Direction-Optimizing Breadth-
First Search (BFS)
Beamer, et. al., IEEE (2012)

Andrew Feldman
2/8/22

Background

e 2010s - early social media & post-Twitter “era”
* Energized the study of network effects and social networks
* Watts, et. al. (1998) — social networks are “small worlds”

1/ {

* Short diameter — “6 degrees of Kevin Bacon”, “Erdos number”
* Diameter grows as log(n), where n is node-count

e Barabasi, et. al. (1999) — degree distribution follows power law
 Studied probably P(k) of degree-k nodes in random networks
» “Scale-free” network — P(k) ~ kY, y is a statistical parameter of the network

» Kwak, et. al. (2010) — Twitter is “small-word”/ “scale-free”
* BFS is a key primitive for graph analytics

Background — existing work on accelerating
BFS

e Agarwal, et. al. (2010) — bitmap caching, communication
optimizations for latency-hiding on Intel processors & multi-socket
platforms

* Buluc, et. al. (2011) — Partitioning, parallelism and communication

* Hong, et. al. (2011) — frontier-wise hybridization of sequential, multi-
core & GPU

* Yoo, et. al. (2005) — partitioning, memory and communication
optimization

* Merrill, et. al. (2012) — task & memory management on CPU/GPU
* Chhugani, et. al. (2012) — load-balancing, caching, communication

Motivation

* Prior work —
e Spot optimization (bitmap)
e Platform/architecture-driven
* CPU vs GPU
* Approaches to parallelism

 What about workload-driven algorithm engineering?

* Beamer, et. al., Direction-optimizing BFS (2012) - algorithm
engineering to exploit idiosyncrasies of social networks
* Especially — “small-world” networks

Motivation — BFS on “small world” networks

BFS — iterative frontier expansion Outer loop over frontier levels — limited by diameter

function breadth-first-search(vertices, source)
frontier <— {source}
next < {}
parents < [-1,-1,...-1]
while frontier # {} do
top-down-step(vertices, frontier, next, parents)
frontier < next T

BFS complexity: O(m+n)

* m edges

* nnodes

* m edges and n nodes will be explored

next < {} . ' .
end while Explosion of inner loop over frontier edges -
return tree function top-down-step(vertices, frontier, next, parents)

for v € frontier do
for n € neighbors[v] do
if parents[n] = -1 then
parents[n] < v
next < next U {n}
end if
end for
end for

Motivating experiment: top-down BFS

Small-world “signature” — most work
/ “squeezed” into first 2-4 frontier iterations

BFS - iterative frontier expansion
function breadth-first-search(vertices, source)

frontier «— {source}

next < {}

parents < [-1,-1,...-1]

while frontier # {} do
top-down-step(vertices, frontier, next, parents)
frontier <— next
next < {}

end while

return tree

“Step” - Outer loop
over frontier levels

\ Inner building next
frontier level

* Absolute breakdown of edge examination work by frontier level

(outer-loop step)

Neighbors

3.0B

2.5B

2.0B

1.5B

1.0B

0.5B

2 3
Step

Claimed Child
Failed Child
Peer

Valid Parent

Child node —a
node which
could be a
child of the
frontier

Peer—alsoin
frontier

Parent —
previous
frontier

Beamer, et. al. Direction-optimized BFS (2012)

* Beamer, et. al. contribution: considers the unique impact of low network
diameter on BFS

* Naive BFS is “top-down”, however BFS invariant is “bottom-up”
* BFS invariant — every node in the BFS tree must have a parent

* Modify BFS to exploit a unique observation about edge complexity
e Theoretical minimum edge examinations is n —1 (tree topology)
* Edges do not need to be explored in both directions

e => “Bottom-up” BFS — minimize edge exploration — iterate over potential
frontierNext nodes & find first frontier neighbor to satisfy invariant
* Minimizing edge exploration is realistic when most nodes are in frontier

e =>Tuning: need to parameterize which frontier levels should use “top-down” vs
“bottom-up”

Neighbors

Motivating experiment: top-down BFS

Small-world “signature” — most work
“squeezed” into first 2-4 frontier

/ iterations L00%
3.08F ' 4 ' ' o 12 =
1 claimed Child :cé’ - S
2.5B| [Failed Child |- 80% | &S s
.}
0 peer S5 /& >
2.08} . . S oS S &
) B \alid Parent 60% oc E‘” 3 3'
& 9 > o
Q Q (N
1.5B} 5 & o o0
40%F £ < L o -
S o o <o Claimed Child
l.OB- :QQ as
2 > Failed Child
o | (] <
0.5B} 20% ; OZ," & Peer
§° § cob Valid Parent
O 1 1 | | | | L
0 1 2 3 4 5 6 % 1 2 3 4 5 6
Step Step

* Absolute & relative breakdown of edge examination work by frontier level
(outer-loop step)

* Most edge exploration is unnecessary

Beamer, et. al. Bottom-up BFS

BU-BFS (vertices, edges, source)

parallel-for v in vertices do: //For each node...

while size(frontier) > 0 do: if parents[v] == -1 do: //If invariant is unsatisfied...
parallel-for v in vertices do: for n in neighbors[v] do: //Search for frontier neighbor..
if parents[v] == -1 do:
for n in neighbors[v] do: if n in frontier do:

if n in frontier do:

—p parents[v] <- n //Choose frontier neighbor as parent...

parents[v] <- n

next <- union(next,v) next <- union(nEXt,V)
break
endif break //Examine no more neighbors!
endfor .
endif endlf
endfor endfor
endwhile endif

endfunction endfor

Performance comparison

* “Top-down” BFS

TD-BFS (vertices, edges, source)

while size(frontier) > 0 do:

prefix-sum on degree array (not shown)
parallel-for v in frontier do:
parallel-for n in neighbors[v] do:
if parents[n] == -1 do:
parents[n] <- v //atomic
next <- union(next,n)
endif
endfor
filter on frontierNext array (not shown)

endfor
endwhile

endfunction

e “Bottom-up” BFS

BU-BFS (vertices, edges, source)

Asymptotic sequential

compIeXIty: Max iterations == while size(frontier) > 0 do:
graph diameter
parallel-for v in vertices do:
O(m+n) Worst-case: all

if parents[v] == -1 do:
nodes
for n in neighbors[v] do:

Span: O(A(log m))
Work: O(m+n)

if n in frontier do:
Worst-case: all

parents[v] <-n

neighbors

Run'time: (seriaI) next <- union(next,v)
O(m+n + A(log m)) reak

endif

endfor
Work-efficient: endif
Only if A(log m) is O(m+n) endfor

endwhile

endfunction

Asymptotic sequential complexity:
O((m+n)A)

Span: O(A(meang.(MaX,. e /(d))))
Work:

O((m+n)A)

Run-time:

O((m+n)A + A(meangg(MaX . e (d))))

Work-efficient:
Only if
mean;es(MaX,. e (d)) is O(m+n)

Performance comparison

. | TOP-DOWNBFS ___ [BOTTOM-UPBFS
SEQUENTIAL WORST-CASE O(m+n) O((m+n)A)

ASYMPTOTIC PERFORMANCE O((m+n)log n)

PARALLEL WORST-CASE O(m+n) O((m+n)A)

ASYMPTOTIC WORK O((m+n)log n)

PARALLEL WORST-CASE O(A(log m)) O(A(meanggs(mMaXx,emei(d))))

ASYMPTOTIC SPAN O((log n)(log m)) O((m+n)log n)

PARALLEL WORST-CASE O(m+n + A(log m)) O((m+n)A + A(meanggs(MaX,qrme(d))))
ASYMPTOTIC RUN-TIME O(m+n) O((m+n)(log n))

WORK EFFICIENT? Ambiguous Ambiguous
Yes Yes

BETTER ASYMPTOTIC RUN- Better Worse
TIME, MAKING ASSUMPTIONS
ABOUT A AND D?

Above: a comparison of top-down and bottom-up BFS, in
terms of asymptotic worst-case sequential and parallel
complexity. Values in red assume A = O(log n) (Watts, et. al.
(1998)) and meang.(maXx,./(d)) = O(m+n) or better.

These are asymptotics

Hybrid BFS motivating experiment:
Top-down vs bottom-up for BFS

7F -
ol ®—® Top-down ||
sl Top-down O—0O Bottom-up |_
. regime
'}_nr 4 F 7]
v
£ 3+ Bottom-up Top-down regime -
= regime
p)) (Bottom-up more 7]
S (large frontier) expensive)
1 B O b
) 4 > o 6
0 1 2 3 4 5 6
Step No one-size-fits-all!

Need a way to choose...

* Bottom-up vs top-down BFS — comparative run-time by frontier level

Hybrid-heuristic BFS AT —

Start

- >
Top- {1Lnnvert) o Bottom-
Down g ng < Cpp & shrinking Up
(convert)
m}(< Hf =>C BT

 Heuristic

g,
Switch from top-down to bottom-up: mys > ? = Cre Large frontier

Switch from bottom-up to top-down: "¢ "i =CBr Early/late small

frontier
Number of edges to check from the frontier (mf)

Number of frontier vertices (nf)
Number of edges to check from unexplored vertices (mu)

Experiment (real & synthetic data)

0
|

- Baseline ==p

I I)

Top-down
Top-down-check

Bottom-up

Hybrid-heuristic |7

Hybrid-oracle

kron25 erdos25 rmat25liacebook flickr hollywood ljournal orkut wikipedia twitter

Synthetic graphs

Real social graphs

Speed-up results
from avoiding edge
examinations

* Comparison: Hybrid heuristic, hybrid-oracle, top-down(-check), bottom-up

* Workloads: synthetic graphs, real social graphs (Facebook, Flickr,

o)

* Significant hybrid-BFS speed-up (3x — 8x)

* Hybrid-BFS benefit dwarves tuning error - <25%
tuning penalty

* Bottom-up alone is scarcely more than 1x,
sometimes worse

» Testbench: 16-cores — 2x sockets, each an 8-core (2 thread/core) Intel Sandy Bridge processor @2.7GHz + 20MB LLC, 128GB DRAM

Comparing against prior results

 State-of-the-art prior results
e Chhugani, et. al. (2012) — load-balancing, caching, communication

* Hong, et. al. (2011) — frontier-wise hybridization of sequential, multi-core &
GPU

Experiment (against prior results)

erdos25 rmat25

1000 o3 rmat-8 | rmat-32 | erdos-8 | erdos-32 | orkut | facebook
o0l 11 . OOOO | Prior 750 1100 590 1010 | 2050 920
E o # @ 8-core 1580 4630 850 2250 4690 1360

@) r. 7 ¢
s et [¢ ‘ TABLE 111
£ 4000 o °° S ol PERFORMANCE IN MTEPS OF Hybrid-heuristic ON THE 8-CORE SYSTEM
5 o o o COMPARED TO CHHUGANI ET AL. [10]. SYNTHETIC GRAPHS ARE ALL
% 200} OOO © | —OO o - 16M VERTICES, AND THE LAST NUMBER IN THE NAME IS THE DEGREE.
Se o®
% 2 4 6 810121416 0 2 4 6 8 10121416
Threads Threads
©—0 Hybrid-heuristic ®—® Hong CPU+GPU ©—©@ Hong CPU

Fig. 16. Search rates on the 8-core system on erdos25 (Uniform Random
with 32M vertices and 256M edges) and rmat25 (RMAT with 32M vertices
and 256M edges). Other lines from Hong et al. [15]

 Comparison against Hong. et. al. and Chhugani et. al

* Testbench: 8-cores — 2x sockets, each an 4-core (2 thread/core) Intel Nehalem-EP
processor @2.67GHz + 8MB LLC, 12GB DRAM

e >2x speed-up

Comparing against prior results

 State-of-the art GPU result
* Merrill, et. al. (2012) — task & memory management on CPU/GPU

Experime

Hybrid-heuristic ON MULTICORE SYSTEMS IN THIS STUDY COMPARED TO

Nt (against prior results)
kron_ random. rmat.
System 2500-logn20 | 2Mv.128Me | 2Mv.128Me
GPU results from Merrill et al. [20]
Single-GPU 1.25 2.40 2.60
Quad-GPU 3.10 7.40 8.30
Hybrid-heuristic results on multicore
8-core 7.76 6.75 6.14
16-core 12.38 12.61 10.45
40-core 8.89 9.01 7.14
TABLE 1V

GPU RESULTS FROM MERRILL ET AL. [20] (IN GTEPS).

 Comparison against Hong. et. al. and Chhugani et. al

* Testbench: 8-cores — 2x sockets, each an 4-core (2 thread/core) Intel Nehalem-EP

processor @2.67GHz + 8MB LLC, 12GB DRAM

e >2x speed-up

Peak Performance

Peak Performance

Experiment (parameter tuning

100% = ¥ 5
80% b
Tuning a against test graphs
60% ®—® kron25 »*—> hollywood |
©—0 erdos25 ljournal
O—0 rmat25 orkut
40% -
O O facebook wikipedia
®—@® flickr < twitter
200/ | 1 1 1 1
’ 5 10 15 20 25 30
«@
100%| I I I ”_‘;I o I B
e o] X
o 4 3
80% h : : .
Tunlng ﬁ agalnst test
graphs
60% | ®—@ kron25 »—* hollywood h
O—0 erdos25 ljournal
©—0 rmat25 orkut
40% b
O O facebook wikipedia
—@® flickr < twitter
20% 0 I1 I2 I3 I4 ‘5 I6
10 10 10 10 10 10 10

* Limited sensitivity to parameter

tuning

Conclusion

* Strengths — by saving on edge examinations, bottom-up BFS
outperforms Top-down BFS during the frontier step which
encompasses most of the graph.

* One weakness of Bottom-up BFS is that it can be substantially less
performant than Top-down BFS,

* Due to the linear complexity and potentially non-trivial span of the bottom-up
BFS kernel

* Runtime: O((m+n)A + A(meange(max,.,./(d))))

Conclusion

e => Direction-optimized BFS rests heavily on the tuning of the top-
down/bottom-up cross-over heuristic

* The authors demonstrate that hybrid-heuristic BFS performance is
not highly-sensitive to tuning parameters

* Empirically, the hybrid-BFS speed-up dwarves tuning loss, for
tuning methodology employed in this work
* Novel result — prior work is focused on spot-optimizations; Beamer,
et. al. re-engineering BFS for actually-existing social graph topologies
e Using application to inform design & experimentation — good AE
discipline!
e Simple & platform independent!

Conclusion

Directions for future work

* Real-world graph degree scaling

* Real-world graph diameter scaling

* Parallelizing the bottom-up “parent search” inner loop

* Maximizing generalizability for tuning parameters
* Statistical regularization

Discussion guestions

* What if the network isn’t scale-invariant? What is the impact of scale-
invariance on data parallelism

* How would DO BFS handle workloads which do not match its design
assumptions?

* Impact of changing workloads?
* How to efficiently model scale-invariance?

