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Figure 2. Starting from a knowledge graph, embedding methods generate representations of the elements of the knowledge graph that are embedded in
a vector space. For example, these representations could be vectors... Expand
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Problem and Motivation:
Learning Graph Embeddings

Figure 2: A sample knowledge graph.

e Learning graph embeddings is widely used in industry for a variety of downstream tasks.
e  This paper focuses on link prediction.

Set up:
Parameters: 1 high-dimensional vector \in R*400 per node and per edge type.
Training: minimize contrastive loss:

Example f(@s, 0, Qd) = Qsdiag(er)ed; makes f(e) ~ 1if e\in E, ~ O otherwise
Second term is approximated.

L=— 3" (fles)—log( > ) (@

where ep = (05,0,-,04) and ey’ = (6,,0..,6,).
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e Very memory intensive!
o For a graph of 100M nodes, and 400 floats per embedding vector, 4 bytes per float:
o  ~160GB! Just for the node embeddings.
o Highest GPU memory: 80 GB available (NVIDIA A100)
o Modest GPU: 12GB (NVIDIATITAN V)
e Keychallenge: Unprecedented acceleration at every scale
How do you facilitate data movement to and from GPU?
CPU RAM <--> GPU? (Amazon’s DGL-KE, 2020)
DISK <--> GPU? (PyTorch BigGraph, 2019)
Distributed GPU Compute? (both *)
How to overcome memory bottleneck and 10 bottleneck?
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e Disk <--> CPURAM (used as cache) <--> GPU Disk faititicnad Embadding
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Figure 4: Marius training pipeline.



Partitions

e Nodes are partitioned into p partitions
e Tocalculate loss, need to cycle through p” 2 pairs of partitions.

Edge Buckets
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Figure 3: Partitions and edge-buckets with p = 4. All
edges in edge-bucket (0, 2) have a source node in node-
partition 0 and a destination node in node-partition 2.



Replacement Schedule Walkthrough

o N Edge Bucket Ordering Node Partitions: {0, 1, 2, 3, 4, 5}
Destination Node Partition
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Source Node Partition
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| 53,4
: swap 2 with 3 4 fix: {0, 1}, cycle: {2, 3, 4, 5} Partition Buffers replace: {0, 1} with {2, 3}, cycle: {4, 5} replace: {2, 3} with {5}

Figure 5: Example BETA ordering for p = 6 and ¢ = 3. The sequence of partition buffers corresponds to first fixing
{0, 1}, then replacing {0, 1} with {2, 3}, fixing {2, 3}, and finally replacing {2, 3} with {5}. Each successive buffer
differs by one swap. A corresponding edge bucket ordering is shown above the buffers. For each partition buffer in
the sequence, all previously unprocessed edge buckets which have their source and destination node partitions in the
buffer are added to the ordering (red edge buckets). For each buffer, these edge buckets can be added in any order.



Results

See paper.



Discussion

e Exposing a general interface for implementing similar algorithms?
e Machine-aware self-configuring implementation?



