
ThunderRW: An In-Memory
Graph Random Walk Engine

By: Shixuan Sun, Yuhang Chen, Shengliang Lu, Bingsheng He,
Yuchen Li

Presentation by Yosef E Mihretie

Summary

● Random walk: processing where the next vertex is randomly chosen among
the neighbors of the current vertex

● Observation: upto 75% of CPU slots are stalled due to memory latency

● Observation: As low as 2.3% of memory bandwidth in use

● Intra-query parallelism not possible, look into inter-query parallelism

● ThunderRW: assign multiple queries to each core, a core switches between the
queries to hide memory latency

● Result: upto 3333x faster than baseline, 131.7x faster than other frameworks

Introduction: Random Walks

● e(v, u) selected with probability p(e)

● Some RW algs: Personalized PageRank (PPR), DeepWalk, Node2Vec, MetaPath

● Unbiased vs Biased RWs: the probability distribution is uniform vs not

● Static vs Dynamic RWs: the probability distribution known before vs after execution

● Different sampling methods: NAIVE, ITS, ALIAS, REJ, O-REJ

Previous Work

● Generic graph frameworks don’t take RW workloads into consideration

● C-SAW:
○ For GPU, ITS sampling
○ BSP model as well
○ Not general (PPR and Node2Vec not support for example), high overhead because of ITS

● KnightKing:
○ Distributed, 0-REJ sampling
○ BSP model that moves a step for all queries until done
○ Not generic (doesn’t support MetaPath for instance), suffers from the tail problem

● GraphWalker:
○ External-memory
○ ASP model: assigns queries to each worker and executed independently
○ Limited (only unbiased)

Motivations

● Memory a major bottleneck in RW algorithms

Motivations

● Cost of computing p(e) is dependent on algorithms while sampling is flexible

● ThunderRW targets sampling

Motivations

● Different sampling methods perform differently. Moreover, dynamic RW is generally
slower than static and unbiased RW

● ThunderRW optimizes for static, unbiased and dynamic RWs and it allows multiple
different sampling methods

Model and API

● ThunderRW exploits inter-query parallelism by statically assigning groups of
queries to different workers which work independently

● It follows a step centric model where a step is abstracted into the
Gather-Move-Update operations

Step Interleaving

● ThunderRW targets move operations for memory latency hiding

● Decomposes a move into multiple steps where each step consumes data fetched
by previous steps and fetches data for subsequent steps

● Workers hide memory latency by interleaving steps from different queries

Step Interleaving

● Efficient interleaving requires an efficient switch mechanism and enough workload
for hiding memory latency

● ThunderRW builds and uses a stage dependency graph to make this easy

Experiments: Setup

● Intel Xeon W-2155 CPU with 220GB RAM, 10 physical cores w hyperthreading
disabled for consistency, L1 = 32KB, L2 = 1MB and L3 = 13.75MB

● They run PPR, DeepWalk, Node2Vec and MetaPath algorithms on a variety of
datasets

Experiments: ThunderRW vs Everyone

● Compared ThunderRW to
○ BL: a baseline implementation for in-memory random walks
○ HG: BL + suitable sampling technique selection + each query parallelized in OpenMP
○ GW: GraphWalker executed in-memory
○ KK: KnightKing run on a single machine

Experiments: ThunderRW vs Everyone

● TRW runs 54.6-131.7x faster than GW and 1.7-14.6x faster than KK

● TRW runs 8.6-3333x faster than BL and 6.1x faster than HG

● For MetaPath, the gather stage has more weight and sometimes HG runs faster

Experiments: Evaluating Step Interleaving

● DeepWalk and PPR benefit the most from interleaving. PPR less so because all
queries in PPR issue from a single vertex (are just more optimal to begin with)

● Node2Vec uses binary search in Move, thus makes more random accesses.
MetaPath has the gather step dominating cost. Thus the two see smaller benefits.

Experiments: Evaluating Step Interleaving

● Step Interleaving effective across multiple sampling methods and datasets

● am can fit in the LLC while yt is twice the LLC. eu and uk are dense and thus
have good memory locality. Thus these see lower speedups. Sparse and
large graphs see higher speedups.

Experiments: Scalability Evaluation

● Highly scalable with number & length of queries

● Scales almost linearly with number of threads

Summary

● ThunderRW is an in-memory RW engine that leverages inter-query parallelism by
first assigning different queries to different cores and then interleaving the steps
of queries assigned to the same core to hide memory latency

● Possible future work: dynamic load adjustment

