
Sage: Parallel Semi-Asymmetric Graph Algorithms for NVRAMs

1

Julian Shun

Slides made by Laxman Dhulipala

Joint work with Laxman Dhulipala, Charles McGuffey, Hongbo Kang, Yan Gu, Guy Blelloch, and
Phil Gibbons (VLDB’20)

2

Shared-Memory Parallelism

Shared-Memory Machines

• Cost for a 1TB memory machine with 72
processors is about $20,000.

• Can rent a similar machine (96 processors and
1.5TB memory) for $11/hour on Google Cloud

A single shared-memory machine can already
store the largest publicly available graph
datasets, with plenty of room to spare

WebDataCommons Graph
• 3.5 billion vertices and 128 billion edges

What about graphs that are
larger-than-DRAM?

3

NVRAM Graph Processing

❖ Cheaper than DRAM on a per-byte basis

❖ Order of magnitude more capacity

❖ Memory is persistent and byte-addressable

Intel Optane DC Memory

Can we design algorithms that effectively use NVRAM as a
higher-capacity memory while achieving DRAM-competitive

performance?

4

Non-Volatile Memory (NVRAM)

Socket 1
(24 cores)

Socket 2
(24 cores)

12 DIMM slots 12 DIMM slots

DRAM: 6x32 GB
per socket

NVRAM: 6x256GB
per socket

48 cores with 2-way
hyper-threading

375GB DRAM and
3.024TB of NVRAM

❖ 8x more NVRAM than DRAM

❖ NVRAM read throughput ~3x lower than DRAM read

❖ NVRAM write throughput further 4x lower

Our Machine

5

NVRAM Characteristics

Benchmarking

❖ Two recent studies by Izraelevitz et al. [0] and van Renen et al.
[1] perform careful benchmarking of Optane memory, and
report similar asymmetries

Sources:
[0] Izraelevitz et al. Basic performance measurements of the Intel Optane DC persistent memory module. (2019)
[1] van Renen et al. Persistent Memory I/O Primitives (2019)
[2] Ben-David et al. Parallel algorithms for asymmetric read-write costs (2016)
[3] Blelloch et al. Efficient algorithms with asymmetric read and write costs (2016)
[4] Carson et al. Write-avoiding algorithms (2016)
[5] Peng et al. System Evaluation of the Intel Optane byte-addressable NVM (2019)
[6] Ni et al. SSP: Eliminating Redundant Writes in Failure-Atomic NVRAMs via Shadow Sub-Paging (2019)
[7] Yang et al. An Empirical Guide to the Behavior and Use of Scalable Persistent Memory (2020)

Algorithms and Systems for Asymmetric Settings
❖ Recent work explores how to minimize the number of NVRAM

writes, e.g., [2 – 4], including many other papers

❖ Also significant work from systems, architecture, and database
communities, e.g., [5 – 7], amongst many other papers

6

Recent work on Asymmetry

https://arxiv.org/abs/1903.05714
https://arxiv.org/pdf/1904.01614.pdf
https://www.cs.cmu.edu/~guyb/papers/BBFGGMS16.pdf
https://arxiv.org/abs/1511.01038
https://digitalassets.lib.berkeley.edu/techreports/ucb/text/EECS-2015-163.pdf
https://arxiv.org/pdf/1908.06503.pdf
https://cseweb.ucsd.edu/~jzhao/files/ssp-micro2019.pdf
https://www.usenix.org/system/files/fast20-yang.pdf

Can we design practical and theoretically-
sound techniques to overcome read/write

asymmetry for graph problems on NVRAMs?

7

Semi-Asymmetric Parallel Graph Algorithms for
NVRAMs [DMKGBGS’20]

106 107 108 109 1010

Number of vertices (logscale)

0

20

40

60

80

100

N
um

.
E
dg

es
/

N
um

.
V
er

ti
ce

s

Graph Type

social

web

citation

Over 90% of graphs with > 1M vertices from
SNAP and LAW datasets have m/n ≥ 10

We expect that ratio of NVRAM/DRAM in future
systems will be similar (our ratio is 8x)Sources:

https://snap.stanford.edu/data/
http://law.di.unimi.it/datasets.php 8

Real World Graphs are not Ultra-Sparse

https://snap.stanford.edu/data/
http://law.di.unimi.it/datasets.php

❖ Graph stored in NVRAM and accessed in a
read-only mode

❖ Amount of DRAM is proportional to the
number of vertices

Semi-Asymmetric Approach NVRAM

space

DRAM

Algorithm
O(n)

read/write read-only

❖ Algorithms avoid costly NVRAM writes,
and algorithm design is independent of this
cost

❖ Algorithms do not contribute to NVRAM
wear-out

Benefits

Our contribution:
This (restrictive) semi-asymmetric
approach is effective for designing

fast parallel graph algorithms

9

Our Approach

NVRAM

DRAM

CPUs

Unbounded Size

Read/Write: Unit
Cost

Read:
Unit Cost

Write:
Cost ω > 1

Regular model:
O(n)

Relaxed model:
O(n + m/log n)

10

Parallel Semi-Asymmetric Model (PSAM)

❖ Start with work-efficient shared-memory
algorithms from the Graph Based
Benchmark Suite (GBBS)

❖ Implement interface primitives used by
GBBS algorithms (edgeMap and filtering)
efficiently in the PSAM

BucketingVertexSubset GraphVertex
represent subsets
of vertices

primitives on
incident edges,
e.g., map, reduce,
filter, intersect, ...

dynamic mapping
from IDs to set of
ordered buckets

graph parallel
operators, e.g.,
edgeMap, graph
contraction, ...

Graph Formats low-level access to CSR graph formats (uncompressed and
compressed graph representations)

Parallel Primitives and Runtime

GBBS Interface

edgeMap Filtering (relaxed model)

Other Techniques

GBBS work indicates the work of naively converting exisitng shared-
memory algorithms from GBBS to NVRAM algorithms

11

Overview of Semi-Asymmetric Algorithms

Motivation
❖ Some algorithms remove, or batch-delete

edges over the course of their
operation for work-efficiency

❖ Modifying the graph directly requires
writing to NVRAM

Parallel Approximate
Set Cover

Triangle Counting

Orient edges based on a
given order

Maximal Matching

0 6 9 13 ...OffsetsGraph

Edges

1 1

NVRAM

DRAM

0 0
idbits offset

...0 1 1 2 0 1 2 3 ...

...

0 3 5 7 ...Offsets
Blocks

Semi-Asymmetric Filtering

❖ Work in the relaxed model

❖ Use one bit per edge and mirror the CSR
structure (in NVRAM) using a blocked
approach in DRAM

12

Semi-Asymmetric Filtering

13

Semi-Asymmetric Filtering

Graph

logically deleted

present in graph

14

Semi-Asymmetric Filtering

High-level Approach

0 6 9 13 ...Offsets

Edges

NVRAM

...

Graph in CSR format, stored in NVRAM (ℱB = 2)

(i) Set a filter block size, and logically chunk the CSR
structure into chunks of this size

15

Semi-Asymmetric Filtering

High-level Approach

GraphFilter in CSR format, stored in DRAM (ℱB = 2)

(ii) Create a “mirrored” filter structure in DRAM,
storing 1 bit per edge in NVRAM

1 1

DRAM

0 0
idbits offset

...0 1 1 2 0 1 2 3 ...

0 3 5 7 ...Offsets
Blocks

16

Semi-Asymmetric Filtering

0 6 9 13 ...OffsetsGraph

Edges

1 1

NVRAM

DRAM

0 0
idbits offset

...0 1 1 2 0 1 2 3 ...

...

0 3 5 7 ...Offsets
Blocks

Note: Blocks with no “1" bits remaining are deleted

Structure Overview

❖ SE model performs block-transfers, with a focus on I/O cost [0, 1]

❖ Both PSAM and SE models provide the same amount of DRAM, but
SE does not account for DRAM reads and writes

Semi-External Memory (SE) Model

Asymmetric RAM and Asymmetric Nested Parallel Models
❖ Both ARAM [2] and ANP [3] models capture asymmetry of writing to

NVRAM

❖ Unlike ARAM/ANP models, the PSAM includes a fast memory, and is
specialized for graph problems

Sources:
[0] Abello et al. A Functional Approach to External Graph Algorithms (2002)
[1] Zheng et al. FlashGraph: Processing Billion-Node Graphs on an Array of Commodity SSDs (2015)
[2] Blelloch et al. Efficient algorithms with asymmetric read and write costs (2016)
[3] Ben-David et al. Parallel algorithms for asymmetric read-write costs (2016) 17

Relationship to Other Models

https://link.springer.com/article/10.1007/s00453-001-0088-5
https://www.usenix.org/conference/fast15/technical-sessions/presentation/zheng
https://arxiv.org/abs/1511.01038
https://www.cs.cmu.edu/~guyb/papers/BBFGGMS16.pdf

NVRAM

space

DRAM

Algorithm
O(n)

read/write read-only

AppDirect Mode enables a direct implementation
of PSAM algorithms

18

Semi-Asymmetric Graph Engine (Sage) Approach

Consider an algorithm that maps over all vertices,
and for each vertex performs a reduction over the
neighbors of the vertex

19

NUMA Optimization in Sage

Socket 0 Socket 1 Socket 0 Socket 1 Socket 0 Socket 1

Three experiments based on (threads, storage)

20

NUMA Optimization in Sage

Socket 0 Socket 1 Socket 0 Socket 1 Socket 0 Socket 1

7 s
> 4x slower

first run
~7s subsequently

26 s

Cross-socket NVM reads should be avoided

21

NUMA Optimization in Sage

Socket 0 Socket 1

Both graphs stored in compressed CSR format
4.3 s for microbenchmark

❖ Applications do not distinguish between
DRAM and NVRAM

❖ Existing shared-memory software does
not require modification

❖ Workloads that are larger than DRAM
can involve costly NVRAM writes

Galois (Gill et al.)

❖ Gill et al. study the performance of the
Galois engine using MemMode

❖ They show promising results for scaling
to larger than DRAM sizes

How does our approach compare?
22

Existing Approaches: DRAM as a Cache

❖ Largest publicly available graph today

❖ 3.5B vertices connected by 128B
edges (225B symmetrized)

WebDataCommons Graph

Experiment
❖ Compare Sage results with

❖ GBBS using MemMode (existing shared-memory codes)

❖ Galois using MemMode (using numbers reported by
authors on the same machine)

23

Results for Larger-than-DRAM Graphs

1.94x speedup on average over Galois (state-of-the-art existing
approach to NVRAM graph processing), and 1.87x speedup over

simply running GBBS codes using MemMode

Run on a 48-core machine with 2-way hyper-threading, 375 GB of DRAM
and 3 TB of NVRAM

24

Results for Larger-than-DRAM Graphs

❖ Large web crawl with ~1B vertices connected
by 42B edges (74B symmetrized)

❖ Graph fits entirely in the main memory of our
machine

ClueWeb Graph

Experiment
❖ Compare Sage (graph stored on NVRAM) with

❖ Sage (graph stored in DRAM)

❖ GBBS (graph stored in DRAM)

❖ GBBS with libvmmalloc (graph stored on NVRAM)

libvmmalloc: see https://pmem.io/pmdk/libvmmalloc/ 25

Results for Graphs Stored in Main Memory

https://pmem.io/pmdk/libvmmalloc/

Sage provides DRAM-competitive performance even when reading
graph from NVRAM (only 5% slower on average)

26

Results for Graphs Stored in Main Memory

Run on a 48-core machine with 2-way hyper-threading, 375 GB of DRAM
and 3 TB of NVRAM

Avoid NVRAM Writes

❖ PSAM implementations which only read from
NVRAM are over 6x faster than our algorithms
which write to NVRAM (using libvmmalloc)

Avoid Cross-Socket NVRAM Traffic

❖ NUMA optimization which reads from the copy of
the read-only graph from the same socket
achieves 6x speedup over cross-socket approach

Utilize App-Direct Mode

❖ Nearly 2x improvement for App-Direct based
PSAM algorithms over two fast Memory Mode
approaches

27

Lessons and Directions for Future Work

