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Problem

• Power-Law Distribution of Graphs
• Leads to  Random Memory Accesses
• Time spent on Memory Accesses = Bottleneck

• Current Graph Reordering Algorithms 
• Improve locality of graph traversals by assigning new IDs to vertices in a way 

that vertices that are accessed together are read from main memory together
• Hard to properly measure the performance of these reordering algorithms 

(excluding pure runtime)
• Need lightweight metrics and techniques to analyze locality



Definitions

• Low-degree Vertex
• Less than |E|/|V| edges

• High-degree Vertex
• More than |E|/|V| edges

• In-hub
• Vertices with in-degree larger than  sqrt(V)

• Out-hub
• Vertices with out-degree larger than  sqrt(V)



Sparse Matrix-Vector (SpMV) multiplication

Pull-direction SpMV
Differs from Bucketing/Frontier-based as memory access pattern 
unpredictable, but can be used as a representative for these types

v



Datasets

SN = Social Network
WG = Web Graph 



Locality Types

• Type I: Spatial Reuse, proximity IDs of consecutive neighbors' results 
in neighbors being placed on the same cache line
• Type II: Temporal Reuse, cache reuses data of some vertex u after 

using it to process another vertex v.
• Type III: Type II but to a second degree (neighbors of u are also 

reused)
• Type IV: Reusing a cache line that was used by another thread into a 

shared cache (Type II but with multithreading)
• Type V: (Type III but with multithreading)



Experimental Setup

• 768 GB Main Memory
• 32KB L1 Cache
• 1MB L2 Cache
• 22MB L3 Shared Cache



Metrics to Measure Locality

• N2N AID (Spatial Locality)
• Cache Miss Rate Degree Distribution (Temporal and Spatio-Temporal 

Locality)
• Real Execution Performance Metrics:
• L3 Cache Misses
• DTLB misses 
• Idle time
• Effective Cache Size (ECS)



Neighbor to Neighbor Average ID Distance 
(N2N AID)
• How RAs succeed to bring neighbors close to each other

• Lower AID values = better spatial locality 



Cache Miss Rate Degree Distribution

• They collect cache miss rates, but running it on a real machine is time 
consuming
• They simulated it, but simulating cache miss rates are time consuming 

for large graphs.
• They optimize their simulations by doing the following:
• Ignoring execution of non-time-consuming instructions
• Implemented their own cache replacement policies optimized for SpMV

• Has a 15% error



Graph Reordering Algorithms

• SlashBurn
• Rabbit-Order
• GOrder



SlashBurn (SB)

• Main idea:
• Finds communities of vertices by removing hubs and finding connected 

components
• Assigns consecutive node IDs to hubs of the main graph

• Locality Analysis:
• Improves locality types IV and V 
• SB is designed for power law graphs, but it only holds true if power-law 

graphs are deconstructed recursively
• This doesn’t hold true over different iterations! Reduces locality types I and III

• Real Execution:
• Destroys spatial locality.



Does SB work? 



Rabbit-Order

• Main idea:
• Finds communities by using neighbors of vertices. 

• Starts at vertex with lowest degree
• Searches for neighbor with maximum “gain” that can be reached through merging
• Merges until there are still “gains” to be made
• Runs a DFS on the final merged vertices to assign IDs

• Gain function:

• Locality Analysis:
• Reduces AID of low-degree vertices and improves spatial locality, but the DFS cannot assign 

consecutive IDs so AID and cache-miss rates are increased for high-degree vertices

• Real Execution:
• Reduces L3 misses, but execution time is not better.
• Improving locality does not translate to improved performance since RAs don’t change the 

locality of consecutive vertices, improving locality may increase idle time.



G-Order

• Main idea:
• Scores between two vertices: S(u,v) = Ss(u,v) + Sn(u,v) where:

• Ss is the sibling score (the number of common in-neighbors between u and v)
• Sn is the neighborhood score (the number of edges u and v)

• Concentrates on temporal reuse instead of identifying communities
• Locality Analysis:

• Reduces the cache miss rate on high-degree vertices but doesn’t perform well for 
low-degree vertices

• Increases the number of reloads of high-degree vertices to provide space in cache for 
low-degree vertices 

• Real execution:
• Reduces L3 misses



Results



Locality Analysis of Datasets

• High-degree vertices have close 
connection to each other in social 
networks
• Low-degree vertices constitute 

most web graphs

• Asymmetry: the fraction of in-
neighbors that are not out-
neighbors for each vertex



CSC vs CSR



Pull vs. Push Traversal for SpMV

• We use CSR for push
• CSC for pull vv

push pull

Web graphs are better with CSR traversal
Social networks are better with CSC traversal

Why? For pull-traversal, out-hubs have a constructive effect on 
locality since data is constantly accessed and reused, but for 
push traversal in-hubs improve locality.



Optimizing RAs

• SB: continue iterating while GCC-max-degree >= sqrt(V)

• RO: skip relabeling vertices that are not in an efficacy degree range to 
reduce preprocessing time and memory


