GraphMineSuite: Enabling High-Performance and **Programmable Graph Mining Algorithms with Set Algebra**

Maciej Besta^{1*}, Zur Vonarburg-Shmaria¹, Yannick Schaffner¹, Leonardo Schwarz¹, Grzegorz Kwasniewski¹, Lukas Gianinazzi¹, Jakub Beranek², Kacper Janda³, Tobias Holenstein¹, Sebastian Leisinger¹, Peter Tatkowski¹, Esref Ozdemir¹, Adrian Balla¹, Marcin Copik¹, Philipp Lindenberger¹, Marek Konieczny³, Onur Mutlu¹, Torsten Hoefler^{1*}

> Review by Kliment Serafimov for 6.827

Summary

The GraphMiningSuite is a **general and extensible framework for end-to-end development** of high-performance graph algorithms.

Key features:

- Provides a library of highly-optimized graph processing primitives based on sets and set algebra.
- Extensive set of graph problems and algorithms **> 40 baselines**
	- 3 families of graph problems
	- Variety input graph distributions, both real-world and syntetic.
- **● Extensible framework allows users to implement their own modules**
	- For graph representation anb accessing
	- For pre-processing
- Novel performance metric: **algorithmic throughput** ('graphlets per second').
- Broad **theoretical concurrency analysis**
	- best work bound among poly-logarithmic depth maximal clique listing algorithms

Also:

● Extensive literature review and comparison to other frameworks.

Research Problem Pipeline

Framework pipeline

The user can experiment with algorithmic ideas (e.g., new algorithms or data structures), architectural ideas (e.g., using SIMD or instrinsics), and design ideas (e.g., using novel form of load balancing).

Graph problems and algorithms implemented

Table 3: Graph problems/algorithms considered in GMS. "E.? (Extensibility)" indicates how extensible given implementations are in the GMS benchmarking platform: " \hat{C} " indicates full extensibility, including the possibility to provide new building blocks based on set algebra (\hat{O} – \hat{O} , \hat{O}). " \hat{C} ": an algorithm that does not straightforwardly (or extensively) use set algebra. "P.? (Preprocessing) indicates if a given algorithm can be seamlessly used as a preprocessing routine; in the current GMS version, this feature is reserved for vertex reordering.

Graph Datasets

- Real-world and synthetic graphs with varying statistics:
	- sparsities m/n (sparse and dense)
	- skews in degree distribution (high and low skew)
	- diameters (high and low)
	- amounts of locality i.e. inter-cluster edges (many and few)
	- Triangle-count
	- a large difference between the average number of triangles per vertex T /n and the maximum T/n (for clique algorithms)

Table 5: Some considered real-world graphs. Graph class/origin: [so]: social network, [wb]: web graph, [st]: structural network, [sc]: scientific computing, [re]: recommendation network, [bi]: biological network, [co]: communication network, [ec]: economics network, [ro]: road graph. Structural features: m/n : graph sparsity, \hat{d}_i : maximum in-degree, \hat{d}_o : maximum out-degree, T: number of triangles, T/n : average triangle count per vertex, T -skew: a skew of triangle counts per vertex (i.e., the difference between the smallest and the largest number of triangles per vertex). Here, \widehat{T} is the maximum number of triangles per vertex in a given graph. Dataset: (W) , (S) , (K) , (D) , (C) , and (N) refer to the publicly available datasets, explained in § 8.1. For more details, see § 4.2.

Metrics

- Seamless integration with PAPI (for extracting hardware use stats)
	- CPU Core utilization (stalled CPU cycles).
	- Cache misses and cache hits (L1, L2, L3, data vs. instruction, TLB)
	- Memory reads/writes
- Algorithmic efficiency / algorithmic throughput
	- Generalization of 'edges-per-second'.
	- Graphlets-per-second. Number of graph motives mined per second
	- Eg: cliques per second, clusters per second etc.

Literature Review and Comparisson

Table 1: Related work analysis, part 1: a comparison of GMS to graph-related benchmarks ("[B]") and graph mining frameworks such as Fractal [47] ("[F]"), focusing on supported graph mining problems. We exclude benchmarks with no focus on mining algorithms (Lonestar [25], Rodinia [33], HPCS [11], work by Han et al [56], Parboil [110], BigDataBench [122], BDGS [91], and LinkBench [10]). mC: maximal clique listing, kC : k -clique listing, dS: densest subgraph, sI: subgraph isomorphism, fS: frequent subgraph mining, vS: vertex similarity, IP: link prediction, cl: clustering, cD: community detection, Opt: optimization, Vr: vertex rankings, \blacksquare : Supported. \blacksquare : Partial support. X : no support.

Table 2: Related work analysis, part 2: GMS vs. graph benchmarks ("[B]") and graph pattern matching frameworks ("[F]"), focusing on supported functionalities important for developing fast and simple graph mining algorithms. New alg? (\exists) : Are there any new/enhanced algorithms offered? na: do the new algorithms have provable performance properties? sp: are there any speedups over tuned existing baselines? Modularity: The numbers $(\bigcirc - \bigcirc$, \bigcirc) indicate aspects of modularity, details in Sections 3-4. In general: Gen. APIs: Dedicated generic APIs for a seamless integration of an arbitrary graph mining algorithm with: N (an arbitrary vertex neighborhood), G (an arbitrary graph representation), S (arbitrary processing stages, such as preprocessing routines), P (PAPI infrastructure). Metrics: Supported performance metrics. rt: (plain) run-times. me: (plain) memory consumption. fg: support for fine-grained analysis (e.g., providing run-time fraction due to preprocessing). mf: metrics for machine efficiency (details in § 4.3). af: metrics for algorithmic efficiency (details in § 4.3). Storage: Supported graph representations and auxiliary data structures. ag: graph representations based on (sparse) integer arrays (e.g., CSR), bg: graph representations based on (sparse or dense) bitvectors [1, 57]. aa: auxiliary structures based on (sparse) integer arrays. ba: auxiliary structures based on (sparse or dense) bitvectors. Compression: Supported forms of compression.ad: compression of adjacency data. of: compression of offsets into the adjacency data. fg: compression of fine-grained elements (e.g., single vertex IDs), en: various forms of the encoding of the adjacency data (e.g., Varint [17]), re: support for relabeling adjacency data (e.g., degree minimizing [17]). Th.: Theoretical analysis. E: Any theoretical analysis is provided. Nb: Are there any new bounds? \blacksquare : Support. \blacksquare : Partial support. $\blacksquare^* / \blacksquare^*$: A given metric is supported via an external profiler. X: No support.

Primitives and Interfaces

- Sets and set-algebra primitives (right \rightarrow)
	- Union, intersection, difference
	- Contains, cardinality, iteration, equality
	- remove, add
	- Cloning, serialization
- Graph representation and access
	- Allows the user to implement their own
- **Graph preprocessing**
	- Allows the user to implement their own
- **Algorithms**
	- User can use existing algorithms
	- Implement their own algorithms
	- Or tweak existing algorithms

Implementation of set algebra

- Different representations for dense vs sparse sets:
	- 'Roaring' bitmaps set representation
	- SortedSet
	- HashSet

```
1 class Set {
2 public:
 3 //In methods below, we denote "*this" pointer with A4 //(1) Set algebra methods:
     Set diff(const Set &B) const; //Return a new set C = A \setminus BSet diff(SetElement b) const; //Return a new set C = A \setminus \{b\}6
    void diff_inplace(const Set &B); //Update A = A \setminus Bvoid diff_inplace(SetElement b); //Update A = A \setminus \{b\}8
    Set intersect(const Set &B) const; //Return a new set C = A \cap B\mathbf Qsize_t intersect_count(const Set &B) const; //Return |AnB|
10
     void intersect_inplace(const Set &B); //Update A = A \cap B11
     Set union(const Set &B) const; //Return a new set C = A \cup B12
13
     Set union(SetElement b) const; //Return a new set C = A \cup \{b\}14
     Set union_count(const Set &B) const; //Return |A \cup B|void union_inplace(const Set &B); //Update A = A \cup B15
     void union_inplace(SetElement b); //Update A = A \cup \{b\}16
    bool contains (SetElement b) const; //Return b \in A ? true: false
17
     void add(SetElement b); //Update A = A \cup \{b\}18
     void remove(SetElement b); //Update A = A \setminus \{b\}19
20
     size_t cardinality() const; //Return set's cardinality
21 //(2) Constructors (selected):
     Set(const SetElement *start, size_t count); //From an array
22
23
    Set(); Set(Set &&); //Default and Move constructors
    Set(SetElement); //Constructor of a single-element set
24
     static Set Range(int bound); //Create set \{0, 1, ..., bound - 1\}25
26 //(3) Other methods:
     begin() const; //Return iterators to set's start
27
     end() const; //Return iterators to set's end
28
     Set clone() const; //Return a copy of the set
29
     void toArray(int32_t *array) const; //Convert set to array
30
     operator==; operator!=; //Set equality/inequality comparison
31
32
33 private:
     using SetElement = GMS:: NodeId; //(4) Define a set element
34
35 }
```
Algorithm 1: The set algebra interface provided by GMS.

Work-span analysis

Table 4: Work, depth, and space for some graph mining algorithms in GMS. d is the graph degeneracy, K is the output size, Δ is the maximum degree, p is the number of processors, k is the number of vertices in the graph that we are mining for, n is the number of vertices in the graph that we are mining, and m is the number of edges in that graph. [†] Link prediction and the JP clustering complexities are valid for the Jaccard, Overlap, Adamic Adar, Resource Allocation, and Common Neighbors vertex similarity measures. * Algorithms derived in this work.

Use-cases

Contract Contract Contract

- Approximate degeneracy order
- Max-clique
- K-clique

Approximate Degeneracy Order

1 //Input: A graph G . Output: Approx. degeneracy order (ADG) η . $2 i = 1 // Iteration counter$ 3 $U = V$ // U is the induced subgraph used in each iteration i 4 while $U \neq \emptyset$ do: 5 $\widehat{\delta_U}$ = $\left(\sum_{v \in U} |N_U(v)| \bullet\right)$ / |U| //Get the average degree in U 6 $//R$ contains vertices assigned priority in this iteration: $R = \{v \in U : \left|N_U(v)\right| \otimes \left|\left(\frac{1}{2}\right) \widehat{\delta_U}\right.\}$ $\overline{7}$ for $v \in R$ in parallel \bigotimes do: $\eta(v) = i$ //assign the ADG order 8 $U = U \setminus R$ //Remove assigned vertices $\overline{9}$ $i = i+1$ 10

Algorithm 3: Deriving the approximate degeneracy order (ADG) in GMS. More than one number indicates that a given snippet is associated with more than one modularity type.

Enumerating Cliques

```
1 /*Input: A graph G , k \in \mathbb{N} Output: Count of k-cliques ck \in \mathbb{N}. */
3 //Preprocessing: reorder vertices with DGR or ADG.
4 //Here, we also record the actual ordering and denote it as \eta(v_1, v_2, ..., v_n; \eta) = preprocess(V, /* selected vertex order */) \Theta7 //Construct a directed version of G using \eta. This is an
8 //additional optimization to reduce the search space:
9 G = dir(G) \bigodot //An edge goes from v to u iff \eta(v) < \eta(u)10 ck = 0 //We start with zero counted cliques.
11 for u \in V in parallel do: \bigotimes //Count u's neighboring k-cliques
    C_2 = N^+(u); ck += count(2, G, C_2)
12
14 function count(i, G, C_i):
   if (i == k): return |C_k|\vec{\mathbf{\Theta}}| //Count k-cliques
15
     else:16
17
       ci = 0for v \in C_i J do: //search within neighborhood of v
18
         C_{i+1} = N^+(v) \cap C_i \overline{\mathbf{S}} // C_i counts i-cliques.
19
         ci += count (i+1, G, C_{i+1})
20
21
       return ci
```
Algorithm 5: k-Clique Counting; see Listing 3 for the explanation of symbols.

```
1 /* Input: A graph G\bullet. Output: all maximal cliques. */
 3 //Preprocessing: reorder vertices with DGR or ADG.
     (v_1, v_2, ..., v_n) = preprocess(V, /* selected vertex order */)
 6 //Main part: conduct the actual clique enumeration.
 7 for v_i \in (v_1, v_2, ..., v_n) do: //Iterate over V in a specified order
     //For each vertex v_i, find maximal cliques containing v_i.
 8
     //First, remove unnecessary vertices from P (candidates
 9
     //to be included in a clique) and X (vertices definitely
10
     //not being in a clique) by intersecting N(v_i) with vertices
11
     //that follow and precede v_i in the applied order.
12
     P = N(v_i) \cap \{v_{i+1}, ..., v_n\} \bullet; X = N(v_i) \cap \{v_1, ..., v_{i-1}\} \bullet; R = \{v_i\}13
14
     //Run the Bron-Kerbosch routine recursively for P and X.
15
     BK-Pivot(P, \{v_i\}, X)
16
17
18 BK-Pivot (P, R, X) //Definition of the recursive BK scheme
     if P \cup X == 0 : Output R as a maximal clique
19
     u = \text{pivot}(P \cup X) // Choose a "pivot" vertex u \in P \cup X20
     for v \in P \setminus N(u) : // Use the pivot to prune search space
21
       //New candidates for the recursive search
22
       P_{new} = P \cap N(v) \mathbf{\mathbb{S}}; X_{new} = X \cap N(v) \mathbf{\mathbb{S}}; R_{new} = R \cup \{v\}23
       //Search recursively for a maximal clique that contains v24
25
       BK-Pivot (P_{new}, R_{new}, X_{new})//After the recursive call, update P and X to reflect
26
       //the fact that v was already considered
27
       P = P \setminus \{v\} \mathbf{\mathbf{\Theta}}: X = X \cup \{v\} \mathbf{\Theta}28
```
Algorithm 4: Enumeration of maximal cliques, a Bron-Kerbosch variant by Eppstein et al. [52] with GMS enhancements.

Experiments

- Machines:
	- two single machines (1TB and 64GB RAM),
	- Nodes from supercomputers

Thank you!

Any questions?

and the state of the