Direction-Optimizing Breadth-First Search (BFS) Beamer, et. al., IEEE (2012)

Andrew Feldman 2/8/22

Background

- 2010s early social media & post-Twitter "era"
- Energized the study of network effects and social networks
- Watts, et. al. (1998) social networks are "small worlds"
 - Short diameter "6 degrees of Kevin Bacon", "Erdos number"
 - Diameter grows as log(n), where n is node-count
- Barabasi, et. al. (1999) degree distribution follows power law
 - Studied probably P(k) of degree-k nodes in random networks
 - "Scale-free" network P(k) \sim k^{- γ}, γ is a statistical parameter of the network
- Kwak, et. al. (2010) Twitter is "small-word"/ "scale-free"
- BFS is a key primitive for graph analytics

Background – existing work on accelerating BFS

- Agarwal, et. al. (2010) bitmap caching, communication optimizations for latency-hiding on Intel processors & multi-socket platforms
- Buluc, et. al. (2011) Partitioning, parallelism and communication
- Hong, et. al. (2011) frontier-wise hybridization of sequential, multicore & GPU
- Yoo, et. al. (2005) partitioning, memory and communication optimization
- Merrill, et. al. (2012) task & memory management on CPU/GPU
- Chhugani, et. al. (2012) load-balancing, caching, communication

Motivation

- Prior work
 - Spot optimization (bitmap)
 - Platform/architecture-driven
 - CPU vs GPU
 - Approaches to parallelism
- What about workload-driven algorithm engineering?
- Beamer, et. al., Direction-optimizing BFS (2012) algorithm engineering to exploit idiosyncrasies of social networks
 - Especially "small-world" networks

Motivation – BFS on "small world" networks

BFS – iterative frontier expansion

```
function breadth-first-search(vertices, source)
  frontier ← {source}
  next ← {}
  parents ← [-1,-1,...-1]
  while frontier ≠ {} do

  top-down-step(vertices, frontier, next, parents)
  frontier ← next
  next ← {}
  end while
  return tree
```

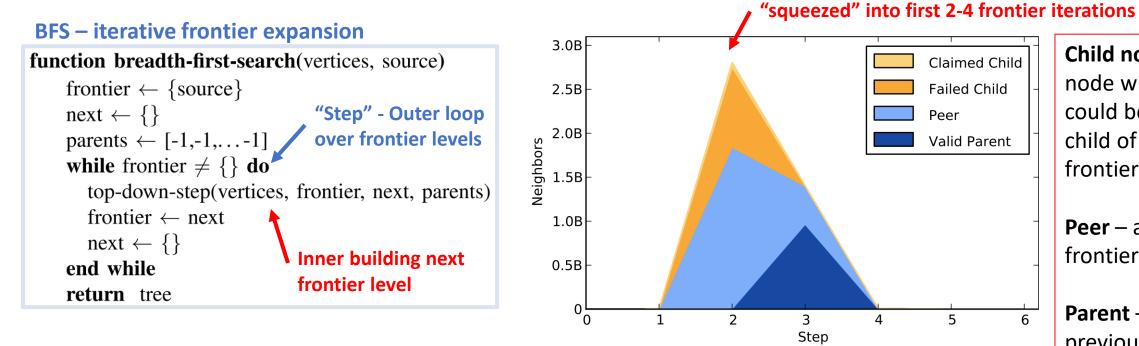
Outer loop over frontier levels – limited by diameter

BFS complexity: O(m+n)

- m edges
- n nodes
- m edges and n nodes will be explored

Explosion of inner loop over frontier edges -

Motivating experiment: top-down BFS



Child node – a node which could be a child of the frontier **Peer** – also in frontier Parent – previous frontier

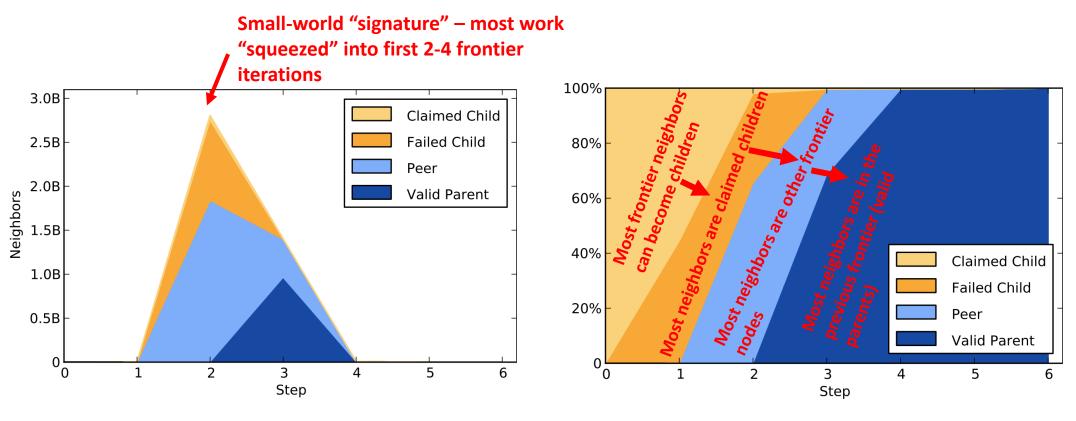
Small-world "signature" – most work

 Absolute breakdown of edge examination work by frontier level (outer-loop step)

Beamer, et. al. Direction-optimized BFS (2012)

- Beamer, et. al. contribution: considers the unique impact of low network diameter on BFS
- Naïve BFS is "top-down", however BFS invariant is "bottom-up"
 - BFS invariant every node in the BFS tree must have a parent
- Modify BFS to exploit a unique observation about edge complexity
 - Theoretical minimum edge examinations is n − 1 (tree topology)
 - Edges do not need to be explored in both directions
- => "Bottom-up" BFS minimize edge exploration iterate over potential frontierNext nodes & find first frontier neighbor to satisfy invariant
 - Minimizing edge exploration is realistic when most nodes are in frontier
 - => Tuning: need to parameterize which frontier levels should use "top-down" vs "bottom-up"

Motivating experiment: top-down BFS



- Absolute & relative breakdown of edge examination work by frontier level (outer-loop step)
- Most edge exploration is unnecessary

Beamer, et. al. Bottom-up BFS

endfunction

```
BU-BFS (vertices, edges, source)
                              parallel-for v in vertices do: //For each node...
                               if parents[v] == -1 do: //If invariant is unsatisfied...
while size(frontier) > 0 do:
                                for n in neighbors[v] do: //Search for frontier neighbor...
 parallel-for v in vertices do:
  if parents[v] == -1 do:
                                  if n in frontier do:
   for n in neighbors[v] do:
    if n in frontier do:
                                    parents[v] <- n //Choose frontier neighbor as parent...</pre>
     parents[v] <- n
     next <- union(next,v)</pre>
                                    next <- union(next,v)</pre>
     break
                                    break //Examine no more neighbors!
    endif
   endfor
                                  endif
  endif
 endfor
                                 endfor
                               endif
endwhile
                              endfor
```

Performance comparison

"Top-down" BFS

TD-BFS (vertices, edges, source)

while size(frontier) > 0 do:

prefix-sum on degree array (not shown) parallel-for v in frontier do: parallel-for n in neighbors[v] do: if parents[n] == -1 do: parents[n] <- v //atomic</pre> next <- union(next,n)</pre> endif

filter on frontierNext array (not shown)

endwhile

endfor

endfor

"Bottom-up" BFS

BU-BFS (vertices, edges, source)

next <- union(next,v)</pre>

break

endif

endfor

Asymptotic sequential

complexity: Max iterations == while size(frontier) > 0 do: graph diameter

parallel-for v in vertices do: O(m+n)Worst-case: all if parents[v] == -1 do:

nodes for n in neighbors[v] do: **Span:** $O(\Delta(\log m))$

Worst-case: all if n in frontier do: Work: O(m+n) parents[v] <- n neighbors

Run-time: (serial) $O(m+n + \Delta(\log m))$

Work-efficient: endif

Only if $\Delta(\log m)$ is O(m+n)

endwhile

endfor

Asymptotic sequential complexity:

 $O((m+n)\Delta)$

Span: $O(\Delta(mean_{BES}(max_{kernel}(d))))$

Work:

 $O((m+n)\Delta)$

Run-time:

 $O((m+n)\Delta + \Delta(mean_{BFS}(max_{kernel}(d))))$

Work-efficient:

Only if

 $mean_{RES}(max_{kernel}(d))$ is O(m+n)

endfunction

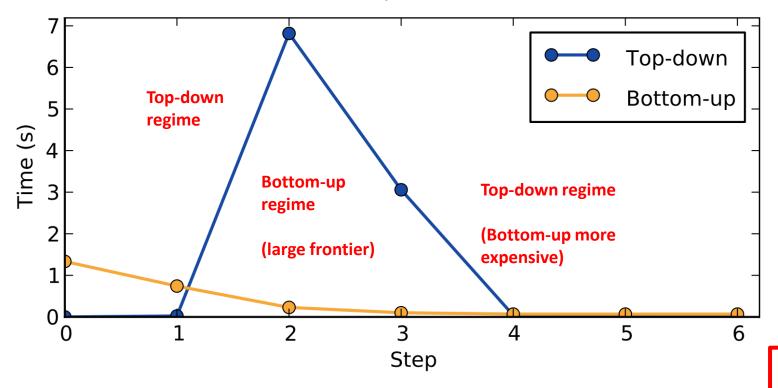
Performance comparison

	TOP-DOWN BFS	BOTTOM-UP BFS	
SEQUENTIAL WORST-CASE	O(m+n)	O((m+n)Δ)	
ASYMPTOTIC PERFORMANCE		O((m+n)log n)	
PARALLEL WORST-CASE	O(m+n)	$O((m+n)\Delta)$	
ASYMPTOTIC WORK		O((m+n)log n)	
PARALLEL WORST-CASE	O(Δ(log m))	$O(\Delta(mean_{BFS}(max_{kernel}(d))))$	
ASYMPTOTIC SPAN	O((log n)(log m))	O((m+n)log n)	
PARALLEL WORST-CASE	$O(m+n + \Delta(log m))$	$O((m+n)\Delta + \Delta(mean_{BFS}(max_{kernel}(d))))$	
ASYMPTOTIC RUN-TIME	O(m+n)	O((m+n)(log n))	
WORK EFFICIENT?	Ambiguous	Ambiguous	
	Yes	Yes	
BETTER ASYMPTOTIC RUN-	Better	Worse	
TIME, MAKING ASSUMPTIONS			
ABOUT Δ AND D?			

Above: a comparison of top-down and bottom-up BFS, in terms of asymptotic worst-case sequential and parallel complexity. Values in red assume $\Delta = O(\log n)$ (Watts, et. al. (1998)) and mean_{BFS}(max_{kernel}(d)) = O(m+n) or better.

These are asymptotics

Hybrid BFS motivating experiment: Top-down vs bottom-up for BFS

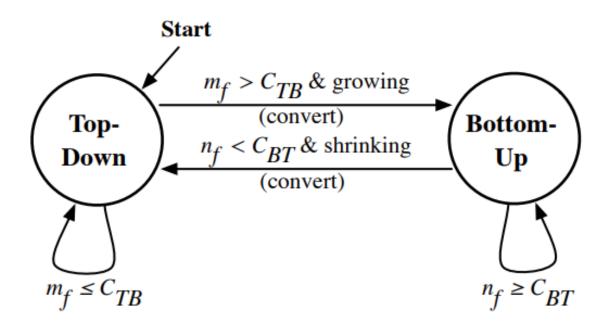


No one-size-fits-all!

Need a way to choose...

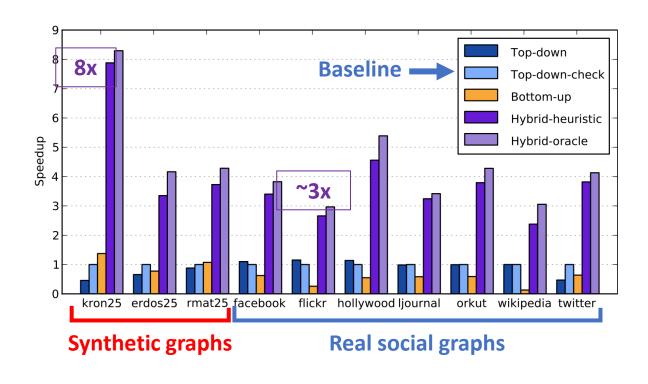
Bottom-up vs top-down BFS – comparative run-time by frontier level

Hybrid-heuristic BFS



- Heuristic
 - Switch from top-down to bottom-up: $m_f > \frac{m_u}{\alpha} = C_{TB}$ Large frontier
 - Switch from bottom-up to top-down: $n_f < \frac{n}{\beta} = C_{BT}$ Early/late small frontier
 - Number of edges to check from the frontier (mf)
 - Number of frontier vertices (nf)
 - Number of edges to check from unexplored vertices (mu)

Experiment (real & synthetic data)



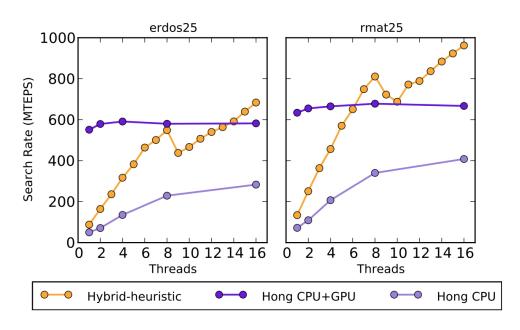
 Speed-up results from avoiding edge examinations

- Significant hybrid-BFS speed-up (3x 8x)
- Hybrid-BFS benefit dwarves tuning error <25% tuning penalty
- Bottom-up alone is scarcely more than 1x, sometimes worse
- Comparison: Hybrid heuristic, hybrid-oracle, top-down(-check), bottom-up
- Workloads: synthetic graphs, real social graphs (Facebook, Flickr, ...)
- Testbench: 16-cores 2x sockets, each an 8-core (2 thread/core) Intel Sandy Bridge processor @2.7GHz + 20MB LLC, 128GB DRAM

Comparing against prior results

- State-of-the-art prior results
 - Chhugani, et. al. (2012) load-balancing, caching, communication
 - Hong, et. al. (2011) frontier-wise hybridization of sequential, multi-core &
 GPU

Experiment (against prior results)



	rmat-8	rmat-32	erdos-8	erdos-32	orkut	facebook
Prior	750	1100	590	1010	2050	920
8-core	1580	4630	850	2250	4690	1360

TABLE III

PERFORMANCE IN MTEPS OF *Hybrid-heuristic* ON THE 8-CORE SYSTEM COMPARED TO CHHUGANI ET AL. [10]. SYNTHETIC GRAPHS ARE ALL 16M VERTICES, AND THE LAST NUMBER IN THE NAME IS THE DEGREE.

Fig. 16. Search rates on the 8-core system on erdos25 (Uniform Random with 32M vertices and 256M edges) and rmat25 (RMAT with 32M vertices and 256M edges). Other lines from Hong et al. [15]

- Comparison against Hong. et. al. and Chhugani et. al.
- Testbench: 8-cores 2x sockets, each an 4-core (2 thread/core) Intel Nehalem-EP processor @2.67GHz + 8MB LLC, 12GB DRAM
- ≥2x speed-up

Comparing against prior results

- State-of-the art GPU result
 - Merrill, et. al. (2012) task & memory management on CPU/GPU

Experiment (against prior results)

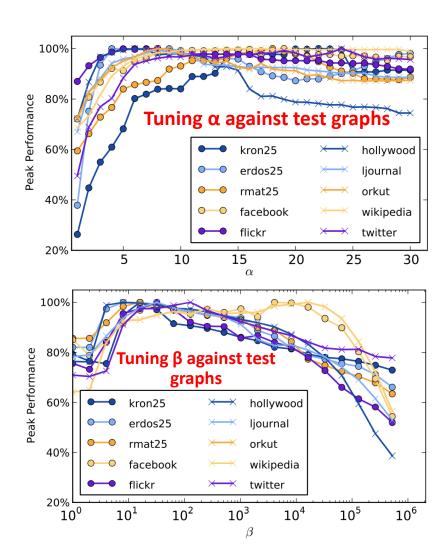
	kron_	random.	rmat.				
System	g500-logn20	2Mv.128Me	2Mv.128Me				
GPU results from Merrill et al. [20]							
Single-GPU	1.25	2.40	2.60				
Quad-GPU	3.10	7.40	8.30				
Hybrid-heuristic results on multicore							
8-core	7.76	6.75	6.14				
16-core	12.38	12.61	10.45				
40-core	8.89	9.01	7.14				

TABLE IV

Hybrid-heuristic ON MULTICORE SYSTEMS IN THIS STUDY COMPARED TO GPU RESULTS FROM MERRILL ET AL. [20] (IN GTEPS).

- Comparison against Hong. et. al. and Chhugani et. al.
- Testbench: 8-cores 2x sockets, each an 4-core (2 thread/core) Intel Nehalem-EP processor @2.67GHz + 8MB LLC, 12GB DRAM
- ≥2x speed-up

Experiment (parameter tuning)



 Limited sensitivity to parameter tuning

Conclusion

- Strengths by saving on edge examinations, bottom-up BFS outperforms Top-down BFS during the frontier step which encompasses most of the graph.
- One weakness of Bottom-up BFS is that it can be substantially less performant than Top-down BFS,
 - Due to the linear complexity and potentially non-trivial span of the bottom-up BFS kernel
 - Runtime: $O((m+n)\Delta + \Delta(mean_{BFS}(max_{kernel}(d))))$

Conclusion

- => Direction-optimized BFS rests heavily on the tuning of the topdown/bottom-up cross-over heuristic
 - The authors demonstrate that hybrid-heuristic BFS performance is not highly-sensitive to tuning parameters
 - Empirically, the hybrid-BFS speed-up dwarves tuning loss, for tuning methodology employed in this work
- Novel result prior work is focused on spot-optimizations; Beamer,
 et. al. re-engineering BFS for actually-existing social graph topologies
 - Using application to inform design & experimentation good AE discipline!
 - Simple & platform independent!

Conclusion

Directions for future work

- Real-world graph degree scaling
- Real-world graph diameter scaling
- Parallelizing the bottom-up "parent search" inner loop
- Maximizing generalizability for tuning parameters
 - Statistical regularization

Discussion questions

- What if the network isn't scale-invariant? What is the impact of scale-invariance on data parallelism
- How would DO BFS handle workloads which do not match its design assumptions?
- Impact of changing workloads?
- How to efficiently model scale-invariance?