
Deleting (s, d) has two safe cases: 2! E <« E\(s, d) ‘.
1) If d has at least one remaining parent with non-negative level, 3: hasParents « false
a path to the root must exist 41 for p 0 to Countl[d] do :
. , . 5: if PNy[p] = s or PNy[p] = —sthen ' $
2) If d has no parent, negate its level value. Then its neighbors 6: Count[d] + Count[d] — 1 O
are checked for non-negative level values to be safe. 1 PNg4[p] + PN4[Count[d]] B
8:! if PNy[p] > 0 then P
Edges are processed from two ends respectively as undirected. 9:i hasParents « true l
10% if (not hasParents) and Level[d] > 0 then,
11:, Level[d] + — Level[d)
12:,/f6r all (s,d) € Eg in parallel do N
13; for all p € PN, do !
14! if p > 0 or Level[abs(p)] > 0 then -
15l ER < ER\<S d) i E
16! PREV « Ci4 "o
17! for all (s,d) € Er do L B
18 wunsafe + (Cig[s] = Cig[d] = PREV:) | 5'
191 for all p € PN, do |2
201 if p > 0 or Level[abs(p)] > O then i
21 unsafet—false _______________ %
22: if unsa fe then
23: if {(u,v) € G(E,V):u=s} =0 then
24: Level[s] + 0,C;q4[s] + s
23: Size[s] + 1,Count[s] «+ 0
26: else
A New Parallel ALgorithm for Connected Components in Dyr27: Algorithm 4

MIT 6.827 Algorithm Engineering | Qing Feng 28: repairComponent(Input, s, d)

Repairing upon Unsafe Deletion

Unsafe deletion will demand a partial BFS to correctly examine the CCs, starting from d back to the root

---- searching vertices in the equal or lower level. If no path found, split the CC by adding new the BFS tree.
Otherwise, the first BFS ends and a new BFS traces back to relabel and rebuild part of the CC.

Algorithm 4 The algorithm for repairing the parent-nelghbor subgraph when an unsafe deletion is reported

1
1
1
1
1
I
I
I
1
' Inpit: G(V E), Er. Ciq. Size, Level, PN, Count, s, d ~
: R4 Output id, Size, Level PN, Count \\
| JoL Q0] + d, Qstart < 0, Qena + 1
: N 2: SLQ + 0, SLQstart < 0, SLQecna + 0
' 3t Levelld] + 0, Cigld] + d
1 : 4: disconnected + true
i1 5 while Qutart # Qena do
! ' 6: Qst‘op “— Qend
H | T: for i + Qstart 10 Qstop in parallel do
1 ! 8: u + Q[i]
' | 90 for each neighbor v of u do
1 ! 10: if Ciq[v] = C;q4[s] then
! SV if Level[v] < abs(Level[d]) then
I 12 Cia[v] « Ciald]
' ' 13: disconnected + false
oo 4 SLQISLQund] ¢ v
15 SLQend + SLQena +1
1 16: else
: 17 C,‘d[’v] — Cid[d]
18 Count[v] « 0
' 19: Level[v] « Level[u] + 1
1 20: Q[Qend])]
: 21' Qend — Qend + 1
1 22: if Count[v] < threshpy then
P23 if Level[u] < Level[v] then
1 24: PN, [Count[v]] + u
.25 Count[v] + Count[v] + 1
v 26 else if Level[v] = Level[v] then
‘27 PN, [Count[v]] + —u
28 Count[v] + Count[v] + 1

. .,
29 Qstart Qstop .

\
\
\

30: if ¢iSconnected then
31: » Size[d] < Qena

32:/else
334
34|
354
361
374
381
394
402
41
423
43;
442
45
461
47
48
49
501
S1
52:n

for i < SLQstart t0 SLQ.yq in parallel do
Cialt] < Cials]

while SLQ,tart # SLQena do
SLQstop e SLQend

~
N
\

for i < SLQstart t0 SLQs¢op in parallel do

u + SLQJ[i]
for each neighbor v of u do
if Cid[’U] = Cid[d] then
Cid[v] — C’,-d[u]
Count[v] + 0
Level[v] + Level[u] + 1
SLQ[SLQecnd] + v
SLQend + SLQend +1
if Count[v] < threshpy then
if Level[u] < Level[v] then
PN, [Count[v]] + u

Count[v] + Count[v] + 1
else if Level[v] = Level[v] then

PN, [Count[v]] + —u

Count[v] « Count[v] + 1

N Qstart +— Qstop

U

4

Evaluation: Tuning threshPN

Higher threshPN causes more updates, but also fewer unsafe deletes.

20000 20000 - 20000 20000
18000 - 18000 - 18000 - 18000
16000 16000 - 16000 - 16000
14000 14000 - 14000 14000
12000 - 12000 - - 12000 - 12000 -
10000 - 10000 - 10000 - 10000 - :
8000 8000 8000 8000
6000 - I 6000 - 6000 6000
4000 4000 - I 4000 j 4000 - I
2000 2000 - 2000 2000
0 - ,AJYA-J,J_I 0 - : 7_-J,‘__-__I 0 - . _JA-J 0 . : AIJ
8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64
(a) threshpy = 4 (b) threshpy = 6 (c) threshpy = 8 (d) threshpy = 12

EDGE FACTOR

m Deleted neighbors M Deleted parents w Inserted neighbors M Inserted parents W Insert replacement

Figure 1. Average number of inserts and deletes in PN array for batches of 100K updates for RMAT-22 graphs. The subfigures are for different values
of threshpp. Note that the ordinate is dependent on the specific bar chart. The charts for RMAT-21 graphs had very similar structure and have been
removed for the sake of brevity.

A New Parallel ALgorithm for Connected Components in Dynamic Graphs
MIT 6.827 Algorithm Engineering | Qing Feng

Evaluation: Tuning threshPN

Higher threshPN causes more updates, but also much fewer unsafe deletes.

2500

2000

1500

1000

500

0

LLL B

® threshPN=1
o threshPN=2
w threshPN=4
® threshPN=6
u threshPN=8
® threshPN=12

Figure 2. Average number of unsafe deletes in PN data structure for
batches of 100K updates as a function of the average degree (x-axis) and

thresh pp (bars).

A New Parallel ALgorithm for Connected Components in Dynamic Graphs

MIT 6.827 Algorithm Engineering | Qing Feng

Evaluation: Performance

Compared with recalculating the CCs using the parallel static Shiloach-Vishkin implementation:

16
m
|
8 i]
- 2 v
e & Py & 4
§ 4 S u
n
n B ;
2 £ 6
&
n DS
1 m ¢
1 2 4 8 16 32 64
Threads
®3 W16 A32

Figure 4. Speed up of the new algorithm over performing parallel static
recomputation after each batch on three different RMAT-22 graphs with
each average degree as a function of the number of threads.

A New Parallel ALgorithm for Connected Components in Dynamic Graphs
MIT 6.827 Algorithm Engineering | Qing Feng

Strength and Weakness

Pros Cons
e Can process larger graph size as O(V) extra e ThreshPN seems a trade-off costing time for
space needed space which may not be desired
e Works well in practice as real-world graphs e Tuning threshPN makes the algorithm
typically have low diameter “graph-aware”

e New parallel BFS can be integrated to further
lift performance

A New Parallel 'Algorlth for Connected
Components in Dynamic Graphs (2013)

e

— R ‘.,."

By Robert McColl, Oded Green'Dcwd A Bcuder. .}1" &

Presentation by Qing Fen i X, ’

Mar 312022 e ,¥ ;
. \}

