GraphMineSuite: Enabling High-Performance and
Programmable Graph Mining Algorithms with Set Algebra

Maciej Besta!*, Zur Vonarburg-Shmaria!, Yannick Schaffner!, Leonardo Schwarz!,
Grzegorz Kwasniewski!, Lukas Gianinazzi!, Jakub Beranek?, Kacper Janda®, Tobias Holenstein!,
Sebastian Leisinger', Peter Tatkowski', Esref Ozdemir', Adrian Balla!, Marcin Copik’,
Philipp Lindenberger!, Marek Konieczny?®, Onur Mutlu!, Torsten Hoefler!*

Review by Kliment Serafimov
for 6.827

Summary

The GraphMiningSuite is a general and extensible framework for end-to-end development of high-performance graph
algorithmes.

Key features:

° Provides a library of highly-optimized graph processing primitives based on sets and set algebra.
e Extensive set of graph problems and algorithms > 40 baselines

o 3 families of graph problems

o Variety input graph distributions, both real-world and syntetic.
e Extensible framework allows users to implement their own modules

o For graph representation anb accessing

o For pre-processing

e Novel performance metric: algorithmic throughput (‘graphlets per second’).
e Broad theoretical concurrency analysis
o best work bound among poly-logarithmic depth maximal clique listing algorithms

Also:

e Extensive literature review and comparison to other frameworks.

Research Problem Pipeline

High- _performance

Part 1: Design Part 2: Implementation & tuning

Part 3: Analysis Part 4: Evaluation
Key questions: Key questions: Key questions:
Goal: construct a high-
-performance algorithm
solving a selected graph g
mining problem

Different symbols indicate

which elements of GMS are
responsible for a given part
of the construction process

of a graph mining algorithm

Challenges & questions

Framework pipeline

Solutions & answers

Reference implementations

Benchmark specification

Details:
Section 4

Graph problems & algorithms

- Pattern matching (e.g., clique listing)
- Learning (e.g., link prediction, clustering)

- Optimization (e.g., coloring, minimum cuts)
- Reordering (e.g., degeneracy reordering)

Datasets

- Sparse & dense, - many & few cliques,

- High & low skew of degree distribution,

- Many & few dense (non-clique) subgraphs,
- different origins (purchases, roads, ...)

: Platform pipeline stages (toolchain execution)

with details on extensibility and modularity

Implementations

- Algorithms,

- Optimizations,

- Preprocessing
routines,

- Load balancing,

- Graph representations,
- Data layouts,

- Graph compression,

- Parallelizations

Features

-» Parallel, = Modular,
- Scalable, » Fast, =» ...

ﬁ :

. Performance metrics
a I
Details: Section 5 o Eyiaanted = Msed iy Details:
& \ ¥ EPPTOSE Sections 5 & 7

Benchmarking platform
Details:
Sections 3 &5

- Simple to use,
- Extensible, 1

- Run-time, = Scalability,
- L3 misses (machine efficiency).
Features

Key idea in a novel metric: _
count the number of graph _
patterns mined per second "

(algorithmic efficiency).

- Modular,
- Public.

Concurrency analysis

Details: Section 6 @

Key idea for high modularity:
use set algebra. Sets and set
operations become "modules"
that can be implemented in
different ways, and still they
can be seamlessly combined.

Aspects

- Performance (work, depth),
- Storage, = Tradeoffs.

]
a dark background and a cube indicate that a particular part of the design
can be substituted by the developer with their own implementation '

]

@ Build graph representation) (€ Apply preprocessing i) 0 ':l““ G'ﬂl:n" (© Define algorithm building blocks Gather
Load graph . : f Example: Example: g /* Example: Triangle The user can plug in variants data
into memory initial CSR graph reordered CSR Counting. "tc" is the of fine ua
representation (degree order: by count o‘ﬂnang S */ as scheduling policies. GMS
'_> neighborhood size) facilitates it \M&o appropriate
—H —0 modular)ememanons -
—- — tc = 0; init_sets() / =
— = — S s paalicl —
. The user can plug in dilerent pre The uset canpiugin | for win S Most simpiicity is ’
Input e SSISIMSS. WWe provide B teacy Surary .ﬂ, 2 giach s alqorq'er?r:gv?e tc+ N fmaéielg p"?gr:gs@ Visualize
>40 reference e unain:
graph —— \ or degree recrdering (example above). y _implementations. tc /= 3; cleanup(,.2 algebra m
How does GMS 0 Modular design of 9 Well-defined interface 9 Enabling running different 0 Modular design of Clear structure of code facilitating @ Set algebra based
facilitate extensibility classes & files associated (based on set algebra) of preprocessing routines classes & files associated manipulation with fine parts such as modularity for various
at a given stage? with graph representations routines for graph accesses with a single function call with graph algorithms scheduling policy of single loops parts of algorithms

The user can experiment with algorithmic ideas (e.g., new algorithms or data structures), architectural ideas (e.g., using SIMD or instrinsics), and design ideas (e.g., using novel form of load balancing).

Graph problems and algorithms implemented

Graph problem Corresponding algorithms E? P.? Why included, what represents? (selected remarks)
® Maximal Clique Listing [48] Bron-Kerbosch [24] + optimizations (e.g., pivoting) [29, 51, 117] O w Widely used, NP-complete, example of backtracking
Graph e T Edge-Parallel and Vertex-Parallel general algorithms [41], WAl ; :
PattSrn ® k-Clique Listing [41] different variants of Triangle Counting [104, 107] 6D - b (high-degree polynomial), example of backtracking
Matchi
AN o Dense Subgraph Discovery [5] Listing k-clique-stars [63] and k-cores [54] (exact & approximate) 6] @ @ Different relaxations of clique mining
® Subgraph isomorphism [48] VF2 [40], TurbolSO [58], Glasgow [89], VF3 [26, 28], VF3-Light [27] o ® Induced vs. non-induced, and backtracking vs. indexing schemes
e Frequent Subgraph Mining [5] BFS and DFS exploration strategies, different isomorphism kernels @ Useful when one is interested in many different motifs
—— Jaccard, Overlap, Adamic Adar, Resource Allocation, A building block of many more comples schemes,
Vo amikatty|li) Common Neighbors, Preferential Attachment, Total Neighbors [101] o @ ks different methods have different performance properties
Graph o Link Prediction [114] aavis Rasecion v_erte>f snmllan‘ty.(see llove) g 180 SRl 6] @ ® A very common problem in social network analysis
Learning a scheme for assessing link prediction accuracy [121]
. Jarvis-Patrick clustering [65] based on different A very common problem in general data mining; the selected
« Clustering {103) vertex similarity measures (see above) [7, 80, 83, 114] & @ " scheme is an example of overlapping and single-level clustering
o Community detection Label Propagation and Louvain Method [108] b ® Examples of convergence-based on non-overlapping clustering
Vertex ® Degree reordering A straightforward integer parallel sort b) Asimple scheme that was shown to bring speedups
Ordering ® Triangle count ranking Computing triangle counts per vertex 6] @ %) Ranking vertices based on their clustering coefficient
® Degenerecy reordering Exact and approximate [54] [70] 4] @) Often used to accelerate Bron-Kerbosch and others

Table 3: Graph problems/algorithms considered in GMS. “E.? (Extensibility)” indicates how extensible given implementations are in the GMS benchmarking
platform: “C)” indicates full extensibility, including the possibility to provide new building blocks based on set algebra (@) - @, @). “sé”: an algorithm that does
not straightforwardly (or extensively) use set algebra. “P.? (Preprocessing) indicates if a given algorithm can be seamlessly used as a preprocessing routine; in the
current GMS version, this feature is reserved for vertex reordering.

Graph Datasets

Real-world and synthetic graphs with varying statistics:

(@)

o O O O O

sparsities m/n (sparse and dense)

skews in degree distribution (high and low skew)

diameters (high and low)

amounts of locality i.e. inter-cluster edges (many and few)
Triangle-count

a large difference between the average number of triangles
per vertex T /n and the maximum T/n (for clique algorithms)

Graph f n m % Z a; T Why selected/special?
[so] (K) Orkut 3M 117M 38.1 33.3k 33.3k 628M 204.3 Common, relatively large
[so] (K) Flickr 23M 22.8M 9.9 21k 26.3k 838M 363.7 Large T but low m/n.
[so] (K) Libimseti 221k 17.2M 78 333k 25k 69M 312.8 Large m/n
[so] (K) Youtube 32M 93M 29917k 91.7k 122M 3.8 Very low m/n and T
[so] (K) Flixster 25M 7.91M 3.1 14k 1.4k 7.89M 3.1 Verylow m/nand T

. Similar to Flickr, but
[so] (K) Livemocha 104k 2.19M 21.1 2.98k 2.98k 3.36M 3 2 lot fewer 4-cliques (4.36M)
[so] (N) Ep-trust 132k 841k 6 3.6k 3.6k 27.9M 212 Huge T-skew (T = 108k)
[so] (N) FB comm. 35.1k 1.5M 415 82k 82k 364M 1k Large T-skew (T = 159k)
wb] (K) DBpedia 12.1M 288M 23.7 963k 963k 11.68B 961.8 Rather low m/n but high T
wb] (K) Wikipedia 18.2M 127M 6.9 632k 632k 328M 18.0 Common, very sparse
wb] (K) Baidu 2.14M 17M 7.9 979k 2.5k 252M 11.8 Very sparse
[wb] (N) WikiEdit 943k 57M 60.4 107k 107k 835M 8.9k Large T-skew (T = 15.7M)

Very large T and T /n
[st] (N) Chebyshev4 68.1k 5.3M 77.8 68.1k 68.1k 445M 6.5k i (T = 5.8M)
[st] (N) Gearbox 154k 45M 292 98 98 141M Low d but large T;
low T-skew (T = 1.7k)

[st] (N) Nemeth25 10k 751k 75.1 192 192 87M 9k Huge T but low Tf 12k
[st] (N) F2 715k 2.6M 365 344 344 110M 1.5k Medium T-skew (T = 9.6k)
[sc] (N) Gupta3 16.8k 4.7M 280 14.7k 14.7k 696M 41.5k Huge T-skew (T = 1.5M)
[sc] (N) Idoor 952k 20.8M 215 76 76 567M 595 Very low T—sliew (T =1.1k)
[re] (N) MovieRec ~ 70.2k 10M 142.4 35.3k 353k 983M 14k Huge T and T = 4.9M
[re] (N) RecDate 169k 17.4M 1025 33.4k 33.4k 286M 1.7k Enormous T-skew (T = 1.6M)
[bi] (N) sc-ht (gene) 2.1k 63k 30 472 472 42M 2k Large T-skew (T = 27.7k)
[bi] (N) AntColony6 164 10.3k 62.8 157 157 1.IM 6.6k Very low T-skew (I =9.7k)
[bi] (N) AntColony5 152 9.1k 59.8 150 150 897k 5.9k Very low T-skew (T =8.8k)
[co] (N) Jester2 50.7k 1.7M 33.5 50.8k 50.8k 127M 2.5k Enormous T-skew (T = 2.3M)
[co] (K) Flickr 106k 2.31M 219 5.4k 5.4k 108M Similar to Livemocha, but

(photo relations)
[ec] (N) mbeacxc
[ec] (N) orani678

[ro] (D) USA roads 23.9M 28.8M

492 49.5k 100.5 679 679
2.5k 899k 355 1.7k 1.7k

1.2 9 9

many more 4-cliques (9.58B)

9M 18.2k Large T, low i =77.7k
87M 3.4k Large T, low T = 80.8k

1.3M

0.1 Extremely low m/n and T

Table 5: Some considered real-world graphs. Graph class/origin: [so]: social
network, [wb]: web graph, [st]: structural network, [sc]: scientific computing,
[re]: recommendation network, [bi]: biological network, [co]: communica-
tion network, [ec]: economics network, [ro]: road graph. Structural features:

m/n: graph sparsity, d;: maximum in-degree, d,: maximum out-degree, T:
number of triangles, T/n: average triangle count per vertex, T-skew: a skew
of triangle counts per vertex (i.e., the difference between the smallest and the

largest number of triangles per vertex). Here, T is the maximum number of
triangles per vertex in a given graph. Dataset: (W), (S), (K), (D), (C), and (N)
refer to the publicly available datasets, explained in § 8.1. For more details,

see § 4.2.

Metrics

e Seamless integration with PAPI (for extracting hardware use stats)
o CPU Core utilization (stalled CPU cycles).
o Cache misses and cache hits (L1, L2, L3, data vs. instruction, TLB)
o Memory reads/writes
e Algorithmic efficiency / algorithmic throughput
o Generalization of ‘edges-per-second..
o Graphlets-per-second. Number of graph motives mined per second
o Eg:cligues per second, clusters per second etc.

Literature Review and
Comparisson

Reference / Pattern Matching Learning v/, pamarks

Infrastructure mC kC dS sl fS vSIP ¢l ¢D

[B] Cyclone [113] X X X X X XX X X®E “Only degree centrality.
[B] GBBS/Ligra [46, 106] % m X X X X X X & “Support for degeneracy
[B] GraphBIG [94] XE X X X XX X X & Onlyk=3
[B] GAPBS [13) XE) X X X XX X X X “Onlyk =3
[B] LDBC [23] X X X X X X X&' X X “Onlyone clustering coefficient
[B] WGB [9] X X X X X XXE)' X X "Onlyone clustering scheme
BPBBS19 X X X X X XX = X X
Graph500[93] X X X X X XX X X X
B] CRONO [6 X X X X X XX X =) “Triangle counting.
8 8
B] GARDENIA [126 X X X X X XX X & “Triangle countin
8 8

[F] Aframework [47] ®'E'm @ @ X X X %X X “No good performance bounds

[B] GMS [This paper] = - (- - - Details in Table 3 and Section 4

Table 1: Related work analysis, part 1: a comparison of GMS to graph-related
benchmarks (“[B]”) and graph mining frameworks such as Fractal [47] (“[F]”),
focusing on supported graph mining problems. We exclude benchmarks
with no focus on mining algorithms (Lonestar [25], Rodinia [33], HPCS [11],
work by Han et al [56], Parboil [110], BigDataBench [122], BDGS [91], and
LinkBench [10]). mC: maximal clique listing, kC: k-clique listing, dS: dens-
est subgraph, sI: subgraph isomorphism, fS: frequent subgraph mining, vS:
vertex similarity, IP: link prediction, cl: clustering, cD: community detection,
Opt: optimization, Vr: vertex rankings, =: Supported. ®: Partial support. X:
no support.

Reference / New Alg Gen. APIs Metrics Storage Compres. 12

Infrastructure dnasp NG S P rt me fg mf af agbgaabaadof fgenre 3 nb
[B] Cyclone [113] X %X X XEIX X X X X X X X X X X X X X X X X X
[B]?E:Vﬁa[??(l)ﬁl X X EEmemm)X m E) X X X - - - X E) X - -
(B]GraphBIG[94] X X X SEDX X 50 @ X @ X EXEX X X X X X X X
[B] GAPBS [13] XX X XEOHX X @ @) X X X @)X X X X XXX XXX
B] LDBC [23] XX X XEHX X - XXX XXX XXX
B] WGB [9] XX XEXXE @ X X X XX XXXXX XXX X
B] PBBS [19] XX AXAXXXE X X X XEX XXX XXX XXX
B Graph500[93] e @ XE)X X @ X X X S)mX X X X X X X X X X

B] CRONO [6] XXX XXX @) @ X XX XXX XX XXX X

GARDENlA[]ZG]x* X XEX X E) X @ X EXEX X XXX XXX
[B] GMS)) [() - (- (- (- (- () (-) [)))) ())) -)))

Table 2: Related work analysis, part 2: GMS vs. graph benchmarks (“[B]”) and
graph pattern matching frameworks (“[F]”), focusing on supported function-
alities important for developing fast and simple graph mining algorithms.
New alg? (3): Are there any new/enhanced algorithms offered? na: do the new
algorithms have provable performance properties? sp: are there any speedups
over tuned existing baselines? Modularity: The numbers (@) - @, @) indicate
aspects of modularity, details in Sections 3-4. In general: Gen. APIs: Dedicated
generic APIs for a seamless integration of an arbitrary graph mining algo-
rithm with: N (an arbitrary vertex neighborhood), G (an arbitrary graph rep-
resentation), S (arbitrary processing stages, such as preprocessing routines),
P (PAPI infrastructure). Metrics: Supported performance metrics. rt: (plain)
run-times. me: (plain) memory consumption. fg: support for fine-grained
analysis (e.g., providing run-time fraction due to preprocessing). mf: metrics
for machine efficiency (details in § 4.3). af: metrics for algorithmic efficiency
(details in § 4.3). Storage: Supported graph representations and auxiliary data
structures. ag: graph representations based on (sparse) integer arrays (e.g.,
CSR). bg: graph representations based on (sparse or dense) bitvectors [1, 57].
aa: auxiliary structures based on (sparse) integer arrays. ba: auxiliary struc-
tures based on (sparse or dense) bitvectors. Compression: Supported forms
of compression.ad: compression of adjacency data. of: compression of offsets
into the adjacency data. fg: compression of fine-grained elements (e.g., sin-
gle vertex IDs). en: various forms of the encoding of the adjacency data (e.g.,
Varint [17]). re: support for relabeling adjacency data (e.g., degree minimiz-
ing [17]). Th.: Theoretical analysis. 3: Any theoretical analysis is provided.
Nb: Are there any new bounds? =: Support. @: Partial support. &° / =": A
given metric is supported via an external profiler. X: No support.

Primitives and Interfaces

e Setsand set-algebra primitives (right ->)

o Union, intersection, difference

o Contains, cardinality, iteration, equality

o remove, add

o Cloning, serialization
e Graph representation and access

o Allows the user to implement their own
e Graph preprocessing

o Allows the user to implement their own
e Algorithms

o User can use existing algorithms

o Implement their own algorithms

o Ortweak existing algorithms

Implementation of set algebra

e Different representations for dense vs sparse sets:

o ‘Roaring’ bitmaps set representation
o SortedSet
o HashSet

1 class Set {

2 public:

3 //In methods below, we denote "xthis" pointer with A

4 //(1) Set algebra methods:

5 Set diff(const Set &B) const; //Return a new set C=A\B

6 Set diff(SetElement b) const; //Return a new set C=A\ {b}
7 void diff_inplace(const Set &B); //Update A=A\B

8 void diff_inplace(SetElement b); //Update A=A\ {b}

9 Set intersect(const Set &B) const; //Return a new set C=ANB
10 size_t intersect_count(const Set &B) const; //Return |ANB|
11 void intersect_inplace(const Set &B); //Update A=ANB

12 Set union(const Set &B) const; //Return a new set C=AUB
13 Set union(SetElement b) const; //Return a new set C=AU {b}
14 Set union_count(const Set &B) const; //Return |AUB]|

15 void union_inplace(const Set &B); //Update A=AUB

16 void union_inplace(SetElement b); //Update A=AU {b}

17 bool contains(SetElement b) const; //Return b€ A 7 true:false
18 void add(SetElement b); //Update A= AU {b}

19 void remove(SetElement b); //Update A=A\ {b}

20 size_t cardinality() const; //Return set's cardinality

21 //(2) Constructors (selected):

22 Set(const SetElement *start, size_t count); //From an array
23 Set(); Set(Set &R&); //Default and Move constructors

24 Set(SetElement); //Constructor of a single-element set

25 static Set Range(int bound); //Create set {0,1,..., bound -1}
26 //(3) Other methods:

27 begin() const; //Return iterators to set's start

28 end() const; //Return iterators to set's end

29 Set clone() const; //Return a copy of the set

30 void toArray(int32_t xarray) const; //Convert set to array
31 operator==; operator!=; //Set equality/inequality comparison
32

33 private:

34 using SetElement = GMS::Nodeld; //(4) Define a set element
35 }

Algorithm 1: The set algebra interface provided by GMS.

Work-span analysis

k-Clique Listing k-Clique Listing * k-Clique Listing ADG Max. Cliques Max. Cliques * Max. Cliques Subgr. Isomorphism Link Prediction™
Node Parallel [41] Edge Parallel [41] with ADG (§ 6) (Section 6) Eppsteinetal. [51] Dasetal.[42] with ADG (§7.3) Node Parallel [26,40] JP Clustering
work 0 (mk (4)7) o(mk(4)7) o(mk@s$)*) om) ofam3@B) o(33) 0(am3®dB) o(mkt) o(ma)
Depth()(n+k(g—)k_l)O(n+k(%)k_2+d2)O(k (d+ %)k_2+logzn+d2)0(log2 n) O(dm3d/3) O(dlogn) O(log2n+dlogn)O(Ak_l) O(A)
Space O(nd? + K) o(md2+1<) o(md2+1<) O(m) O(m+nd+K) O(m+pdA+K)O(m+pdA+K) O(m+nk+K) O(mA)

Table 4: Work, depth, and space for some graph mining algorithms in GMS. d is the graph degeneracy, K is the output size, A is the maximum degree, p is the
number of processors, k is the number of vertices in the graph that we are mining for, n is the number of vertices in the graph that we are mining, and m is the
number of edges in that graph. T Link prediction and the JP clustering complexities are valid for the Jaccard, Overlap, Adamic Adar, Resource Allocation, and

Common Neighbors vertex similarity measures. ¥ Algorithms derived in this work.

Use-cases

e Approximate degeneracy order
e Max-clique
e K-clique

Approximate Degeneracy Order

1 //Input: A graph GG. Output: Approx. degeneracy order (ADG) n.
21 =1 // Iteration counter

3U =V //U is the induced subgraph used in each iteration i
4 while U # (0 do:

5 g{] = (ZveU |NU(v)|9) / |U| //Get the average degree in U
6 //R contains vertices assigned priority in this iteration:
7 R={veU: |[Ng@)|@® <1+edy)

8 for v €R in parallelee do: n(v) = i //assign the ADG order

9

U = U\R@ //Remove assigned vertices
10 1 = 1i+]

Algorithm 3: Deriving the approximate degeneracy order (ADG) in GMS.
More than one number indicates that a given snippet is associated with
more than one modularity type.

Enumerating Cliques

/*Input: A graph Go , k € N Qutput: Count of k-cliques ck € N. x/

//Preprocessing: reorder vertices with DGR or ADG.
//Here, we also record the actual ordering and denote it as 7

(v1, U2, ..., n;) = preprocess(V, /* selected vertex order */)9
//Construct a directed version of G using ;. This is an
//additional optimization to reduce the search space:

G = dir(G)® //An edge goes from v to u iff n(v) < n(u)

O 00N N U W =

10 ck = 0 //We start with zero counted cliques.

11 for wu €V in parallel doze //Count u's neighboring k-cliques
12 Cy = N*(u); ck += count(2, G, Cp)

13

14 function count(i, G, Cj):

15 if (i == k): return |Ck|@ //Count k-cliques

16 else:

17 ci =0

18 for v e Ciéb do: //search within neighborhood of v
19 Civ1 = N+(‘U)ﬂCi@ // C; counts i-cliques.

20 ci += count(i+1, G, Cij+1)

21 return ci

Algorithm 5: k-Clique Counting; see Listing 3 for the explanation of
symbols.

1 /* Input: A graph Go. Qutput: all maximal cliques. */

2

3 //Preprocessing:

19
20

21
22
23

24
25
26
27

28

//Main part:
for v; € (v1, vy, ..

reorder vertices with DGR or ADG.
(v1, v2, ..., vn) = preprocess(V, /* selected vertex order */)9

conduct the actual clique enumeration.

.,Un) do: //Iterate over V in a specified order
//For each vertex wvj, find maximal cliques containing vj.
//First, remove unnecessary vertices from P (candidates

//to be included in a clique) and X (vertices definitely
//not being in a clique) by intersecting N(v;) with vertices
//that follow and precede w; in the applied order.

P = N@)N{0ist, - on}®; X = N@)n{o1, ..., vi1}D; R = {v;}

//Run the Bron-Kerbosch routine recursively for P and X.
BK-Pivot (P, {vi}, X)

BK-Pivot(P,R,X) //Definition of the recursive BK scheme

if PUX ==0@: Output R as a maximal clique
u = pivot(PUX)@ //Choose a "pivot" vertex ue€ePUX

for vEP\N(u)@: // Use the pivot to prune search space
//New candidates for the recursive search
Pnew = PON@)D; Xnew = XOAN@)D; Rpew = RU{0}D
//Search recursively for a maximal clique that contains v
BK-Pivot (Pnew> Rnew> Xnew)

//After the recursive call, update P and X to reflect
//the fact that v was already considered

P=P\{0}®; X = XU{v}D

Algorithm 4: Enumeration of maximal cliques, a Bron-Kerbosch variant
by Eppstein et al. [52] with GMS enhancements.

Experiments

e Machines:
o two single machines (1TB and 64GB RAM),
o Nodes from supercomputers

Thank you!

Any questions?

