Log(Graph): A Near-Optimal High-Performance Graph Representation (2018)

By Maciej Besta, Dimitri Stanojevic, Tijana Zivic, Jagpreet Singh, Maurice Hoerold, Torsten Hoefler

 $M_{\rm H\rightarrow N}$ and $M_{\rm H\rightarrow N}$

Presentation by Qing Feng

Apr 19 2022

Big Graphs

Graph Compression

State-of-the-art graph compression framework, such as **Web-Graph**, uses reference encoding or interval encoding that requires **expensive decompression** due to pointer chasing caused by arbitrary nested encoding structure.

Storage Lower Bound

What is the lowest storage we can hope to achieve?

Logarithm-ization : one needs at least $\lceil \log |S| \rceil$ bits to store an object from a set S.

$$
S = \{x_1, x_2, x_3, \dots\} \quad\n\begin{array}{c}\nx_1 \to 0 \dots 01 \\
x_2 \to 0 \dots 10 \\
x_3 \to 0 \dots 11 \\
\dots\n\end{array}
$$

High-level Approach

Logarithm-ize different parts of graph representation accordingly.

Adjacency Array Representation

The Log(Graph) representation builds on the traditional **Adjacency Array** structure(similar to CSR?).

Fine Elements: eg. Vertex Label

Intuitively, **global lower bounds for vertex labels are O(log |V|).** However, can further optimize for local cases:

Lower bounds (local)

Assume:

- a graph, e.g., $V = \{1, ..., 2^{22}\}\$
- A vertex v with few neighbors: $d_v \ll n$
- ...all these neighbors have small labels: $\widehat{N_n} \ll n$

$$
v \rightarrow 2345
$$

Symbols

\n

n : $\#$ vertices, m : $\#$ edges, d _v : degree of vertex v , N _v : neighbors (adj. array) of vertex v , W _v : maximum among N_v		
$\left[\log 2^{22} \right] = 22$		
v	0...10	0...11
0...100	0...101	

19 zeros!

Thus, use the local bound $\left|\log \widehat{N_v}\right|$

Fine Elements: eg. Vertex Label

For **possible problem cases**, use Integer Linear Programming (ILP) to optimize.

Lower bounds (local): problem

What if:

- a graph, e.g., $V = \{1, ..., 2^{22}\}\$
- A vertex v with few neighbors: $d_v \ll n$
- ...all these neighbors have small labels: $\widehat{N}_n \ll n$
- ... one neighbor has a large ID:

$$
v \rightarrow 2 \mid 3 \mid 4 \mid 5 \mid 1M
$$

Symbols n : #vertices. : #edges, m d_v : degree of vertex v , N_v : neighbors (adj. array) of vertex v , $\widehat{N_v}$: maximum among N_v

$$
\log 2^{20} = 20
$$

v \rightarrow 0...10 0...1

$$
\begin{array}{c|c}\n0...10 & 0...11 \\
\hline\n0...100 & 0...101 \\
\hline\n17 zeros!\n\end{array}
$$

Fine Elements: ILP

The main idea is to relabel vertices so that **the weighted sum of vertex labels are minimized**.

Lower bounds (local) enhanced with ILP

Permute vertex labels to reduce such maximum labels in as many neighborhoods as possible

Symbols \boldsymbol{n} : #vertices, : #edges, \boldsymbol{m} d_v : degree of vertex v , N_{ν} : neighbors (adj. array) of vertex v , $\widehat{N_v}$: maximum among N_v

Fine Elements: ILP

The paper provides a polynomial greedy heuristic for relabeling:

Sort vertices in Line 8

Traverse starting from the smallest |Av| and assign a new smallest ID possible in Line 9

Relabel remaining vertices in Line 18

```
1 /* Input: graph G, Output: a new relabeling \mathcal{N}(v), \forall v \in V. */
2 void relabel (G) {
   ID[0..n-1] = [0..n-1]; //An array with vertex IDs.
   D[0..n-1] = [d_0..d_{n-1}]; //An array with degrees of vertices.
   //An auxiliary array for determining if a vertex was relabeled:
 5
  visit[0..n-1] = [false..false];nl = 1; //An auxiliary variable "new label".
    sort(ID); sort(D);
   for(int i = 1; i < n; ++i) //For each vertex...
9
    for(int j = 0; j < D[i]; ++j) { //For each neighbor...
10
      int id = N_{j, ID[i]}; //N_{j, ID[i]} is jth neighbor of vertex with ID ID[i]
11
12
      if (visit lid == false)13
      \mathcal{N}(id) = nl++;14
       visit(id] = true;15
   \}16
   for(int i = 1; i < n; ++i)
17
     if(visit[i] == false)18
      \mathcal{N}(id) = nl++;19<sub>3</sub>
```
Listing $1: (§ 3.6)$ The greedy heuristic for vertex relabeling.

Analysis

Compressing fine elements consistently reduces storage.

Symbols

Ŵ

 \boldsymbol{n}

: max edge weight,

: #vertices,

 p, α, β : constants

Offset Structure

The high-level idea is to represent the offset array using a **bit vector**.

Offset Structure

Specifically, use Succinct Bit Vectors that supports quick queries. The main idea is to **divide the bit vector to small chunks, group them in a table, and represent chunks using indices into the table**.

Analysis

Some structures support constant-time query and are considered candidates.

Table 4: (§ 4.3) Theoretical analysis of various types of O and time complexity of the associated queries.

Adjacency Structure

Relabel the vertices using Degree-Minimizing + Gap Encoding.

Degree-Minimizing: Targeting general graphs (no assumptions on graph structure)

 $2|3|4|5|$ 1M $|=|v|w|x|y|z|$ Permute(

(simultaneously for all other neighborhoods)

(1) The more often a label occurs (i.e., the higher vertex degree), the smaller permuted value it receives

More schemes that assume specific classes of graphs

Gap-encode(v | w | x | y | z |) = | v | w-v | x-w | y-x $Z - V$

> (2) Encode new labels with gap encoding (differences between consecutive labels instead of full labels)

Overall Framework

Overall Framework

Evaluation: Fine Elements

On both synthetic and real-world graphs, running various algorithms, compared with GAPBS, Log(Graph) **consistently reduces storage overhead by 20-35% while outperforming it**.

Evaluation: Storage

On real-world graphs, **Succinct bit vectors consistently ensure best storage reductions,** mainly because real-world graphs are typically sparse.

ptr64, ptr32: traditional array of offsets ptrLogn: separate compression of each offset bvPL: plain bit vectors bvIL: compact bit vectors byEN, bySD: succinct bit vectors

Evaluation: Performance

On accessing random selected neighbors, once parallelism overheads kick in, **performance of accessing succinct bit vectors and offset arrays becomes comparable**. The bvSD scheme is usually the fastest and the smallest.

MIT 6.827 Algorithm Engineering | Qing Feng

ptr64: traditional array of offsets bvPL: plain bit vectors bvIL: compact bit vectors bvEN, bvSD: succinct bit vectors zlib(.): zlib-compressed variants

Evaluation: Tunable Combination

Key insight (vertex labels)

20-35% storage reductions (compared to uncompressed data) and negligible decompression overheads

80% storage reductions (compared to uncompressed data) and up to >2x speedup over modern graph compression schemes (Webgraph)

Takeaway (Results): Log(Graph) ensures **Space-Performance sweetspot (tunable!)**

Key insight (offsets)

Up to >90% storage reductions (compared to uncompressed data) and comparable performance to that of uncompressed data accesses (in parallel environments)

Log(Graph): A Near-Optimal High-Performance Graph Representation (2018)

By Maciej Besta, Dimitri Stanojevic, Tijana Zivic, Jagpreet Singh, Maurice Hoerold, Torsten Hoefler

 $M_{\rm H\rightarrow N}$ and $M_{\rm H\rightarrow N}$

Presentation by Qing Feng

Apr 19 2022