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Summary

● Random walk: processing where the next vertex is randomly chosen among 
the neighbors of the current vertex

● Observation: upto 75% of CPU slots are stalled due to memory latency

● Observation: As low as 2.3% of memory bandwidth in use 

● Intra-query parallelism not possible, look into inter-query parallelism  

● ThunderRW: assign multiple queries to each core, a core switches between the 
queries to hide memory latency

● Result: upto 3333x faster than baseline, 131.7x faster than other frameworks 



Introduction: Random Walks

● e(v, u) selected with probability p(e)

● Some RW algs: Personalized PageRank (PPR), DeepWalk, Node2Vec, MetaPath

● Unbiased vs Biased RWs: the probability distribution is uniform vs not

● Static vs Dynamic RWs: the probability distribution known before vs after execution

● Different sampling methods: NAIVE, ITS, ALIAS, REJ, O-REJ



Previous Work

● Generic graph frameworks don’t take RW workloads into consideration

● C-SAW:
○ For GPU, ITS sampling
○ BSP model as well
○ Not general (PPR and Node2Vec not support for example), high overhead because of ITS

● KnightKing: 
○ Distributed, 0-REJ sampling
○ BSP model that moves a step for all queries until done
○ Not generic (doesn’t support MetaPath for instance), suffers from the tail problem

● GraphWalker:
○ External-memory
○ ASP model: assigns queries to each worker and executed independently 
○ Limited (only unbiased) 



Motivations

● Memory a major bottleneck in RW algorithms



Motivations

● Cost of computing p(e) is dependent on algorithms while sampling is flexible

● ThunderRW targets sampling



Motivations

● Different sampling methods perform differently. Moreover, dynamic RW is generally 
slower than static and unbiased RW

● ThunderRW optimizes for static, unbiased and dynamic RWs and it allows multiple 
different sampling methods



Model and API

● ThunderRW exploits inter-query parallelism by statically assigning groups of 
queries to different workers which work independently

● It follows a step centric model where a step is abstracted into the 
Gather-Move-Update operations



Step Interleaving

● ThunderRW targets move operations for memory latency hiding

● Decomposes a move into multiple steps where each step consumes data fetched 
by previous steps and fetches data for subsequent steps

● Workers hide memory latency by interleaving steps from different queries



Step Interleaving

● Efficient interleaving requires an efficient switch mechanism and enough workload 
for hiding memory latency

● ThunderRW builds and uses a stage dependency graph to make this easy



Experiments: Setup

● Intel Xeon W-2155 CPU with 220GB RAM, 10 physical cores w hyperthreading 
disabled for consistency, L1 = 32KB, L2 = 1MB and L3 = 13.75MB

● They run PPR, DeepWalk, Node2Vec and MetaPath algorithms on a variety of 
datasets



Experiments: ThunderRW vs Everyone

● Compared ThunderRW to 
○ BL: a baseline implementation for in-memory random walks 
○ HG: BL + suitable sampling technique selection + each query parallelized in OpenMP 
○ GW: GraphWalker executed in-memory 
○ KK: KnightKing run on a single machine



Experiments: ThunderRW vs Everyone

● TRW runs 54.6-131.7x faster than GW and 1.7-14.6x faster than KK

● TRW runs 8.6-3333x faster than BL and 6.1x faster than HG 

● For MetaPath, the gather stage has more weight and sometimes HG runs faster 



Experiments: Evaluating Step Interleaving

● DeepWalk and PPR benefit the most from interleaving. PPR less so because all 
queries in PPR issue from a single vertex (are just more optimal to begin with)

● Node2Vec uses binary search in Move, thus makes more random accesses. 
MetaPath has the gather step dominating cost. Thus the two see smaller benefits.



Experiments: Evaluating Step Interleaving

● Step Interleaving effective across multiple sampling methods and datasets

● am can fit in the LLC while yt is twice the LLC. eu and uk are dense and thus 
have good memory locality. Thus these see lower speedups. Sparse and 
large graphs see higher speedups. 



Experiments: Scalability Evaluation

● Highly scalable with number & length of queries 

● Scales almost linearly with number of threads



Summary

● ThunderRW is an in-memory RW engine that leverages inter-query parallelism by 
first assigning different queries to different cores and then interleaving the steps 
of queries assigned to the same core to hide memory latency

● Possible future work: dynamic load adjustment


