Single Machine graph
analytics using Intel Optane
DC persistent memory

Presentation by Yosef E Mihretie

Massive scale graph analytics: the choices

e Graphs today: billions of vertices, trillions of edges, and growing

e Most computers can't fit them in memory, some can but DRAM is expensive

e Two choices: out-of-core(like GridGraph) and distributed memory(like D-Galois)

e QOut-of-core: graph stored in SSD, chunks of it read to memory and
processed as needed

e Out-of-core: algorithms need re-engineering, data layout must be changed,
expensive |0 etc

e Distributed memory: communication is a major bottleneck

Optane DC: adjusting the memory hierarchy

e Higher density, byte-addressable, lower cost and slower than DRAM, faster
than SSDs, same form factor as DD4 DRAM

[ci]
-- --

l Shared L3 Shared L3 I

DRAM(32x6GB) DRAM(32x6GB)
Optane(512x6GB) Optane(512x6GB)

Socket 0 Socket 1

Figure 1: Memory hierarchy of our 2 socket machine with 384GB
of DRAM and 6TB of Intel Optane PMM.

Optane DC: adjusting the memory hierarchy

e Two different modes: memory-mode and app-direct

Application Application

Volatile Memory Pool

Memory Mode App-direct Mode

Figure 2: Modes in Optane PMM.

Graph analytics using Optane PMM.: Results

e Found that Optane PMM in memory mode is a performant and affordable option

e Suggested runtime and algorithmic adjustment to make graph algorithms
more performant on PMM

e NUMA-aware memory allocations that maximize near-memory utilizations are
important
e Avoiding page-management overhead is key to performance

e Allowing programmers to implement flexible algorithms, specifically
non-vertex and asynchronous programs, reduce memory accesses

Memory consideration

Three main NUMA-aware allocations: local, blocked and interleaved

e Maximizing near-rmemory, DRAM, hit is critical

DDR4DRAM Optane PMM

8

Time (sec)
b= 8
v v
Time (sec)
L
1

wn
o
1

0= = | -l -

80GB 160GB 320GB 0= BmSN .. =

Memory Allocated 24 48 24 48
#Threads

I DDR4 DRAM M NUMA blockedfirst-touch)

B Optane PMM B NUMA interieaved{numact])

(a) NUMA local on 96 threads (b) 320GB memory allocated

Figure 4: Time to write memory allocated on Optane PMM and
DDR4 DRAM using a micro-benchmark.

Memory considerations

e Requires bookkeeping to choose what pages to remove

e Changes virtual to physical page mappings -> TLB stale -> more TLB misses

Page Size Page
NUMA Migration # ON W OFF NUMA Migration
(a) Optane PMM (b) DDR4 DRAM

Figure 5: Execution time

e of bfs in Galois using small (4KB) and huge (2MB) page sizes with and without NUMA migration

T
&
£..
=

ON OFF ¢ OFF FF ON OFF ON OFF
Numa Migration Numa Migration Numa M igration Numa Migration
Kemel Time ' UserTime W KemelTime ' UserTime 1 KemelTime © UserTime I KemelTime | UserTime
() Optane PMM (b) DDR4 DRAM (#) Optane PMM (b) DDR4 DRAM

Figure 6: Breakdown of e

ution time of bfs in Galois using different page sizes for kron30 (left) and cluewebl2 (right).

Algorithmic principles

e Many graph algs: data kept on each vertex, set of active vertices, operators work on
neighbors of an active vertex, data updated

e Vertex algorithms: the neighbors of an active vertex are only its immediate
neighbors

e Non-vertex algorithms: the neighbors of an active vertex are any arbitrary
portion of the graph

e Non-vertex algorithms: the neighbors of an active vertex are any arbitrary
portion of the graph

Algorithmic principles

e Pull-style: neighbors used to update an active vertex

e Push-style: an active vertex used to update its neighbors

e Topology-driven: operates on all vertices

e Data-driven: a set of active vertices kept and operated on

e Bulk-synchronous: a dense worklist (bitvector) to keep active vertices,

current and next vertex sets, continue until next list is empty
e Asynchronous: a sparse worklist (set of ids) to keep active vertices, pop and

push vertices from it until nothing left

Algorithmic principles

e Non-vertex, asynchronous, data driven programs perform better on Optane PMM systems for real-world
graphs

Iime (sec)

Dense-WL [l Directon-Opt [l Sparse-WL Derse-WL [l LabelProp-5C

(a) bfs (b) cc (c) sssp

Figure 7: Execution time of different data-driven algorithms in Galois on Optane PMM using 96 threads.

chewebl2 wic12 chimyetil2

mat32
10-
il 5 e
L 4
1I il
'

W Dense-WL [l Directon-Oy

eWL [l LabeProp-SC

(a) bfs (b) cc

Figure 8: Execution time of different data-driven algorithms in Galois on Entropy (1.5TB DDR4 DRAM) using 56 threads.

Experiments: Uno

e Comparing Galois, Graphlt, GAP and GBBS(Ligra)

Time {sec)
me (sec)

caes [calois l cees [} calcs

(a) cluewebl2 (b) uk14

g
&
g

cass [Galos cess] Gawis
() iso.m100 (d) wdc12

Figure 9: Execution time of benchmarks in Graphlt, GAP. GBBS. and Galois on Optane PMM usi

Experiments: Dos

e Comparing Galois on Optane PMM vs DRAM with medium sized graphs

612244896 612244896
cluewebl2 cluewebl2

6 122448
Number of threads

- Optane PMM -=- DDR4 DRAM

Figure 10: Strong scaling in execution time of benchmarks in Galois using DDR4 DRAM and Optane PMM.

Time for a joke

Experiments: Tres

e Comparing Optane PMM vs Distributed memory (D-Galois)

Table 4 ution time (sec) of benchmarks in Galois on Optane
PMM (OB) machine using efficient algorithms (non-verte
chronous) and D-Galois on Stampede cluster (DM) using
programs with minimum # of hosts that hold the graph. Speedup of
Optane PMM over Stampede. Best times highlighted in greet

- Stampede Optane PMM Speedup
Seaph |API’ | (DM) (OB) (DMW/OB)

5163 12.68 4.07x
10.71 643
cluewebl2 13.70 11.08
186.03

iso.m100

wdel2

136.47

Experiments: Cuatro

Comparing Optane PMM vs Out-of-core (GridGraph)

Table 5: Execution time (sec) of benchmarks in Galois on Op-
tane PMM in Memory Mode (MM) and the out-of-core framework
GridGraph on Optane PMM in App-direct Mode (AD). Best times
highlighted in green. “—" indicates it did not finish in 2 hours.

. GridGraph Galois Speedu
ooy l""i’l (AD) (MM) (AD/MM)

1’ Y o $
cluewebl2 2’5 7122.75 B 890.0x

411.23 X 488.4 %

22 J /
ukl4 bfs 5 .22 NA
cc 5700.48 .30 267.6x

Summary

e Optane PMM outperforms distributed memory and out-of-core systems

e Optane PMM is as easy to program as DRAM, less expensive

e Frameworks should allow flexibility, memory allocation should maximize
DRAM usage and migrations aren't helpful

