Marius: Learning Massive Graph Embeddings
on a Single Machine

Jason Mohoney and Roger Waleffe, University of Wisconsin-Madison;
Henry Xu, University of Maryland, College Park; Theodoros Rekatsinas
and Shivaram Venkataraman, University of Wisconsin-Madison

Review by Kliment Serafimov
For 6.827
April 26th 2022

Capita Embedding

Washington New York United
D;f’ City States country capital
Washington

D.C. 1 1 5
country

6

United 4

States 4

8

7

New York

City

N | o |lo | N
N | N | AN

country

Figure 2. Starting from a knowledge graph, embedding methods generate representations of the elements of the knowledge graph that are embedded in
a vector space. For example, these representations could be vectors... Expand

Published in Knowledge Graphs for eXplainable Artificial Intelligence 2020
Knowledge Graph Embeddings and Explainable Al \\—\

Federico Bianchi, Gaetano Rossiello, Luca Costabello, M. Palmonari, Pasquale Minervini

Teammate of

Brother of

Problem and Motivation:
Learning Graph Embeddings

Figure 2: A sample knowledge graph.

e Learning graph embeddings is widely used in industry for a variety of downstream tasks.
e This paper focuses on link prediction.

Set up:
Parameters: 1 high-dimensional vector \in R*400 per node and per edge type.
Training: minimize contrastive loss:

Example f(@s, 0, Qd) = Qsdiag(er)ed; makes f(e) ~ 1if e\in E, ~ O otherwise
Second term is approximated.

L=— 3" (fles)—log(>) (@

where ep = (05,0,-,04) and ey’ = (6,,0..,6,).

NVIDIATITAN V Yy

NVIDIA's SUPERCOMPUTING GPU ARCHITECTURE, NOW
FORYOUR PC

NVI
arcl

Scaling issues

OUT OF STOCK.

® WATCH FULL VIDEO

e Very memory intensive!
o For a graph of 100M nodes, and 400 floats per embedding vector, 4 bytes per float:
o ~160GB! Just for the node embeddings.
o Highest GPU memory: 80 GB available (NVIDIA A100)
o Modest GPU: 12GB (NVIDIATITAN V)
e Keychallenge: Unprecedented acceleration at every scale
How do you facilitate data movement to and from GPU?
CPU RAM <--> GPU? (Amazon’s DGL-KE, 2020)
DISK <--> GPU? (PyTorch BigGraph, 2019)
Distributed GPU Compute? (both *)
How to overcome memory bottleneck and 10 bottleneck?

o O O O O

—:Pipeline

GPU 3
Memory L ' i 1

|
CPU ' I
Memory Partiti
. artition Buffer
Solution! |
‘ Async 1O
|
e Pipelining for hiding IO overhead
e Disk <--> CPURAM (used as cache) <--> GPU Disk faititicnad Embadding
o Partition nodes
o Load and store partitions with smart replacement schedule
Marius Architect
CPU Memory GPU Memory
Legend ittty i
» Transfer B
D:I:I] Queue e :
Relation
L] [Baten Node Embedding
— [Data flow Embedding [R Parameters
A | |stage Parameters <« Transfer i«

Figure 4: Marius training pipeline.

Partitions

e Nodes are partitioned into p partitions
e Tocalculate loss, need to cycle through p” 2 pairs of partitions.

Edge Buckets

0,0 {(0,1)((0,2)| (0,3

Node Partitions @ola, .20, 3

0 1 2 3

Source Node
Partition

20|21 22]|@3

3,0 1)]@, 23,3

Destination Node
Partition

Figure 3: Partitions and edge-buckets with p = 4. All
edges in edge-bucket (0, 2) have a source node in node-
partition 0 and a destination node in node-partition 2.

Replacement Schedule Walkthrough

o N Edge Bucket Ordering Node Partitions: {0, 1, 2, 3, 4, 5}
Destination Node Partition

0 1 2 3 45 01 2 3 46 0 1 2 3 4 5 01 2 3 465 0 1 2 3 4 5 0 1 2 3 4 65 0 1 2 3 4 5 0 1 2 3 4 5

Source Node Partition

O A W N - O
QO H WN = O
OB W N - O
o A W N = O
D B W N - O
O A W N - O
O A WN = O
OB W N = O

| 53,4
: swap 2 with 3 4 fix: {0, 1}, cycle: {2, 3, 4, 5} Partition Buffers replace: {0, 1} with {2, 3}, cycle: {4, 5} replace: {2, 3} with {5}

Figure 5: Example BETA ordering for p = 6 and ¢ = 3. The sequence of partition buffers corresponds to first fixing
{0, 1}, then replacing {0, 1} with {2, 3}, fixing {2, 3}, and finally replacing {2, 3} with {5}. Each successive buffer
differs by one swap. A corresponding edge bucket ordering is shown above the buffers. For each partition buffer in
the sequence, all previously unprocessed edge buckets which have their source and destination node partitions in the
buffer are added to the ordering (red edge buckets). For each buffer, these edge buckets can be added in any order.

Results

See paper.

Discussion

e Exposing a general interface for implementing similar algorithms?
e Machine-aware self-configuring implementation?

