Locality Analysis of Graph
Reordering Algorithms

Mohsen Koohi Esfahani, Peter Kilpatrick, Hans Vandierendonck
Queen’s University Belfast

Presenter: Zhi Wei Gan

Problem

* Power-Law Distribution of Graphs
* Leads to Random Memory Accesses
e Time spent on Memory Accesses = Bottleneck

* Current Graph Reordering Algorithms

* Improve locality of graph traversals by assigning new IDs to vertices in a way
that vertices that are accessed together are read from main memory together

* Hard to properly measure the performance of these reordering algorithms
(excluding pure runtime)

* Need lightweight metrics and techniques to analyze locality

Definitions

* Low-degree Vertex
e Less than |E|/|V| edges

* High-degree Vertex
 More than |E|/|V| edges
* In-hub

* Vertices with in-degree larger than sqrt(V)

 Qut-hub

* Vertices with out-degree larger than sqgrt(V)

Sparse Matrix-Vector (SpMV) multiplication

Algorithm 1: SpMV graph traversal

Input: G(V, E), D*
Output: D**!
1 for v € V do
/) sum = 0;
3 for u € v.neighbours do
4 | sum += D*[u];
5
6
7

end
D*t1[v] = sum;

end

Pull-direction SpMV
Differs from Bucketing/Frontier-based as memory access pattern
unpredictable, but can be used as a representative for these types

Datasets

TABLE I: Datasets

Dataset | Name Source | |[V| M) | |E| (B) | Type SN = Social Network
WebB WebBase-2001 | LWA 115 1.0 WG WG = Web Graph
TwtrMp1 | Twitter MPI NR 41 155 SN

Frndstr Friendster NR 65 1.8 SN

SK SK-Domain LWA 50 2.0 WG

WbCc Web-CC12 NR 89 2.0 WG

UKDIs UK-Delis LWA 110 4.0 WG

Uu UK-Union LWA 133 3.5 WG

UKDmn | UK-Domain KN 105 6.6 WG

CIWDb9 ClueWeb09 NR 1,700 7.9 WG

Locality Types

* Type |: Spatial Reuse, proximity IDs of consecutive neighbors' results
in neighbors being placed on the same cache line

* Type II: Temporal Reuse, cache reuses data of some vertex u after
using it to process another vertex v.

* Type lll: Type Il but to a second degree (neighbors of u are also
reused)

* Type IV: Reusing a cache line that was used by another thread into a
shared cache (Type Il but with multithreading)

* Type V: (Type lll but with multithreading)

Experimental Setup

* 768 GB Main Memory
e 32KB L1 Cache

* 1IMB L2 Cache

e 22MB L3 Shared Cache

Metrics to Measure Locality

* N2N AID (Spatial Locality)

e Cache Miss Rate Degree Distribution (Temporal and Spatio-Temporal
Locality)

* Real Execution Performance Metrics:
* L3 Cache Misses
* DTLB misses
* |dle time
 Effective Cache Size (ECS)

Neighbor to Neighbor Average ID Distance
(N2N AID)

* How RAs succeed to bring neighbors close to each other

i=|N,|

Z |Nv,i - Nv,z’—1|

AID, = =2
| N |

* Lower AID values = better spatial locality

Cache Miss Rate Degree Distribution

* They collect cache miss rates, but running it on a real machine is time
consuming

* They simulated it, but simulating cache miss rates are time consuming
for large graphs.

* They optimize their simulations by doing the following:
* Ignoring execution of non-time-consuming instructions
* Implemented their own cache replacement policies optimized for SpMV

e Has a 15% error

Graph Reordering Algorithms

e SlashBurn
e Rabbit-Order
e GOrder

SlashBurn (SB)

e Main idea:

* Finds communities of vertices by removing hubs and finding connected
components

* Assigns consecutive node IDs to hubs of the main graph

* Locality Analysis:
* Improves locality types IV and V

* SBis designed for power law graphs, but it only holds true if power-law
graphs are deconstructed recursively

* This doesn’t hold true over different iterations! Reduces locality types | and Il

* Real Execution:
» Destroys spatial locality.

Does SB work?

Frequency / Max-Frequency (log scale)

TwirMpi

=Initial State
= After Iteration 1
*=' After Iteration 2

~.

oy = After Iteration 4
T o ol . = After Iteration 8

. ~-mm.m_gv After Iteration 1 .

~~. = After Iteration 16
% After Iteration 2 ~——

-
-

After
Iteration 4

After

- Initial State
Iteration 8

0 50 100 150 200 250 300

Degree

Frequency / Max-Frequency (log scale)

Web-CC12

=Initial State

S = After Iteration 1

~ *=' After Iteration 2
Sa = After Iteration 4

e e After Iteration 1 ~ After Iteration 8

R W = After Iteration 16

.,
"aa,
.
-
oy

After Iteration 2 \

'I Initial State
Afterl
Iteration 8

| 1
s ()
| i |Iteration 4
:
I

0 50 100 150 200 250 300

Degree

Fig. 2: [Real execution] Degree distribution of initial graph and GCC after SB iterations

Rabbit-Order

* Main idea:
* Finds communities by using neighbors of vertices.
e Starts at vertex with lowest degree
e Searches for neighbor with maximum “gain” that can be reached through merging

* Merges until there are still “gains” to be made
* Runs a DFS on the final merged vertices to assign IDs

* Gain function: AQu. = 2(5% — d—(e%;&).
* Locality Analysis:

* Reduces AID of low-degree vertices and improves spatial locality, but the DFS cannot assign
consecutive IDs so AID and cache-miss rates are increased for high-degree vertices

e Real Execution:

* Reduces L3 misses, but execution time is not better.

* Improving locality does not translate to improved performance since RAs don’t change the
locality of consecutive vertices, improving locality may increase idle time.

G-Order

* Main idea:
* Scores between two vertices: S(u,v) = Si(u,v) + S, (u,v) where:
S, is the sibling score (the number of common in-neighbors between u and v)
e S, isthe neighborhood score (the number of edges u and v)

e Concentrates on temporal reuse instead of identifying communities

* Locality Analysis:

* Reduces the cache miss rate on high-degree vertices but doesn’t perform well for
low-degree vertices

* Increases the number of reloads of high-degree vertices to provide space in cache for
low-degree vertices

e Real execution:
e Reduces L3 misses

Results

TABLE IV: [Real execution] SpMV execution results (Bl: Baseline without relabeling)

Dataset Time (ms) Idle (%) L3 Misses (M) DTLB Misses (K)

Bl SB GO | RO Bl | SB | GO | RO Bl SB GO RO Bl SB | GO | RO
WebB 90 145 89 79 1.5 | 2.1 | 22 | 23 4.3 6.8 4.3 37 0.6 1.7 1.8 1.6
TwtrMpi 354 339 299 | 366 1.8 2 1.1 1.7 15.7 14.2 126 | 16.3 4.7 25 3.1 3.1
Frndstr 771 761 578 | 667 1.2 | 1.5 1.4 1.2 40.8 39.2 29.1 | 34.9 9.3 94 7.1 7.6
SK 117 168 109 | 109 82 | 1.5 1.6 | 4.1 3.7 8.8 9 5.3 0.8 1.4 05 | 0.6
WbCec 438 414 311 | 297 19 | 23 || 23 | 3.d 20.5 19.3 13.5 | 12.6 8.6 6.8 69 | 45
UKDIs 194 317 180 1.9 | 1.9 25 10.1 16.5 9.3 1.8 4.4 1.4
UuU 282 486 285 1.9 | 1.9 6 14.6 24.9 13.8 2.8 7.8 24
UKDmn 297 459 281 14 | 2.1 2.7 15.7 23.5 14.7 4.4 5.6 2.7
CIWb9 2,221 | 2,811 1.3 | 1.4 100.9 | 139.3 39M | 181

Locality Analysis of Datasets

* High-degree vertices have close
connection to each other in social
networks

100

e}
(e

/\A A —Twitter-MPI
: WV L UK-Union
"4

Twitter-MPI

* Low-degree vertices constitute
most web graphs

B D
o o

Asymmetricity Percentage
N
o

¢ AsymmEtry: the fraction of in- 01 B Sgo? Eloo0? E1ok? Eroo Bmpt
neighbors that are not out- | | Degree o
. Fig. 4: [Calculation] Asymmetricity degree distribution
neighbors for each vertex

Index Pointers

Indices

o1
4_ 1 1 1
[e S P

I
mi

CSCvs CSR

Pointer

Index Pointers

Index

Jaqulod

Data

| PR PR S—

Xapu|
0
13}
O o
T
= a
S T A T I R T
<t I I I I I
I I I I I I
- A
™M, 1 1 1
S R T
i P
o I I I
_———— F——-
i 1 i I i i I i
i I I I I I I i
i i i I I i I I
B R R
© I I I I I I
SR AP LS (DR N
o T ¢ € v 9 9

© Matt Eding

© Matt Eding

Pull vs. Push Traversal for SoMV

* We use CSR for push
e CSC for pull

TABLE VI: [Real execution] CSC vs. CSR read traversals

Dataset L3 Misses (M) Traversal Time (ms)
CSC | CSR CsC CSR push pull
WebB 43 3.8 90 81
TwtrMpi | 157 | 217 354 439 Why? For pull-traversal, out-hubs have a constructive effect on
s 2 nl & . locality since data is constantly accessed and reused, but for
UKDIs 10.1 9.3 194 177 Y _ . y _ !
CIWB9 1009 | 965 2.221 2,129 push traversal in-hubs improve locality.
Twitter-MPI SK-Domain
Web graphs are better with CSR traversal P I —— 74 S N S S s =22 o
) . . B2 e ") N R S L ,‘, ’
Social networks are better with CSC traversal 816 ouhuts T % 16 Inchubg,
= i //‘ ‘.‘_,«“"‘ -“In-hubs = ‘81 """""""" Out—hul_)’s/‘/ -+In-hubs
5 L R In-hu‘.tf_ - =Out-hubs 9 ’ e =Out-hubs
11 ,10 100- 1000 10k 100k 1M 10M 11 ‘1’0 100 1000) 10k 100k M 10M
Number of Hubs Number of Hubs

Fig. 6: [Calculation] Comparison of percentage of edges covered by in-hubs in CSR traversal vs. out-hubs in CSC traversal

Optimizing RAs

* SB: continue iterating while GCC-max-degree >= sqrt(V)

Dataset Preprocessing (s) || Traversal (ms) || L3 Misses (M)

SB SB++ SB SB++ SB SB++
TwtrMpi 46 21 339 328 14.2 13.6
Frndstr /] 43 761 700 39.2 36.0
WbCec 81 39 414 334 19.3 14.6

* RO: skip relabeling vertices that are not in an efficacy degree range to
reduce preprocessing time and memory

