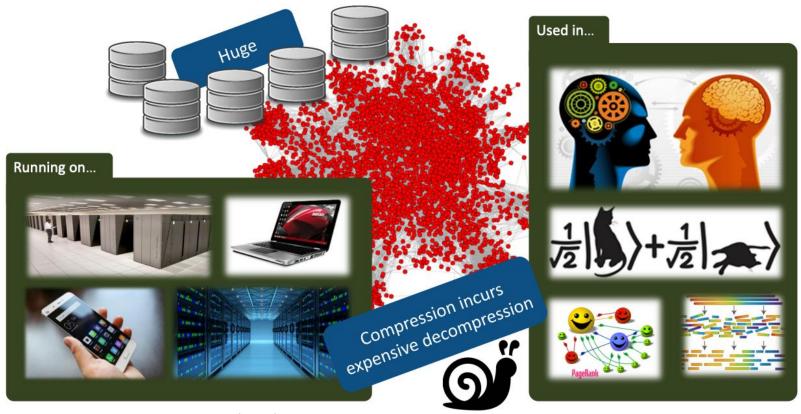
Log(Graph): A Near-Optimal High-Performance Graph Representation (2018)

By Maciej Besta, Dimitri Stanojevic, Tijana Zivic, Jagpreet Singh, Maurice Hoerold, Torsten Hoefler

Presentation by Qing Fengl

Apr 19 2022

Big Graphs



Graph Compression

State-of-the-art graph compression framework, such as **Web-Graph**, uses reference encoding or interval encoding that requires **expensive decompression** due to pointer chasing caused by arbitrary nested encoding structure.

Node	Outdegree	Successors		
15	11	13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034		
16	10	15, 16, 17, 22, 23, 24, 315, 316, 317, 3041		
17	0	1:35 (35) (35) (35) (35) (35) (35) (35) (3		
18	5	13, 15, 16, 17, 50		
		2442		

Node	Outd.	Ref.	Copy list	Extra nodes
15	11	0		13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034
16	10	1	01110011010	22, 316, 317, 3041
17	0			
18	5	3	11110000000	50
				1111

Storage Lower Bound

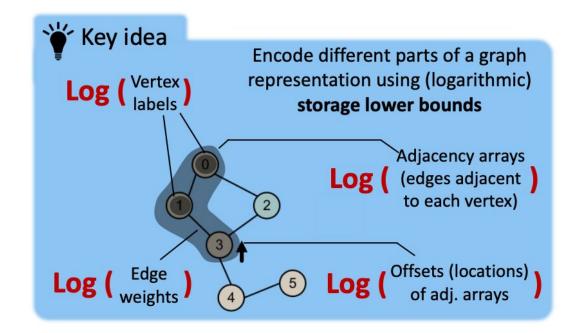
What is the lowest storage we can hope to achieve?

Logarithm-ization : one needs at least [log |S|] bits to store an object from a set S.

$$S = \{x_1, x_2, x_3, \dots\} \begin{array}{c} x_1 \to 0 \dots 01 \\ x_2 \to 0 \dots 10 \\ x_3 \to 0 \dots 11 \\ \dots \end{array}$$

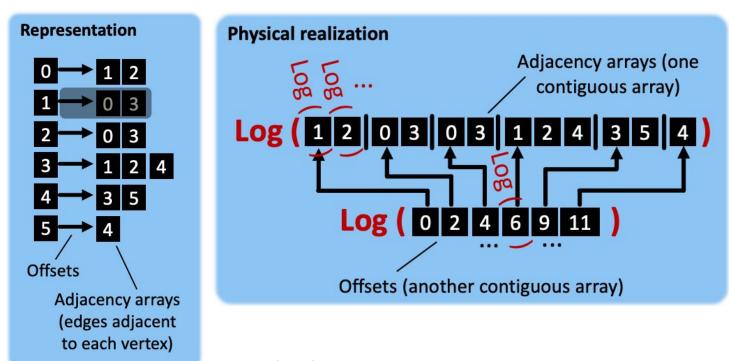
High-level Approach

Logarithm-ize different parts of graph representation accordingly.



Adjacency Array Representation

The Log(Graph) representation builds on the traditional **Adjacency Array** structure(similar to CSR?).



Fine Elements: eg. Vertex Label

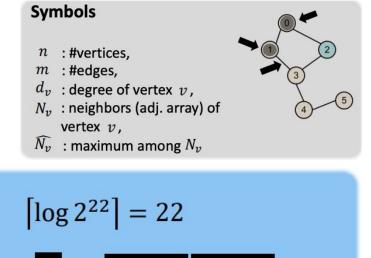
Intuitively, **global lower bounds for vertex labels are O(log |V|)**. However, can further optimize for local cases:

Lower bounds (local)

Assume:

- a graph, e.g., $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors: $d_v \ll n$
- ...all these neighbors have small labels: $\widehat{N_{v}} \ll n$

v → 2 3 4 5



$$v \longrightarrow 0...10 \quad 0...11$$

$$0...10 \quad 0...11$$

$$0...101 \quad 0...101$$
19 zeros!
hus, use the local bound $\left[\log \widehat{N_v}\right]$

Fine Elements: eg. Vertex Label

For **possible problem cases**, use Integer Linear Programming (ILP) to optimize.

Lower bounds (local): problem

What if:

- a graph, e.g., $V = \{1, ..., 2^{22}\}$
- A vertex v with few neighbors: $d_v \ll n$
- ...all these neighbors have small labels: $\widehat{N_v} \ll n$
- ... one neighbor has a large ID:

Symbols n : #vertices, m : #edges, d_v : degree of vertex v, N_v : neighbors (adj. array) of vertex v, $\widehat{N_v}$: maximum among N_v

$$\log 2^{20} = 20$$

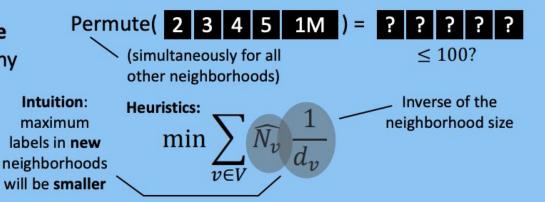
 $v \longrightarrow 0...10 0...1$

Fine Elements: ILP

The main idea is to relabel vertices so that **the weighted sum** of vertex labels are minimized.

Lower bounds (local) enhanced with ILP

Permute vertex labels to reduce such maximum labels in as many neighborhoods as possible



Symbols

: #vertices, : #edges,

vertex v,

 d_v : degree of vertex v, N_v : neighbors (adj. array) of

 $\widehat{N_{\nu}}$: maximum among N_{ν}

n

m

MIT 6.827 Algorithm Engineering | Qing Feng

Fine Elements: ILP

The paper provides a polynomial greedy heuristic for relabeling:

Sort vertices in Line 8

Traverse starting from the smallest |Av| and assign a new smallest ID possible in Line 9

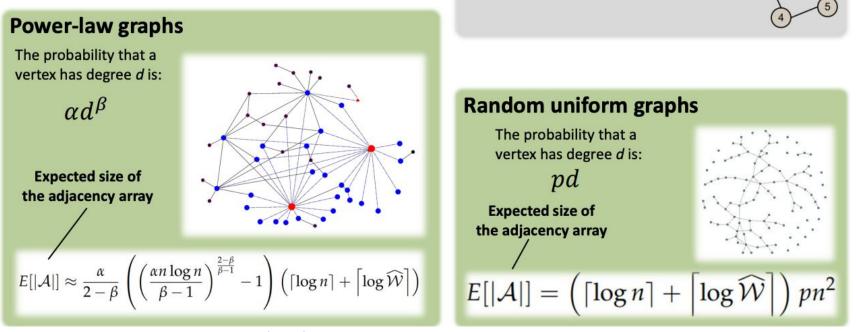
Relabel remaining vertices in Line 18

```
1 /* Input: graph G, Output: a new relabeling \mathcal{N}(v), \forall v \in V. */
2 void relabel(G) {
   ID[0..n-1] = [0..n-1]; //An array with vertex IDs.
   D[0.n-1] = [d_0..d_{n-1}]; //An array with degrees of vertices.
   //An auxiliary array for determining if a vertex was relabeled:
 5
   visit[0..n-1] = [false..false];
   nl = 1; //An auxiliary variable ``new label''.
    sort(ID); sort(D);
    for(int i = 1; i < n; ++i) //For each vertex...
9
    for(int j = 0; j < D[i]; ++j) { //For each neighbor...
10
11
      int id = N_{j,ID[i]}; //N_{j,ID[i]} is jth neighbor of vertex with ID ID[i]
12
      if (visit[id] == false) {
13
       \mathcal{N}(id) = nl++;
14
       visit[id] = true;
15
   }}
16
   for(int i = 1; i < n; ++i)
     if(visit[i] == false)
17
18
     \mathcal{N}(id) = nl++;
19 }
```

Listing 1: (§ 3.6) The greedy heuristic for vertex relabeling.

Analysis

Compressing fine elements consistently reduces storage.



Symbols

Ŵ

n

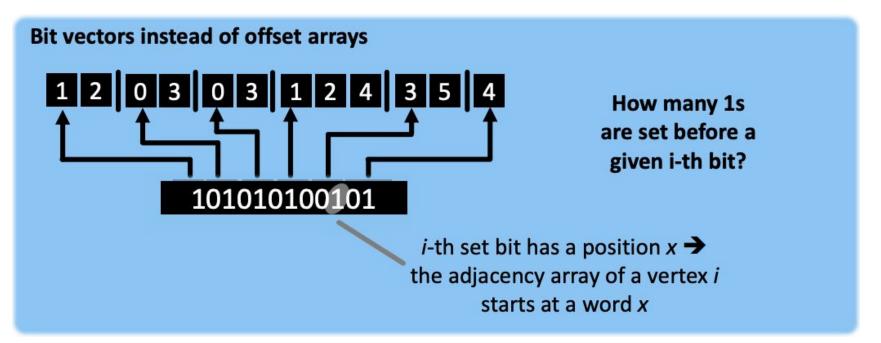
: max edge weight,

: #vertices,

 p, α, β : constants

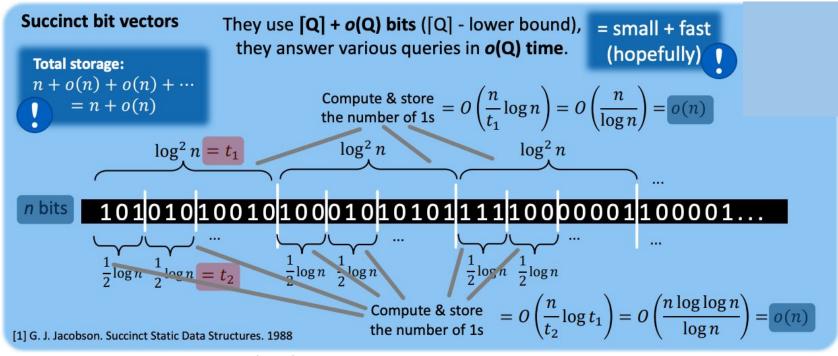
Offset Structure

The high-level idea is to represent the offset array using a **bit vector**.



Offset Structure

Specifically, use Succinct Bit Vectors that supports quick queries. The main idea is to **divide the bit vector to small chunks, group them in a table, and represent chunks using indices into the table**.



Analysis

Some structures support constant-time query and are considered candidates.

0	ID	Asymptotic size [bits]	Exact size [bits]	select or $\mathcal{O}[v]$
Pointer array	ptrW	O(Wn)	W(n+1)	<i>O</i> (1)
Plain [44]	bvPL	$O\left(\frac{Wm}{B}\right)$	$\frac{2Wm}{B}$	O(1)
Interleaved [44]	bvIL	$O\left(\frac{Wm}{B} + \frac{Wm}{L}\right)$	$2Wm\left(\frac{1}{B}+\frac{64}{L}\right)$	$O\left(\log \frac{Wm}{B}\right)$
Entropy based [31, 78]	bvEN	$O\left(\frac{Wm}{B}\log\frac{Wm}{B}\right)$	$\approx \log\left(\frac{\frac{2Wm}{B}}{n}\right)$	$O\left(\log \frac{Wm}{B}\right)$
Sparse [76]	bvSD	$O\left(n+n\log\frac{Wm}{Bn}\right)$	$\approx n\left(2 + \log \frac{2Wm}{Bn}\right)$	O(1)
B-tree based [1]	bvBT	$O\left(\frac{Wm}{B}\right)$	$\approx 1.1 \cdot \frac{2Wm}{B}$	$O(\log n)$
Gap-compressed [1]	bvGC	$O\left(\frac{Wm}{B}\log\frac{Wm}{Bn}\right)$	$\approx 1.3 \cdot \frac{2Wm}{B} \log \frac{2Wm}{Bn}$	$O(\log n)$

Table 4: (§ 4.3) Theoretical analysis of various types of \mathcal{O} and time complexity of the associated queries.

Adjacency Structure

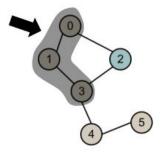
Relabel the vertices using Degree-Minimizing + Gap Encoding.

Degree-Minimizing: Targeting general graphs (no assumptions on graph structure)

Permute(2 3 4 5 1M) = v w x y z

(simultaneously for all other neighborhoods)

(1) The more often a label occurs (i.e., the higher vertex degree), the smaller permuted value it receives



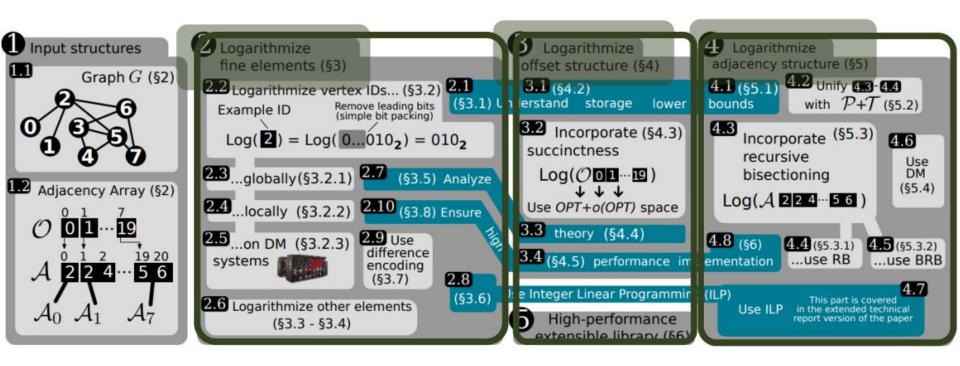
More schemes that assume specific classes of graphs

...

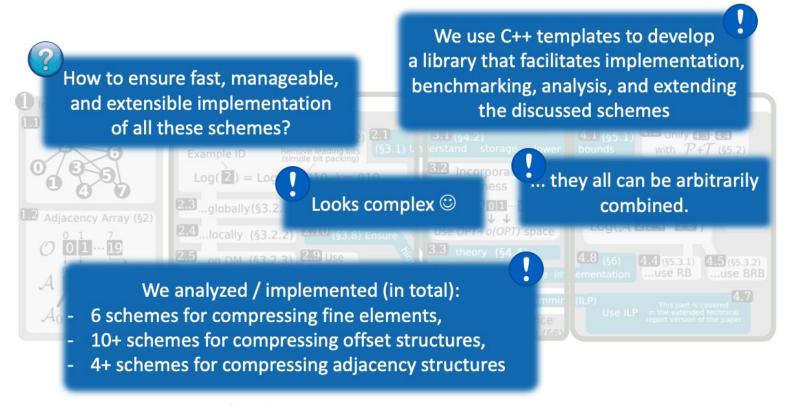
Gap-encode(v w x y z) = v w-v x-w y-x z-y

(2) Encode new labels with gap encoding (differences between consecutive labels instead of full labels)

Overall Framework

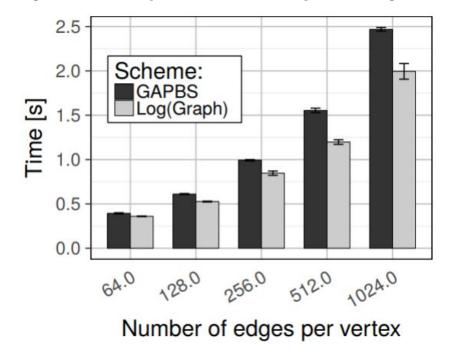


Overall Framework



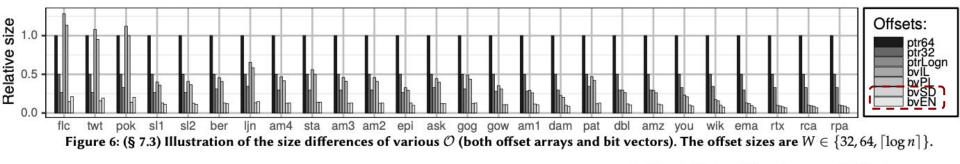
Evaluation: Fine Elements

On both synthetic and real-world graphs, running various algorithms, compared with GAPBS, Log(Graph) consistently reduces storage overhead by 20-35% while outperforming it.



Evaluation: Storage

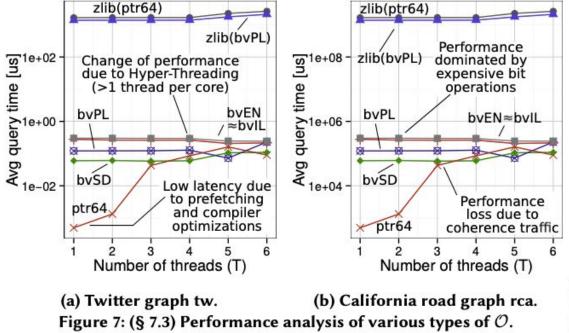
On real-world graphs, **Succinct bit vectors consistently ensure best storage reductions,** mainly because real-world graphs are typically sparse.



ptr64, ptr32: traditional array of offsets
ptrLogn: separate compression of each offset
bvPL: plain bit vectors
bvIL: compact bit vectors
bvEN, bvSD: succinct bit vectors

Evaluation: Performance

On accessing random selected neighbors, once parallelism overheads kick in, **performance of accessing succinct bit vectors and offset arrays becomes comparable**. The bvSD scheme is usually the fastest and the smallest.

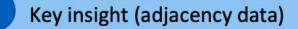


Log(Graph): A Near-Optimal High-Performance Graph Representation MIT 6.827 Algorithm Engineering | Qing Feng ptr64: traditional array of offsets bvPL: plain bit vectors bvIL: compact bit vectors bvEN, bvSD: succinct bit vectors zlib(.): zlib-compressed variants

Evaluation: Tunable Combination

Key insight (vertex labels)

20-35% storage reductions (compared to uncompressed data) and **negligible** decompression overheads



80% storage reductions (compared to uncompressed data) and up to >2x speedup over modern graph compression schemes (Webgraph)

Takeaway (Results): Log(Graph) ensures Space-Performance sweetspot (tunable!)

Key insight (offsets)

Up to >90% storage reductions (compared to uncompressed data) and comparable performance to that of uncompressed data accesses (in parallel environments)

Log(Graph): A Near-Optimal High-Performance Graph Representation (2018)

By Maciej Besta, Dimitri Stanojevic, Tijana Zivic, Jagpreet Singh, Maurice Hoerold, Torsten Hoefler

Presentation by Qing Fengl

Apr 19 2022