
Review by Kliment Serafimov
For 6.827
April 26th 2022 





Problem and Motivation: 
Learning Graph Embeddings
● Learning graph embeddings is widely used in industry for a variety of downstream tasks.
● This paper focuses on link prediction.

Set up:

● Parameters: 1 high-dimensional vector \in R^400 per node and per edge type. 
● Training: minimize contrastive loss:
● Example f(𝜃

s
, 𝜃

r
,
 
𝜃

d
) = 𝜃

s
diag(𝜃

r
)𝜃

d
; makes f(e) ~ 1 if e \in E, ~ 0 otherwise

● Second term is approximated.



Scaling issues

● Very memory intensive!
○ For a graph of 100M nodes, and 400 floats per embedding vector, 4 bytes per float:

○ ~160GB! Just for the node embeddings.

○ Highest GPU memory: 80 GB available (NVIDIA A100)

○ Modest GPU: 12GB (NVIDIA TITAN V)

● Key challenge:
○ How do you facilitate data movement to and from GPU?

○ CPU RAM <--> GPU? (Amazon’s DGL-KE, 2020)

○ DISK <--> GPU? (PyTorch BigGraph, 2019)

○ Distributed GPU Compute? (both ^)

○ How to overcome memory bottleneck and IO bottleneck?



Solution!
● Pipelining for hiding IO overhead

● Disk <--> CPU RAM (used as cache) <--> GPU 

○ Partition nodes

○ Load and store partitions with smart replacement schedule



Partitions
● Nodes are partitioned into p partitions

● To calculate loss, need to cycle through p^2 pairs of partitions.



Replacement Schedule Walkthrough



Results

See paper.



Discussion

● Exposing a general interface for implementing similar algorithms?

● Machine-aware self-configuring implementation?


