
Single Machine graph 
analytics using Intel Optane 

DC persistent memory

Presentation by Yosef E Mihretie



Massive scale graph analytics: the choices

● Graphs today: billions of vertices, trillions of edges, and growing

● Most computers can’t fit them in memory, some can but DRAM is expensive

● Two choices: out-of-core(like GridGraph) and distributed memory(like D-Galois)

● Out-of-core: graph stored in SSD, chunks of it read to memory and 
processed as needed 

● Out-of-core: algorithms need re-engineering, data layout must be changed, 
expensive IO etc

● Distributed memory: communication is a major bottleneck



Optane DC: adjusting the memory hierarchy

● Higher density, byte-addressable, lower cost and slower than DRAM, faster 
than SSDs, same form factor as DD4 DRAM



Optane DC: adjusting the memory hierarchy

● Two different modes: memory-mode and app-direct



Graph analytics using Optane PMM: Results

● Found that Optane PMM in memory mode is a performant and affordable option

● NUMA-aware memory allocations that maximize near-memory utilizations are 
important

● Avoiding page-management overhead is key to performance

● Allowing programmers to implement flexible algorithms, specifically 
non-vertex and asynchronous programs, reduce memory accesses

● Suggested runtime and algorithmic adjustment to make graph algorithms 
more performant on PMM



Memory consideration

● Three main NUMA-aware allocations: local, blocked and interleaved

● Maximizing near-memory, DRAM, hit is critical



Memory considerations

● Requires bookkeeping to choose what pages to remove 

● Changes virtual to physical page mappings -> TLB stale -> more TLB misses



Algorithmic principles

● Many graph algs: data kept on each vertex, set of active vertices, operators work on 
neighbors of an active vertex, data updated

● Vertex algorithms: the neighbors of an active vertex are only its immediate 
neighbors

● Non-vertex algorithms: the neighbors of an active vertex are any arbitrary 
portion of the graph

● Non-vertex algorithms: the neighbors of an active vertex are any arbitrary 
portion of the graph



Algorithmic principles

● Pull-style: neighbors used to update an active vertex

● Push-style: an active vertex used to update its neighbors

● Topology-driven: operates on all vertices

● Data-driven: a set of active vertices kept and operated on

● Bulk-synchronous: a dense worklist (bitvector) to keep active vertices, 
current and next vertex sets, continue until next list is empty 

● Asynchronous: a sparse worklist (set of ids) to keep active vertices, pop and 
push vertices from it until nothing left



Algorithmic principles

● Non-vertex, asynchronous, data driven programs perform better on Optane PMM systems for real-world 
graphs



Experiments: Uno

● Comparing Galois, GraphIt, GAP and GBBS(Ligra)



Experiments: Dos

● Comparing Galois on Optane PMM vs DRAM with medium sized graphs



Time for a joke



Experiments: Tres

● Comparing Optane PMM vs Distributed memory (D-Galois)



Experiments: Cuatro

● Comparing Optane PMM vs Out-of-core (GridGraph)



Summary

● Optane PMM outperforms distributed memory and out-of-core systems

● Optane PMM is as easy to program as DRAM, less expensive

● Frameworks should allow flexibility, memory allocation should maximize 
DRAM usage and migrations aren’t helpful


