
Simple Linear Work Suffix Array Construction
Authors: : Juha Kärkkäinen and Peter Sanders

6.827 Paper Presentation

Presenter: Edmund Williams

May 2022

6.827 Paper Presentation (Presenter: Edmund Williams)Simple Linear Work Suffix Array Construction May 2022 1 / 12

Table of Contents

1 Problem Background

2 Simple Suffix Array Algo

3 Contributions

6.827 Paper Presentation (Presenter: Edmund Williams)Simple Linear Work Suffix Array Construction May 2022 2 / 12

Suffix Array Problem

Given a length n string return an array (of length n) where the value
at the ith index is the rank of the n − i long suffix of the given string.

Suffix arrays are more memory efficient alternative to suffix trees, both
are used to solve a number of common string operations e.g. locating
substrings, longest common substring, repetition of substrings etc.

Naive Solution1: Merge sort an array of all the suffices. Worst case is
O(n2log(n), it is usually assumed that comparisons are O(1) but in
this problem comparing to string is proportional to the length of the
string in the worst case. This adds multiplicative factor of O(n)

Naive Solution2: Radix sort an array of all the suffices. Worst case
though is O(n2) due to the suffices being O(n) giving a depth of
O(n).

6.827 Paper Presentation (Presenter: Edmund Williams)Simple Linear Work Suffix Array Construction May 2022 3 / 12

Suffix Array Problem

Given a length n string return an array (of length n) where the value
at the ith index is the rank of the n − i long suffix of the given string.

Suffix arrays are more memory efficient alternative to suffix trees, both
are used to solve a number of common string operations e.g. locating
substrings, longest common substring, repetition of substrings etc.

Naive Solution1: Merge sort an array of all the suffices. Worst case is
O(n2log(n), it is usually assumed that comparisons are O(1) but in
this problem comparing to string is proportional to the length of the
string in the worst case. This adds multiplicative factor of O(n)

Naive Solution2: Radix sort an array of all the suffices. Worst case
though is O(n2) due to the suffices being O(n) giving a depth of
O(n).

6.827 Paper Presentation (Presenter: Edmund Williams)Simple Linear Work Suffix Array Construction May 2022 3 / 12

Suffix Array Problem

Given a length n string return an array (of length n) where the value
at the ith index is the rank of the n − i long suffix of the given string.

Suffix arrays are more memory efficient alternative to suffix trees, both
are used to solve a number of common string operations e.g. locating
substrings, longest common substring, repetition of substrings etc.

Naive Solution1: Merge sort an array of all the suffices. Worst case is
O(n2log(n), it is usually assumed that comparisons are O(1) but in
this problem comparing to string is proportional to the length of the
string in the worst case. This adds multiplicative factor of O(n)

Naive Solution2: Radix sort an array of all the suffices. Worst case
though is O(n2) due to the suffices being O(n) giving a depth of
O(n).

6.827 Paper Presentation (Presenter: Edmund Williams)Simple Linear Work Suffix Array Construction May 2022 3 / 12

Suffix Array Problem

Given a length n string return an array (of length n) where the value
at the ith index is the rank of the n − i long suffix of the given string.

Suffix arrays are more memory efficient alternative to suffix trees, both
are used to solve a number of common string operations e.g. locating
substrings, longest common substring, repetition of substrings etc.

Naive Solution1: Merge sort an array of all the suffices. Worst case is
O(n2log(n), it is usually assumed that comparisons are O(1) but in
this problem comparing to string is proportional to the length of the
string in the worst case. This adds multiplicative factor of O(n)

Naive Solution2: Radix sort an array of all the suffices. Worst case
though is O(n2) due to the suffices being O(n) giving a depth of
O(n).

6.827 Paper Presentation (Presenter: Edmund Williams)Simple Linear Work Suffix Array Construction May 2022 3 / 12

Example Input/Output

Here is an example using
the word = mississippi .
The third row is the
desired output, the values
indicated represent the
starting index of a given
index, and the order of
these values gives the
sorted order of all the
suffices

P =



0 1 2 3 4 5 6 7 8 9 10
m i s s i s s i p p i
10 7 4 1 0 9 8 6 3 5 2
i i i i m p p s s s s

p s s i i p i i s s
p s s s i p s i i
i i s s p s p s

p s i i i p s
p s s p i i
i i s p p

p i i p
p p i
i p

i


6.827 Paper Presentation (Presenter: Edmund Williams)Simple Linear Work Suffix Array Construction May 2022 4 / 12

Previous Work

M. Farach1proposed a divide conquer approach to the problem that
solves suffix arrays in O(n)

High Level Steps

Step 1: Recursively solve the ordering of suffices with only a subset of
them
Step 2: Leveraging the results of step 1 to order the remaining set of
suffices (this step is not to be done recursively)
Step 3: Merge both sets of suffices in O(n)

In Farach’s work the merge step is complicated and is difficult to
implement (this paper didn’t report whether or not Farach’s work is
practically performant)

1M. Farach. Optimal suffix tree construction with large alphabets. In Proc. 38th
Annual Symposium on Foundations of Computer Science, pages 137–143. IEEE, 1997

6.827 Paper Presentation (Presenter: Edmund Williams)Simple Linear Work Suffix Array Construction May 2022 5 / 12

Table of Contents

1 Problem Background

2 Simple Suffix Array Algo

3 Contributions

6.827 Paper Presentation (Presenter: Edmund Williams)Simple Linear Work Suffix Array Construction May 2022 6 / 12

New Algo

The proposed algorithm in this paper has the same high level steps,
but makes modifications to what subsets are recursed on and the the
merge step was significantly simplified.

High Level Steps

Step 1: Recursively order suffices whose length is not divisible by 3 (any
suffix, S , where len(S)mod3! = 0
Step 2: Order all suffices whose length is divisible by 3 using the results of
step 1:
Step 3: Merge all the suffices through a variation of a stable radix sort.

6.827 Paper Presentation (Presenter: Edmund Williams)Simple Linear Work Suffix Array Construction May 2022 7 / 12

Splitting up Suffices

Let Si = s[i : n], the suffix from the ith letter to the end of the given
string s

Core Idea: Si could be rewritten as the pair (s[i],Si+1), enabling the
use of radix sort on these length 2 pairs

For step 2, all Si that has a length of multiple of 3, can be written as
a pair (s[i],Si+1), and all Si+1 will be order already from step 1, so all
Si+1 can compared in constant time since the suffix array already
exists, this avoids the potential O(n) comparison time for length O(n)
suffices. Using this pair idea a radix sort can be applied.

For step 3, is similar to step 2, with the exception of Sj where
len(Sj)mod3 == 2, we rewrite as a triple (s[j], s[j + 1], Sj+2) where
len(Sj+2)mod3 == 1. The triple is important so that Sj can be
compared with something that comes from the suffix array generated
from step 1

6.827 Paper Presentation (Presenter: Edmund Williams)Simple Linear Work Suffix Array Construction May 2022 8 / 12

Splitting up Suffices

Let Si = s[i : n], the suffix from the ith letter to the end of the given
string s

Core Idea: Si could be rewritten as the pair (s[i],Si+1), enabling the
use of radix sort on these length 2 pairs

For step 2, all Si that has a length of multiple of 3, can be written as
a pair (s[i],Si+1), and all Si+1 will be order already from step 1, so all
Si+1 can compared in constant time since the suffix array already
exists, this avoids the potential O(n) comparison time for length O(n)
suffices. Using this pair idea a radix sort can be applied.

For step 3, is similar to step 2, with the exception of Sj where
len(Sj)mod3 == 2, we rewrite as a triple (s[j], s[j + 1], Sj+2) where
len(Sj+2)mod3 == 1. The triple is important so that Sj can be
compared with something that comes from the suffix array generated
from step 1

6.827 Paper Presentation (Presenter: Edmund Williams)Simple Linear Work Suffix Array Construction May 2022 8 / 12

Splitting up Suffices

Let Si = s[i : n], the suffix from the ith letter to the end of the given
string s

Core Idea: Si could be rewritten as the pair (s[i],Si+1), enabling the
use of radix sort on these length 2 pairs

For step 2, all Si that has a length of multiple of 3, can be written as
a pair (s[i],Si+1), and all Si+1 will be order already from step 1, so all
Si+1 can compared in constant time since the suffix array already
exists, this avoids the potential O(n) comparison time for length O(n)
suffices. Using this pair idea a radix sort can be applied.

For step 3, is similar to step 2, with the exception of Sj where
len(Sj)mod3 == 2, we rewrite as a triple (s[j], s[j + 1], Sj+2) where
len(Sj+2)mod3 == 1. The triple is important so that Sj can be
compared with something that comes from the suffix array generated
from step 1

6.827 Paper Presentation (Presenter: Edmund Williams)Simple Linear Work Suffix Array Construction May 2022 8 / 12

Splitting up Suffices

Let Si = s[i : n], the suffix from the ith letter to the end of the given
string s

Core Idea: Si could be rewritten as the pair (s[i],Si+1), enabling the
use of radix sort on these length 2 pairs

For step 2, all Si that has a length of multiple of 3, can be written as
a pair (s[i],Si+1), and all Si+1 will be order already from step 1, so all
Si+1 can compared in constant time since the suffix array already
exists, this avoids the potential O(n) comparison time for length O(n)
suffices. Using this pair idea a radix sort can be applied.

For step 3, is similar to step 2, with the exception of Sj where
len(Sj)mod3 == 2, we rewrite as a triple (s[j], s[j + 1], Sj+2) where
len(Sj+2)mod3 == 1. The triple is important so that Sj can be
compared with something that comes from the suffix array generated
from step 1

6.827 Paper Presentation (Presenter: Edmund Williams)Simple Linear Work Suffix Array Construction May 2022 8 / 12

Step 1, Labeling + Recursion

Goal: Generate a suffix array for all suffices whose length isn’t a
multiple of 3

For all imod3! = 0, let Ti be the triple s[i : i + 2]

Perform radix sort on the set of triples and let ri be the rank of triple
i in the sorted list (note that there can be duplicate triples of the
same rank), and this gives us the free property that if ri < rj then
Ti < Tj (lexicographically)

Let s12 be the concatenation of the array of all ri when imod3 = 1
and the array of all ri when imod3 = 2 (image next slide). Recursing
on s12 yields the desired suffix array. Why?

Note that [Ti ,Ti+3,Ti+6...Tn] has a 1:1 correspondence with the
suffix Si and if we have a suffix array for Ti where imod3! = 0, then
we have a suffix array for Si where imod3! = 0

Note: the purpose of the recursive step is to break ties in between
triples and generating an ordering of suffices that start with the same
triple

6.827 Paper Presentation (Presenter: Edmund Williams)Simple Linear Work Suffix Array Construction May 2022 9 / 12

Step 1, Labeling + Recursion

Goal: Generate a suffix array for all suffices whose length isn’t a
multiple of 3

For all imod3! = 0, let Ti be the triple s[i : i + 2]

Perform radix sort on the set of triples and let ri be the rank of triple
i in the sorted list (note that there can be duplicate triples of the
same rank), and this gives us the free property that if ri < rj then
Ti < Tj (lexicographically)

Let s12 be the concatenation of the array of all ri when imod3 = 1
and the array of all ri when imod3 = 2 (image next slide). Recursing
on s12 yields the desired suffix array. Why?

Note that [Ti ,Ti+3,Ti+6...Tn] has a 1:1 correspondence with the
suffix Si and if we have a suffix array for Ti where imod3! = 0, then
we have a suffix array for Si where imod3! = 0

Note: the purpose of the recursive step is to break ties in between
triples and generating an ordering of suffices that start with the same
triple

6.827 Paper Presentation (Presenter: Edmund Williams)Simple Linear Work Suffix Array Construction May 2022 9 / 12

Step 1, Labeling + Recursion

Goal: Generate a suffix array for all suffices whose length isn’t a
multiple of 3

For all imod3! = 0, let Ti be the triple s[i : i + 2]

Perform radix sort on the set of triples and let ri be the rank of triple
i in the sorted list (note that there can be duplicate triples of the
same rank), and this gives us the free property that if ri < rj then
Ti < Tj (lexicographically)

Let s12 be the concatenation of the array of all ri when imod3 = 1
and the array of all ri when imod3 = 2 (image next slide). Recursing
on s12 yields the desired suffix array. Why?

Note that [Ti ,Ti+3,Ti+6...Tn] has a 1:1 correspondence with the
suffix Si and if we have a suffix array for Ti where imod3! = 0, then
we have a suffix array for Si where imod3! = 0

Note: the purpose of the recursive step is to break ties in between
triples and generating an ordering of suffices that start with the same
triple

6.827 Paper Presentation (Presenter: Edmund Williams)Simple Linear Work Suffix Array Construction May 2022 9 / 12

Step 1, Labeling + Recursion

Goal: Generate a suffix array for all suffices whose length isn’t a
multiple of 3

For all imod3! = 0, let Ti be the triple s[i : i + 2]

Perform radix sort on the set of triples and let ri be the rank of triple
i in the sorted list (note that there can be duplicate triples of the
same rank), and this gives us the free property that if ri < rj then
Ti < Tj (lexicographically)

Let s12 be the concatenation of the array of all ri when imod3 = 1
and the array of all ri when imod3 = 2 (image next slide). Recursing
on s12 yields the desired suffix array. Why?

Note that [Ti ,Ti+3,Ti+6...Tn] has a 1:1 correspondence with the
suffix Si and if we have a suffix array for Ti where imod3! = 0, then
we have a suffix array for Si where imod3! = 0

Note: the purpose of the recursive step is to break ties in between
triples and generating an ordering of suffices that start with the same
triple

6.827 Paper Presentation (Presenter: Edmund Williams)Simple Linear Work Suffix Array Construction May 2022 9 / 12

Walk Through

6.827 Paper Presentation (Presenter: Edmund Williams)Simple Linear Work Suffix Array Construction May 2022 10 / 12

Table of Contents

1 Problem Background

2 Simple Suffix Array Algo

3 Contributions

6.827 Paper Presentation (Presenter: Edmund Williams)Simple Linear Work Suffix Array Construction May 2022 11 / 12

Contributions

Improvements over Farach’s work in regards to simplicity of the
algorithm.

Asymptotic improvements in the BSP and EREW-PRAM models: ”
first linear work BSP algorithm”

Generalization to how large the recursive subproblem should be for
this technique to work. Solving that question is a reduction to
difference cover problem.

6.827 Paper Presentation (Presenter: Edmund Williams)Simple Linear Work Suffix Array Construction May 2022 12 / 12

	Problem Background
	Simple Suffix Array Algo
	Contributions

