
6.827:
Algorithm Engineering

© 2018-2022 Julian Shun 1

LECTURE 2
PARALLEL ALGORITHMS

Julian Shun
February 4, 2022

Lecture material taken from “Parallel Algorithms” by Guy Blelloch and Bruce
Maggs and 6.172, developed by Charles Leiserson and Saman Amarasinghe

© 2018-2022 Julian Shun 2

Announcement

• Presentation sign-up sheet posted on
Piazza

• Problem set has been released on Canvas,
due on 2/28

© 2018-2022 Julian Shun 3

Multicore Processors

Intel Haswell-E

Q Why do semicon-
ductor vendors
provide chips with
multiple processor
cores?

A Because of Moore’s
Law and the end of
the scaling of clock
frequency.

Slide adapted from 6.172 (Charles Leiserson and Saman Amarasinghe)

© 2018-2022 Julian Shun 4

Technology Scaling

0

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

1970 1980 1990 2000 2010

u Transistors x 1000
■ Clock frequency (MHz)

Transistor
count is still

rising, …

but clock speed
is bounded at

~4GHz.

Slide adapted from 6.172 (Charles Leiserson and Saman Amarasinghe)

© 2018-2022 Julian Shun 5

Power Density

Source: Patrick Gelsinger, Intel Developer’s Forum, Intel Corporation, 2004.

Projected power density, if clock frequency had
continued its trend of scaling 25%-30% per year.

Slide adapted from 6.172 (Charles Leiserson and Saman Amarasinghe)

© 2018-2022 Julian Shun 6

Technology Scaling

0

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

1970 1980 1990 2000 2010

u Transistors x 1000
■ Clock frequency (MHz)
▲ Power (W)
● Cores

Each generation of
Moore’s Law

potentially doubles
the number of cores.

Slide adapted from 6.172 (Charles Leiserson and Saman Amarasinghe)

© 2018-2022 Julian Shun 7

Parallel Languages
• Pthreads
• Cilk, OpenMP
• Message Passing Interface (MPI)
• CUDA, OpenCL

• Today: Shared-memory parallelism
∙ Cilk and OpenMP are extensions of C/C++ that

supports parallel for-loops, parallel recursive calls,
etc.

∙ Do not need to worry about assigning tasks to
processors as these languages have a runtime
scheduler

∙ Cilk has a provably efficient runtime scheduler

© 2018-2022 Julian Shun 8

PARALLELISM MODELS

© 2018-2022 Julian Shun 10

Basic multiprocessor models

Local memory machine

Modular memory
machine

Parallel random-access
Machine (PRAM)

Source: “Parallel Algorithms” by Guy E. Blelloch and Bruce M. Maggs

© 2018-2022 Julian Shun 11

Network topology

2-level multistage network Fat tree

Hypercube

Bus

Mesh

Source: “Parallel Algorithms” by Guy E. Blelloch and Bruce M. Maggs

© 2018-2022 Julian Shun 12

Network topology
• Algorithms for specific topologies can be

complicated
∙ May not perform well on other networks

• Alternative: use a model that summarizes
latency and bandwidth of network
∙ Postal model
∙ Bulk-Synchronous Parallel (BSP) model
∙ LogP model

© 2018-2022 Julian Shun 13

PRAM Model
• All processors can perform same local

instructions as in the RAM model
• All processors operate in lock-step
• Implicit synchronization between steps
• Models for concurrent access
∙ Exclusive-read exclusive-write (EREW)
∙ Concurrent-read concurrent-write (CRCW)

■ How to resolve concurrent writes: arbitrary value, value from
lowest-ID processor, logical OR of values, sum of values

∙ Concurrent-read exclusive-write (CREW)
∙ Queue-read queue-write (QRQW)

■ Allows concurrent access in time proportional to the
maximal number of concurrent accesses

© 2018-2022 Julian Shun 14

• Work = number of vertices in graph
(number of operations)

• Span (Depth) = longest directed
path in graph (dependence length)

• Parallelism = Work / Span
• A work-efficient parallel algorithm

has work that asymptotically
matches the best sequential
algorithm for the problem

Computation graph

Goal: work-efficient and low
(polylogarithmic) span parallel
algorithms

• Similar to PRAM but does not require lock-step or
processor allocation

Work-Span model

© 2018-2022 Julian Shun 15

Work-Span model
• Spawning/forking tasks
∙ Model can support either binary forking or arbitrary

forking

∙ Cilk uses binary forking, as seen in 6.172
∙ Converting between the two changes work by at

most a constant factor and span by at most a
logarithmic factor
■ Keep this in mind when reading textbooks/papers on

parallel algorithms
∙ We will assume arbitrary forking unless specified

Binary forking Arbitrary forking

© 2018-2022 Julian Shun 16

Work-Span model
• State what operations are supported
∙ Concurrent reads/writes?
∙ Resolving concurrent writes

© 2018-2022 Julian Shun 17

Scheduling
• For a computation with work W and span S,

on P processors a greedy scheduler achieves

• Work-efficiency is important since P and S
are usually small

Running time ≤ W/P + S

© 2018-2022 Julian Shun 18

Greedy Scheduling
IDEA: Do as much as possible on every step.

Definition. A task is ready if all its
predecessors have executed.

Slide adapted from 6.172 (Charles Leiserson and Saman Amarasinghe)

© 2018-2022 Julian Shun 19

Greedy Scheduling

Complete step
● ≥ P tasks ready.
● Run any P.

P = 3
Definition. A task is ready if all its
predecessors have executed.

IDEA: Do as much as possible on every step.

Slide adapted from 6.172 (Charles Leiserson and Saman Amarasinghe)

© 2018-2022 Julian Shun 20

Greedy Scheduling

Complete step
● ≥ P tasks ready.
● Run any P.

P = 3

Incomplete step
● < P tasks ready.
● Run all of them.

Definition. A task is ready if all its
predecessors have executed.

IDEA: Do as much as possible on every step.

Slide adapted from 6.172 (Charles Leiserson and Saman Amarasinghe)

© 2018-2022 Julian Shun 21

Theorem [G68, B75, EZL89]. Any greedy scheduler
achieves

Running Time ≤ W/P + S.

Analysis of Greedy

Proof.
∙ # complete steps ≤ W/P,

since each complete step
performs P work.

∙ # incomplete steps ≤ S,
since each incomplete step
reduces the span of the
unexecuted dag by 1. ■

Slide adapted from 6.172 (Charles Leiserson and Saman Amarasinghe)

© 2018-2022 Julian Shun 22

Cilk Scheduling
• For a computation with work W and span S,

on P processors Cilk’s work-stealing
scheduler achieves

Expected running time ≤ W/P + O(S)

© 2018-2022 Julian Shun 23

PARALLEL SUM

© 2018-2022 Julian Shun 24

Parallel Sum
• Definition: Given a sequence A=[x0, x1,…, xn-1],

return x0+x1+…+xn-2+xn-1

Sum(A, n): //assume n is a power of 2
if n == 1: return A[0]
for i=0 to n/2-1 in parallel:

B[i] = A[2i] + A[2i+1]
return Sum(B, n/2)

What is the span?
S(n) = S(n/2)+O(1)
S(1) = O(1)
à S(n) = O(log n)

What is the work?
W(n) = W(n/2)+O(n)
W(1) = O(1)
à W(n) = O(n)

© 2018-2022 Julian Shun 25

PREFIX SUM

© 2018-2022 Julian Shun 26

Prefix Sum
• Definition: Given a sequence A=[x0, x1,…, xn-1],

return a sequence where each location stores
the sum of everything before it in A,
[0, x0, x0+x1,…, x0+x1+…+xn-2], as well as the
total sum x0+x1+…+xn-2+xn-1

• Example:

• Can be generalized to any associative binary
operator (e.g., ×, min, max)

2 4 3 1 3

0 2 6 9 10 Total sum = 13

© 2018-2022 Julian Shun 27

Sequential Prefix Sum
Input: array A of length n
Output: array A’ and total sum

cumulativeSum = 0;
for i=0 to n-1:

A’[i] = cumulativeSum;
cumulativeSum += A[i];

return A’ and cumulativeSum
• What is the work of this algorithm?
∙ O(n)

• Can we execute iterations in parallel?
∙ Loop carried dependence: value of cumulativeSum

depends on previous iterations

© 2018-2022 Julian Shun 28

Parallel Prefix Sum
x0 x1 x2 x3 x4 x5 x6 x7

x0+x1 x2+x3 x4+x5 x6+x7

x0+…+x7

Total sum =

x00 x0+x1 x0+…+x2 x0+…+x3 x0+…+x4 x0+…+x5 x0+…+x6A’ =

A =

B =

B’ = x0+x1 x0+…+x3 x0+…+x50

x0+…+x7

Total sum =

Recursively compute
prefix sum on B

i=0 i=1 i=2 i=3 i=4 i=5 i=6 i=7

for even values of i: A’[i] = B’[i/2]
for odd values of i: A’[i] = B’[(i-1)/2]+A[i-1]

© 2018-2022 Julian Shun 29

Parallel Prefix Sum
Input: array A of length n (assume n is a power of 2)
Output: array A’ and total sum

PrefixSum(A, n):
if n == 1: return ([0], A[0])
for i=0 to n/2-1 in parallel:

B[i] = A[2i] + A[2i+1]
(B’, sum) = PrefixSum(B, n/2)
for i=0 to n-1 in parallel:

if (i mod 2) == 0: A’[i] = B’[i/2]
else: A’[i] = B’[(i-1)/2] + A[i-1]

return (A’, sum)

What is the span?
S(n) = S(n/2)+O(1)
S(1) = O(1)
à S(n) = O(log n)

What is the work?
W(n) = W(n/2)+O(n)
W(1) = O(1)
à W(n) = O(n)

© 2018-2022 Julian Shun 31

FILTER

© 2018-2022 Julian Shun 32

Filter
• Definition: Given a sequence A=[x0, x1,…, xn-1]

and a Boolean array of flags B[b0, b1,…, bn-1],
output an array A’ containing just the elements
A[i] where B[i] = true (maintaining relative
order)

• Example:

• Can you implement filter using prefix sum?

2 4 3 1 3

2 3 1

T F T T FA = B =

A’ =

© 2018-2022 Julian Shun 33

Filter Implementation
2 4 3 1 3 T F T T FA = B =

A’ =

1 0 1 1 0

Prefix sum

0 1 1 2 3B’ =
Total sum = 3

Allocate array of size 3

//Assume B’[n] = total sum
parallel-for i=0 to n-1:

if(B’[i] != B’[i+1]):
A’[B’[i]] = A[i];

2 3 1

© 2018-2022 Julian Shun 35

PARALLEL
BREADTH-FIRST SEARCH

© 2018-2022 Julian Shun 36

Parallel BFS Algorithm

s0

1

1

2

2

2

2

1

Frontier

• Can process each frontier in parallel
∙ Parallelize over both the vertices and their

outgoing edges

© 2018-2022 Julian Shun 37

Parallel BFS Code
BFS(Offsets, Edges, source) {

parent, frontier, frontierNext, and degrees are arrays
parallel_for(int i=0; i<n; i++) parent[i] = -1;
frontier[0] = source, frontierSize = 1, parent[source] = source;

while(frontierSize > 0) {
parallel_for(int i=0; i<frontierSize; i++)

degrees[i] = Offsets[frontier[i]+1] – Offsets[frontier[i]];
perform prefix sum on degrees array
parallel_for(int i=0; i<frontierSize; i++) {

v = frontier[i], index = degrees[i], d = Offsets[v+1]-Offsets[v];
for(int j=0; j<d; j++) { //can be parallel

ngh = Edges[Offsets[v]+j];
if(parent[ngh] == -1 && compare-and-swap(&parent[ngh], -1, v)) {

frontierNext[index+j] = ngh;
} else { frontierNext[index+j] = -1; }

}
}
filter out “-1” from frontierNext, store in frontier, and update frontierSize to be

the size of frontier (all done using prefix sum)
}

}

2 4 3 1 3
frontierSize = 5

0 2 6 9 10

Prefix sum

v5v2 v3 v4v1

24 9 -1 15 89 -1 -1 25 90 99 -1 -1 424 9 15 89 25 90 99 4 frontierSize = 8frontier =

© 2018-2022 Julian Shun 38

BFS Work-Span Analysis
• Number of iterations <= diameter 𝚫 of graph
• Each iteration takes O(log m) span for

prefix sum and filter (assuming inner loop is
parallelized)

• Sum of frontier sizes = n
• Each edge traversed once -> m total visits
• Work of prefix sum on each iteration is

proportional to frontier size -> Θ(n) total
• Work of filter on each iteration is proportional

to number of edges traversed -> Θ(m) total
Work = Θ(n+m)

Span = O(𝚫 log m)

© 2018-2022 Julian Shun 39

Performance of Parallel BFS

• 31.8x speedup on 40 cores with hyperthreading
• Sequential BFS is 54% faster than parallel BFS on

1 thread

• Random graph with n=107 and m=108

∙ 10 edges per vertex
• 40-core machine with 2-way hyperthreading

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80
Sp

ee
du

p
re

la
tiv

e
to

se

qu
en

tia
l B

FS
Number of threads

0

10

20

30

40

0 10 20 30 40 50 60 70 80

Sp
ee

du
p

re
la

tiv
e

to

1-

th
re

ad
 ti

m
e

Number of threads

© 2018-2022 Julian Shun 40

POINTER JUMPING AND
LIST RANKING

© 2018-2022 Julian Shun 41

Pointer Jumping
• Have every node in linked list or rooted tree

point to the end (root)

for j=0 to ceil(log n)-1:
parallel-for i=0 to n-1:

temp = P[P[i]];
parallel-for i=0 to n-1:

P[i] = temp;

What is the work and span?

W = O(n log n)
S = O(log n)

Source: “Parallel Algorithms” by Guy E. Blelloch and Bruce M. Maggs

© 2018-2022 Julian Shun 42

List Ranking
• Have every node in linked list determine its

distance to the end
parallel-for i=0 to n-1:

if P[i] == i then rank[i] = 0
else rank[i] = 1

for j=0 to ceil(log n)-1:
temp, temp2;
parallel-for i=0 to n-1:

temp = rank[P[i]];
temp2 = P[P[i]];

parallel-for i=0 to n-1:
rank[i] = rank[i] + temp;
P[i] = temp2;

1 1 1 1 1 02 2 2 2 1 04 4 3 2 1 05 4 3 2 1 0

© 2018-2022 Julian Shun 44

Work-Span Analysis
parallel-for i=0 to n-1:

if P[i] == i then rank[i] = 0
else rank[i] = 1

for j=0 to ceil(log n)-1:
temp, temp2;
parallel-for i=0 to n-1:

temp = rank[P[i]];
temp2 = P[P[i]];

parallel-for i=0 to n-1:
rank[i] = rank[i] + temp;
P[i] = temp2;

What is the work and span? W = O(n log n)
S = O(log n)

Sequential algorithm only requires O(n) work

© 2018-2022 Julian Shun 45

Work-Efficient List Ranking
ListRanking(list P)

1. If list has two or fewer nodes, then return //base case
2. Every node flips a fair coin
3. For each vertex u (except the last vertex), if u flipped Tails

and P[u] flipped Heads then u will be paired with P[u]
A. rank[u] = rank[u]+rank[P[u]]
B. P[u] = P[P[u]]

4. Recursively call ListRanking on smaller list
5. Insert contracted nodes v back into list with rank[v] =

rank[v] + rank[P[v]]

1 1 1 1 01

T H T T H T

2 1 2 0

© 2018-2022 Julian Shun 46

Work-Efficient List Ranking

1 1 1 1 01

T H T T H T

2 1 2 0

Apply recursively

5 3 2 0

Contract

Expand

5 3 2 1 04

© 2018-2022 Julian Shun 47

Work-Span Analysis

W = O(n)
S = O(log n)

• Number of pairs per round is (n-1)/4 in
expectation
∙ For all nodes u except for the last node, probability

of u flipping Tails and P[u] flipping Heads is 1/4
∙ Linearity of expectations gives (n-1)/4 pairs overall

• Each round takes linear work and O(1) span
• Expected work: W(n) ≤ W(7n/8) + O(n)
• Expected span: S(n) ≤ S(7n/8) + O(1)

• Can show span with high probability with
Chernoff bound

© 2018-2022 Julian Shun 48

CONNECTED COMPONENTS

© 2018-2022 Julian Shun 49

Connected Components
• Given an undirected graph, label all vertices

such that L(u) = L(v) if and only if there is a
path between u and v

• BFS span is proportional to diameter
∙ Works well for graphs with small diameter

• Today we will see a randomized algorithm
that takes O((n+m)log n) work and O(log n)
span
∙ Deterministic version in paper
∙ We will study a work-efficient parallel algorithm

next week

© 2018-2022 Julian Shun 50

Random Mate
• Idea: Form a set of non-overlapping star

subgraphs and contract them
• Each vertex flips a coin. For each Heads

vertex, pick an arbitrary Tails neighbor (if
there is one) and point to it

Tails

Heads

Source: “Parallel Algorithms” by Guy E. Blelloch and Bruce M. Maggs

© 2018-2022 Julian Shun 51

Random Mate
Tails

Heads Form stars

Contract
Repeat until each component

has a single vertex

Expand vertices back in reverse
order with label of neighbor

Source: “Parallel Algorithms” by Guy E. Blelloch and Bruce M. Maggs

© 2018-2022 Julian Shun 52

Random Mate Algorithm
CC_Random_Mate(L, E)

if(|E| = 0) Return L //base case
else

1. Flip coins for all vertices
2. For v where coin(v)=Heads, hook to arbitrary Tails neighbor

w and set L(v) = w
3. E’ = { (L(u),L(v)) | (u,v) ∈ E and L(u) ≠ L(v) }
4. L’ = CC_Random_Mate(L, E’)
5. For v where coin(v)=Heads, set L’(v) = L’(w) where w is the

Tails neighbor that v hooked to in Step 2
6. Return L’

• Each iteration requires O(m+n) work and O(1)
span
∙ Assumes we do not pack vertices and edges

• Each iteration eliminates 1/4 of the vertices in
expectation
W = O((m+n)log n) w.h.p. S = O(log n) w.h.p.

© 2018-2022 Julian Shun 53

(Minimum) Spanning Forest
• Spanning Forest: Keep track of edges used

for hooking
∙ Edges will only hook two components that are not

yet connected
• Minimum Spanning Forest:
∙ For each “Heads” vertex v, instead of picking an

arbitrary neighbor to hook to, pick neighbor w
where (v, w) is the minimum weight edge incident
to v

∙ Can find this edge using priority concurrent write

© 2018-2022 Julian Shun 54

Minimum Spanning Forest

Form stars with
min-weight edge

Contract

Repeat

Source: “Parallel Algorithms” by Guy E. Blelloch and Bruce M. Maggs

© 2018-2022 Julian Shun 55

PARALLEL BELLMAN-FORD

© 2018-2022 Julian Shun 56

Bellman-Ford Algorithm
Bellman-Ford(G, source):

ShortestPaths = {∞, ∞, …, ∞} //size n; stores shortest path distances
ShortestPaths[source] = 0
for i=1 to n-1:

for each vertex v in G:
for each w in neighbors(v):

if(ShortestPaths[v] + weight(v,w) < ShortestPaths[w]):
ShortestPaths[w] = ShortestPaths[v] + weight(v,w)

if no shortest paths changed:
return ShortestPaths

report “negative cycle”

parallel
parallel

concurrent write

writeMin(&ShortestPaths[w], ShortestPaths[v] + weight(v,w))

• What is the work and span assuming writeMin
has unit cost?

• Work = O(mn)
• Span = O(n)

© 2018-2022 Julian Shun 57

QUICKSORT

© 2018-2022 Julian Shun 58

static void quicksort(int64_t *left, int64_t *right)
{
int64_t *p;
if (left == right) return;
p = partition(left, right);
cilk_spawn quicksort(left, p);
quicksort(p + 1, right);
cilk_sync;

}

Parallel Quicksort

• Partition picks random pivot p and splits
elements into left and right subarrays

• Partition can be implemented using prefix
sum in linear work and logarithmic span

• Overall work is O(n log n)
• What is the span?

Slide adapted from 6.172 (Charles Leiserson and Saman Amarasinghe)

© 2018-2022 Julian Shun 59

Parallel Quicksort Span

• Pivot is chosen uniformly at random
• 1/2 chance that pivot falls in middle range, in

which case sub-problem size is at most 3n/4
• Expected span:
∙ S(n) ≤ (1/2) S(3n/4) + O(log n)

= O(log2n)
• Can get high probability bound with Chernoff

bound

n/2 keys n/4 keysn/4 keys

Keys in order

© 2018-2022 Julian Shun 60

RADIX SORT

© 2018-2022 Julian Shun 61

Radix Sort
• Consider 1-bit digits

Radix_sort(A, b) //b is the number of bits of A
For i from 0 to b-1: //sort by i’th most significant bit

Flags = { (a >> i) mod 2 | a ∈ A }
NotFlags = { !(a >> i) mod 2 | a ∈ A}
(sum0, R0) = prefixSum(NotFlags)
(sum1, R1) = prefixSum(Flags)
Parallel-for j = 0 to |A|-1:

if(Flags[j] = 0): A’[R0[j]] = A[j]
else: A’[R1[j]+sum0] = A[j]

A = A’

1 2 6 5 4 3A =

1 0 0 1 0 1Flags =

0 1 1 0 1 0NotFlags =

0 1 1 1 2 2R1 =

0 0 1 2 2 3R0 =
sum0 = 32 6 4 1 5 3A’ =

• Each iteration is stable

© 2018-2022 Julian Shun 62

Work-Span Analysis
Radix_sort(A, b) //b is the number of bits of A

For i from 0 to b-1:
Flags = { (a >> i) mod 2 | a ∈ A }
NotFlags = { !(a >> i) mod 2 | a ∈ A}
(sum0, R0) = prefixSum(NotFlags)
(sum1, R1) = prefixSum(Flags)
Parallel-for j = 0 to |A|-1:

if(Flags[j] = 0): A’[R0[j]] = A[j]
else: A’[R1[j]+sum0] = A[j]

A = A’

• Each iteration requires O(n) work and O(log n)
span

• Overall work = O(bn)
• Overall span = O(b log n)

© 2018-2022 Julian Shun 63

REMOVING DUPLICATES

© 2018-2022 Julian Shun 64

Removing Duplicates with Hashing
• Given an array A of n elements, output the

elements in A excluding duplicates
Construct a table T of size m, where m is the next prime after 2n
i = 0
While (|A| > 0)

1. Parallel-for each element j in A try to insert j into T at
location (hash(A[j],i) mod m) //if the location was empty at
the beginning of round i, and there are concurrent writes
then an arbitrary one succeeds

2. Filter out elements j in A such that
T[(hash(A[j],i) mod m)] = A[j]

3. i = i+1

• Use a new hash function on each round
• Claim: Every round, the number of elements

decreases by a factor of 2 in expectation
W = O(n) expected S = O(log2n) w.h.p.

