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Massive scale graph analytics: the choices

e Graphs today: billions of vertices, trillions of edges, and growing

e Most computers can't fit them in memory, some can but DRAM is expensive

e Two choices: out-of-core(like GridGraph) and distributed memory(like D-Galois)

e QOut-of-core: graph stored in SSD, chunks of it read to memory and
processed as needed

e Out-of-core: algorithms need re-engineering, data layout must be changed,
expensive |0 etc

e Distributed memory: communication is a major bottleneck



Optane DC: adjusting the memory hierarchy

e Higher density, byte-addressable, lower cost and slower than DRAM, faster
than SSDs, same form factor as DD4 DRAM
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Figure 1: Memory hierarchy of our 2 socket machine with 384GB
of DRAM and 6TB of Intel Optane PMM.




Optane DC: adjusting the memory hierarchy

e Two different modes: memory-mode and app-direct
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Figure 2: Modes in Optane PMM.




Graph analytics using Optane PMM.: Results

e Found that Optane PMM in memory mode is a performant and affordable option

e Suggested runtime and algorithmic adjustment to make graph algorithms
more performant on PMM

e NUMA-aware memory allocations that maximize near-memory utilizations are
important
e Avoiding page-management overhead is key to performance

e Allowing programmers to implement flexible algorithms, specifically
non-vertex and asynchronous programs, reduce memory accesses



Memory consideration

Three main NUMA-aware allocations: local, blocked and interleaved

e Maximizing near-rmemory, DRAM, hit is critical
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Figure 4: Time to write memory allocated on Optane PMM and
DDR4 DRAM using a micro-benchmark.




Memory considerations

e Requires bookkeeping to choose what pages to remove

e Changes virtual to physical page mappings -> TLB stale -> more TLB misses
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Figure 5: Execution time

e of bfs in Galois using small (4KB) and huge (2MB) page sizes with and without NUMA migration
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Figure 6: Breakdown of e

ution time of bfs in Galois using different page sizes for kron30 (left) and cluewebl2 (right).



Algorithmic principles

e Many graph algs: data kept on each vertex, set of active vertices, operators work on
neighbors of an active vertex, data updated

e Vertex algorithms: the neighbors of an active vertex are only its immediate
neighbors

e Non-vertex algorithms: the neighbors of an active vertex are any arbitrary
portion of the graph

e Non-vertex algorithms: the neighbors of an active vertex are any arbitrary
portion of the graph



Algorithmic principles

e Pull-style: neighbors used to update an active vertex

e Push-style: an active vertex used to update its neighbors

e Topology-driven: operates on all vertices

e Data-driven: a set of active vertices kept and operated on

e Bulk-synchronous: a dense worklist (bitvector) to keep active vertices,

current and next vertex sets, continue until next list is empty
e Asynchronous: a sparse worklist (set of ids) to keep active vertices, pop and

push vertices from it until nothing left



Algorithmic principles

e Non-vertex, asynchronous, data driven programs perform better on Optane PMM systems for real-world
graphs
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Figure 7: Execution time of different data-driven algorithms in Galois on Optane PMM using 96 threads.
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Figure 8: Execution time of different data-driven algorithms in Galois on Entropy (1.5TB DDR4 DRAM) using 56 threads.




Experiments: Uno

e Comparing Galois, Graphlt, GAP and GBBS(Ligra)
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Figure 9: Execution time of benchmarks in Graphlt, GAP. GBBS. and Galois on Optane PMM usi




Experiments: Dos

e Comparing Galois on Optane PMM vs DRAM with medium sized graphs
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Figure 10: Strong scaling in execution time of benchmarks in Galois using DDR4 DRAM and Optane PMM.




Time for a joke



Experiments: Tres

e Comparing Optane PMM vs Distributed memory (D-Galois)

Table 4 ution time (sec) of benchmarks in Galois on Optane
PMM (OB) machine using efficient algorithms (non-verte
chronous) and D-Galois on Stampede cluster (DM) using
programs with minimum # of hosts that hold the graph. Speedup of
Optane PMM over Stampede. Best times highlighted in greet

- Stampede Optane PMM  Speedup
Seaph |API’ | (DM) (OB)  (DMW/OB)

5163 12.68 4.07x
10.71 643
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iso.m100

wdel2

136.47




Experiments: Cuatro

Comparing Optane PMM vs Out-of-core (GridGraph)

Table 5: Execution time (sec) of benchmarks in Galois on Op-
tane PMM in Memory Mode (MM) and the out-of-core framework
GridGraph on Optane PMM in App-direct Mode (AD). Best times
highlighted in green. “—" indicates it did not finish in 2 hours.
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Summary

e Optane PMM outperforms distributed memory and out-of-core systems

e Optane PMM is as easy to program as DRAM, less expensive

e Frameworks should allow flexibility, memory allocation should maximize
DRAM usage and migrations aren't helpful



