ThunderRW: An In-Memory
Graph Random Walk Engine

By: Shixuan Sun, Yuhang Chen, Shengliang Lu, Bingsheng He,
Yuchen Li

Presentation by Yosef E Mihretie




Summary

e Random walk: processing where the next vertex is randomly chosen among
the neighbors of the current vertex

e Observation: upto 75% of CPU slots are stalled due to memory latency

e Observation: As low as 2.3% of memory bandwidth in use

e Intra-query parallelism not possible, look into inter-query parallelism

e ThunderRW: assign multiple queries to each core, a core switches between the
queries to hide memory latency

e Result: upto 3333x faster than baseline, 131.7x faster than other frameworks



Introduction: Random Walks

Algorithm 1: Execution Paradigm of RW algorithms

Input: a graph G and a set Q of random walk queries;
Output: the walk sequences of each query in Q,
1 foreach Q € T do
do
3 Select a neighbor of the current residing vertex Q.cur at random;
' Add the selected vertex to Q;
while Terminate(Q) is false,

6 return J;

e ¢(v, u) selected with probability p(e)
e Unbiased vs Biased RWs: the probability distribution is uniform vs not
e Static vs Dynamic RWs: the probability distribution known before vs after execution

e Some RW algs: Personalized PageRank (PPR), DeepWalk, Node2Vec, MetaPath
e Different sampling methods: NAIVE, ITS, ALIAS, REJ, O-REJ



Previous Work

e Generic graph frameworks don't take RW workloads into consideration

e KnightKing:
o  Distributed, 0-REJ sampling
o  BSP model that moves a step for all queries until done
o Not generic (doesn’t support MetaPath for instance), suffers from the tail problem

e C-SAW:
o  For GPU, ITS sampling
o  BSP model as well
o  Not general (PPR and Node2Vec not support for example), high overhead because of ITS

e GraphWalker:
o  External-memory
o  ASP model: assigns queries to each worker and executed independently
o  Limited (only unbiased)



Motivations

e Memory a major bottleneck in RW algorithms

Table 1: Comparison of pipeline slot breakdown and mem-
ory bandwidth (the total value of read and write) between
traditional graph algorithms and RW algorithms.

Memory
Bandwidth

51.7 GB/s
38.2 GB/s
5.6 GB/s

9.9 GB/s




Motivations

e Cost of computing p(e) is dependent on algorithms while sampling is flexible

Table 2: Comparison of execution time breakdown and the
time complexity per step among RW algorithms where v =
Q.cur and u is the last vertex of Q.

Time Breakdown Complexity per Step
Method | Compute ; i

il i

——
Node? 04 xTogda) o)
Neupah | mor e T Od 0@ [0

e ThunderRW targets sampling



Motivations

e Different sampling methods perform differently. Moreover, dynamic RW is generally
slower than static and unbiased RW

§ 1200
2
5 1000
2 800
E 6oo
E

lé 400

3 200
3

=
w0

i T W in T o
E 2 = e 2 =
Q Q

(a) Unbiased. (b) Static. (c) Dynamic.
Figure 1: Effectiveness of sampling methods.

e ThunderRW optimizes for static, unbiased and dynamic RWs and it allows multiple
different sampling methods



Model and API

e ThunderRW exploits inter-query parallelism by statically assigning groups of
queries to different workers which work independently

e It follows a step centric model where a step is abstracted into the
Gather-Move-Update operations

Algorithm 2: ThunderRW Framework

Input: a graph G and a set Q of random walk quernies;
Output: the walk sequences of each query in Q:
1 foreachQ € Qdo
do
C « Gather (G, Q, Weight);
e« Move(G. Q. C);
stop « Update(Q, e).
while stop is false;

Algorithm 3: Preprocessing for Static Random Walk

Input: a graph G;
Output: the transition probabilities C;, on E,, for each vertex o:
1 foreach v € V(G) do
Co = {}:
foreach e ¢ E, do
|_ Add Weight(null, ) to C,,;

7 return J;
s Function Gather (G, Q, Weight)

9 C+{k
10 foreach ¢ € EQ.cur do
1 l_ Add Weight(Q, ¢) to C:

C « execute initialization phase of a given sampling method on C;
return C:

2 C, « execute intialization phase of a given sampling method on C;

13
1 Function Move(G, 0,C) Store C, for the usage in query execution.

15 Select an edge e(Q.cur,v) € Eg cyr based on C and add v to Q:
il return ¢(Q.cur, v);




Step Interleaving

e ThunderRW targets move operations for memory latency hiding

e Decomposes a move into multiple steps where each step consumes data fetched
by previous steps and fetches data for subsequent steps

e Workers hide memory latency by interleaving steps from different queries

. Stage === Memory Access L Switch of Stage

Sequential Execution

step i of Q .- -------- l. _______ l

Step Interleaving Execution

Figure 2: Sequential versus step interleaving.



Step Interleaving

e Efficient interleaving requires an efficient switch mechanism and enough workload
for hiding memory latency

e ThunderRW builds and uses a stage dependency graph to make this easy

Table 4: Stages of Move with ALIAS and REJ (v = Q.cur).

Memory _ _ ., Computation .» Control
Dependency Dependency Dependency:

Y @ : ,”—V-’—i - \\\\
O ® O+

A[x])
ALIAS REJ
Figure 3: Stage dependency graph.




Experiments: Setup

e Intel Xeon W-2155 CPU with 220GB RAM, 10 physical cores w hyperthreading
disabled for consistency, L1 = 32KB, L2 = TMB and L3 = 13.75MB

e They run PPR, DeepWalk, Node2Vec and MetaPath algorithms on a variety of
datasets

Table 5: Properties of real-world datasets.
Dataset Name |V |E| a5 ; 7 Memory

amazon am 0.55M 1.85M 3.38 549 0.01GB

youtube yt 1.14M 2.99M 5.24 28754 0.03GB

us patents 3.78M 16.52M 8.74 793 0.17GB
eu-2005 ¢ 0.86M 19.24M 68963
amazon-clothing 15.16M  63.33M 12845

amazon-book 18.29M  102.12M 58147
hivejournal lj 4.85M
com-orkut 3.07M
wikidata
uk-2002 18.52M
twitter y 41.66M
friendster J 65.61M




Experiments: ThunderRW vs Everyone

e Compared ThunderRW to

o BL: abaseline implementation for in-memory random walks

o HG: BL + suitable sampling technique selection + each query parallelized in OpenMP
o  GW: GraphWalker executed in-memory
o  KK: KnightKing run on a single machine

Table 6: Overall performance comparison (seconds).

[ PPR [ Decpwalk | MetaPath
Dataset | BL __HG __GW ___KK__TRW
006 0008 042 0012 0.007 2.16 0.21 044  0.07 9.97 0.26 2.08 0.14 0.22 0.018 0.012
9.78 0.98 1.93 0.26 853.13 1.30 5.94 ¥ 6.18 0.23 0.24
124 013 719 019 007 45.44 433 8.41 0.95 369.00 6.20 1692 4.01 4.88 0.40 0.24
8.16 0.82 156  0.20 2731.07 1.47 443 . 90.55 3.18 3.55
484 051 1931 065  0.19 173.66 1786 3188  3.31 695112 2454 8786  6.26 45.01 2.01 1.69
886 094 2674 109 026 21280 2224 4007  4.01 [ 2623145 3204 D0.78 A 128.35 5.06 147
169 019 790 023 0.06 55.63 5.44 1067  1.19 295133 9.09 3 18.08 0.94 0.75
38.54 3.70 7.97 0.80 5891.28 7.28 5. A 40.77 1.72 1.57
wk 2186 221 4705 307 059 50227  49.67 9517  9.26 00T 68.43 5.98 0.54 0.55
uk . ] 27.72 20386 2042 2140 456 | 1263001 3436 ] 322.66 12.34 12.56
tw 2642 2. 77.12 7543 6118 11592 1113 00T 130.72 23241 7 OOT 1230032 9780.20
fs 79. . 1043.93 10823 20845 17.67 00T 178.15 36451 120.16 | 68305  28.69 25.01




Experiments: ThunderRW vs Everyone

e TRW runs 54.6-131.7x faster than GW and 1.7-14.6x faster than KK
e TRW runs 8.6-3333x faster than BL and 6.1x faster than HG

e For MetaPath, the gather stage has more weight and sometimes HG runs faster

Table 6: Overall performance comparison (seconds).

e PR ] . deWele ) . Nededwe. | MetaPath

Dataset BL ___HG___KK _TRW BL ___HG
2.16 0.21 044 0.07 9.97 0.26 2.08 0.14 0.22 0.018 0.012
9.78 0.98 193 026 853.13 1.30 5.94 1.03 6.18 0.23 0.24
124013 719 019 007 45.44 433 841 095 36900 620 1692 4.01 4.88 0.40 0.24
8.16 0.82 156 020 | 273107 147 443 114 90.55 3.18 3.55
17366 1786 3188 331 | 695112 2454 8786  6.26 45.01 2.01 169
886 094 2674 109 026 | 21280 2224 4007 4.01 [ 2623145 3204 10078 7.87 | 12835  5.06 147
55.63 544 1067 119 | 295133 909 2495  6.20 18.08 0.94 0.75
149 016 525 019 0.4 38.54 70 797 080 [ 589128 728 1516  4.82 40.77 172 1.57
2186 221 4705 307 059 | 50227 4967 9517  9.26 00T 6843 21624  27.68 5.98 0.54 0.55
20386 2042 2140 456 | 1263001 3436 9469 2868 | 32266 1284 12.56
57543 6118 11592 1113 00T 13072 23241  91.00 | OOT 1230032  9780.20
104393 10823 20845 17.67 00T 178.15 36451 120.16 | 683.05  28.69 25.01




Experiments: Evaluating Step Interleaving

o ows owo's owisl owols wisl walsl ws 0
PPR DacpWak Node2Vac MataPath PPR DeepWalk Node2Ver MataPy

(a) Pipeline slot breakdown. (b) Speedup.
Figure 4: Vary RW-algorithms on Ij.

e DeepWalk and PPR benefit the most from interleaving. PPR less so because all
queries in PPR issue from a single vertex (are just more optimal to begin with)

e Node2Vec uses binary search in Move, thus makes more random accesses.
MetaPath has the gather step dominating cost. Thus the two see smaller benefits.



Experiments: Evaluating Step Interleaving

i wisi wo/si w/si wo/si wi/si
RE) O-RE}

An;:in\tvé=l m‘:x‘TS'.'mI “Ogul«g NAIVE O-REJ 2 vt up e ac an
(a) Pipeline slot breakdown. (b) Speedup. . e
Figure 5: Vary sampling methods on Ij. Figure 6: Vary datasets for DeepWalk.

e Step Interleaving effective across multiple sampling methods and datasets

e am can fit in the LLC while yt is twice the LLC. eu and uk are dense and thus
have good memory locality. Thus these see lower speedups. Sparse and
large graphs see higher speedups.



Experiments: Scalability Evaluation

| *+NAVE -&-ALIAS —+O0-RE| d +-(TS| -&-ALIAS -8-RE| —O-RE|

~T15 RS
15 - 4

"

o
A
s -
[ . g [ ] >
“ S N 8 \ a § =
| N N ) 3 8 S 6] 1 -
. N ) N N S N o -

- 2 \ S N S N z B ' '

\ \ N
% N 3 \ 2 N H -
3 N N N S N 2 a
c 8 \ N N 5 noy { wog
H ) S N \
5 N N N ] 2 t $ 1 1 2 1 1

10 R
2 4

3 10 20 40 B0 160

&
w
I B
a
»
a
g
F1
3
-1
£y
ol
3
e
£
E,

(a) Varying number of queries. (b) Varying length of queries. o N of Thiwads
Figure 7: Throughput on lj with number and length of (a) Unbiased/static RW. (b) Dynamic RW.
queries varying. Figure 8: Speedup on [j with number of threads varying.

e Highly scalable with number & length of queries

e Scales almost linearly with number of threads



Summary

e ThunderRW is an in-memory RW engine that leverages inter-query parallelism by
first assigning different queries to different cores and then interleaving the steps
of queries assigned to the same core to hide memory latency

e Possible future work: dynamic load adjustment



