
Locality Analysis of Graph
Reordering Algorithms

Mohsen Koohi Esfahani, Peter Kilpatrick, Hans Vandierendonck
Queen’s University Belfast

Presenter: Zhi Wei Gan

Problem

• Power-Law Distribution of Graphs
• Leads to Random Memory Accesses
• Time spent on Memory Accesses = Bottleneck

• Current Graph Reordering Algorithms
• Improve locality of graph traversals by assigning new IDs to vertices in a way

that vertices that are accessed together are read from main memory together
• Hard to properly measure the performance of these reordering algorithms

(excluding pure runtime)
• Need lightweight metrics and techniques to analyze locality

Definitions

• Low-degree Vertex
• Less than |E|/|V| edges

• High-degree Vertex
• More than |E|/|V| edges

• In-hub
• Vertices with in-degree larger than sqrt(V)

• Out-hub
• Vertices with out-degree larger than sqrt(V)

Sparse Matrix-Vector (SpMV) multiplication

Pull-direction SpMV
Differs from Bucketing/Frontier-based as memory access pattern
unpredictable, but can be used as a representative for these types

v

Datasets

SN = Social Network
WG = Web Graph

Locality Types

• Type I: Spatial Reuse, proximity IDs of consecutive neighbors' results
in neighbors being placed on the same cache line
• Type II: Temporal Reuse, cache reuses data of some vertex u after

using it to process another vertex v.
• Type III: Type II but to a second degree (neighbors of u are also

reused)
• Type IV: Reusing a cache line that was used by another thread into a

shared cache (Type II but with multithreading)
• Type V: (Type III but with multithreading)

Experimental Setup

• 768 GB Main Memory
• 32KB L1 Cache
• 1MB L2 Cache
• 22MB L3 Shared Cache

Metrics to Measure Locality

• N2N AID (Spatial Locality)
• Cache Miss Rate Degree Distribution (Temporal and Spatio-Temporal

Locality)
• Real Execution Performance Metrics:
• L3 Cache Misses
• DTLB misses
• Idle time
• Effective Cache Size (ECS)

Neighbor to Neighbor Average ID Distance
(N2N AID)
• How RAs succeed to bring neighbors close to each other

• Lower AID values = better spatial locality

Cache Miss Rate Degree Distribution

• They collect cache miss rates, but running it on a real machine is time
consuming
• They simulated it, but simulating cache miss rates are time consuming

for large graphs.
• They optimize their simulations by doing the following:
• Ignoring execution of non-time-consuming instructions
• Implemented their own cache replacement policies optimized for SpMV

• Has a 15% error

Graph Reordering Algorithms

• SlashBurn
• Rabbit-Order
• GOrder

SlashBurn (SB)

• Main idea:
• Finds communities of vertices by removing hubs and finding connected

components
• Assigns consecutive node IDs to hubs of the main graph

• Locality Analysis:
• Improves locality types IV and V
• SB is designed for power law graphs, but it only holds true if power-law

graphs are deconstructed recursively
• This doesn’t hold true over different iterations! Reduces locality types I and III

• Real Execution:
• Destroys spatial locality.

Does SB work?

Rabbit-Order

• Main idea:
• Finds communities by using neighbors of vertices.

• Starts at vertex with lowest degree
• Searches for neighbor with maximum “gain” that can be reached through merging
• Merges until there are still “gains” to be made
• Runs a DFS on the final merged vertices to assign IDs

• Gain function:

• Locality Analysis:
• Reduces AID of low-degree vertices and improves spatial locality, but the DFS cannot assign

consecutive IDs so AID and cache-miss rates are increased for high-degree vertices

• Real Execution:
• Reduces L3 misses, but execution time is not better.
• Improving locality does not translate to improved performance since RAs don’t change the

locality of consecutive vertices, improving locality may increase idle time.

G-Order

• Main idea:
• Scores between two vertices: S(u,v) = Ss(u,v) + Sn(u,v) where:

• Ss is the sibling score (the number of common in-neighbors between u and v)
• Sn is the neighborhood score (the number of edges u and v)

• Concentrates on temporal reuse instead of identifying communities
• Locality Analysis:

• Reduces the cache miss rate on high-degree vertices but doesn’t perform well for
low-degree vertices

• Increases the number of reloads of high-degree vertices to provide space in cache for
low-degree vertices

• Real execution:
• Reduces L3 misses

Results

Locality Analysis of Datasets

• High-degree vertices have close
connection to each other in social
networks
• Low-degree vertices constitute

most web graphs

• Asymmetry: the fraction of in-
neighbors that are not out-
neighbors for each vertex

CSC vs CSR

Pull vs. Push Traversal for SpMV

• We use CSR for push
• CSC for pull vv

push pull

Web graphs are better with CSR traversal
Social networks are better with CSC traversal

Why? For pull-traversal, out-hubs have a constructive effect on
locality since data is constantly accessed and reused, but for
push traversal in-hubs improve locality.

Optimizing RAs

• SB: continue iterating while GCC-max-degree >= sqrt(V)

• RO: skip relabeling vertices that are not in an efficacy degree range to
reduce preprocessing time and memory

