
Review by Kliment Serafimov
for 6.827

The GraphMiningSuite is a general and extensible framework for end-to-end development of high-performance graph
algorithms.

Key features:

● Provides a library of highly-optimized graph processing primitives based on sets and set algebra.
● Extensive set of graph problems and algorithms > 40 baselines

○ 3 families of graph problems
○ Variety input graph distributions, both real-world and syntetic.

● Extensible framework allows users to implement their own modules
○ For graph representation anb accessing
○ For pre-processing

● Novel performance metric: algorithmic throughput (‘graphlets per second’).
● Broad theoretical concurrency analysis

○ best work bound among poly-logarithmic depth maximal clique listing algorithms

Also:

● Extensive literature review and comparison to other frameworks.

Summary

Research Problem Pipeline

Framework pipeline

Graph problems and algorithms implemented

Graph Datasets

● Real-world and synthetic graphs with varying statistics:
○ sparsities m/n (sparse and dense)

○ skews in degree distribution (high and low skew)

○ diameters (high and low)

○ amounts of locality i.e. inter-cluster edges (many and few)

○ Triangle-count

○ a large difference between the average number of triangles

per vertex T /n and the maximum T/n (for clique algorithms)

Metrics

● Seamless integration with PAPI (for extracting hardware use stats)
○ CPU Core utilization (stalled CPU cycles).

○ Cache misses and cache hits (L1, L2, L3, data vs. instruction, TLB)

○ Memory reads/writes

● Algorithmic efficiency / algorithmic throughput
○ Generalization of ‘edges-per-second’.

○ Graphlets-per-second. Number of graph motives mined per second

○ Eg: cliques per second, clusters per second etc.

Literature Review and
Comparisson

Primitives and Interfaces

● Sets and set-algebra primitives (right ->)
○ Union, intersection, difference
○ Contains, cardinality, iteration, equality
○ remove, add
○ Cloning, serialization

● Graph representation and access
○ Allows the user to implement their own

● Graph preprocessing
○ Allows the user to implement their own

● Algorithms
○ User can use existing algorithms
○ Implement their own algorithms
○ Or tweak existing algorithms

Implementation of set algebra

● Different representations for dense vs sparse sets:
○ ‘Roaring’ bitmaps set representation
○ SortedSet
○ HashSet

Work-span analysis

Use-cases

● Approximate degeneracy order

● Max-clique

● K-clique

Approximate Degeneracy Order

Enumerating Cliques

Experiments
● Machines:

○ two single machines (1TB and 64GB RAM),

○ Nodes from supercomputers

Thank you!

Any questions?

