
Direction-Optimizing Breadth-
First Search (BFS)

Beamer, et. al., IEEE (2012)
Andrew Feldman

2/8/22



Background

• 2010s - early social media & post-Twitter “era”

• Energized the study of network effects and social networks

• Watts, et. al. (1998) – social networks are “small worlds”
• Short diameter – “6 degrees of Kevin Bacon”, “Erdos number”

• Diameter grows as log(n), where n is node-count

• Barabasi, et. al. (1999) – degree distribution follows power law
• Studied probably P(k) of degree-k nodes in random networks

• “Scale-free” network – P(k) ~ k-γ, γ is a statistical parameter of the network

• Kwak, et. al. (2010) – Twitter is “small-word”/ “scale-free”

• BFS is a key primitive for graph analytics



Background – existing work on accelerating 
BFS
• Agarwal, et. al. (2010) – bitmap caching, communication 

optimizations for latency-hiding on Intel processors & multi-socket 
platforms 

• Buluc, et. al. (2011) – Partitioning, parallelism and communication

• Hong, et. al. (2011) – frontier-wise hybridization of sequential, multi-
core & GPU 

• Yoo, et. al. (2005) – partitioning, memory and communication 
optimization

• Merrill, et. al. (2012) – task & memory management on CPU/GPU

• Chhugani, et. al. (2012) – load-balancing, caching, communication



Motivation

• Prior work –
• Spot optimization (bitmap)

• Platform/architecture-driven

• CPU vs GPU

• Approaches to parallelism

• What about workload-driven algorithm engineering? 

• Beamer, et. al., Direction-optimizing BFS (2012) - algorithm 
engineering to exploit idiosyncrasies of social networks
• Especially – “small-world” networks



Motivation – BFS on “small world” networks

BFS – iterative frontier expansion

Explosion of inner loop over frontier edges -

Outer loop over frontier levels – limited by diameter

BFS complexity: O(m+n)
• m edges
• n nodes
• m edges and n nodes will be explored



Motivating experiment: top-down BFS

• Absolute breakdown of edge examination work by frontier level
(outer-loop step)

BFS – iterative frontier expansion

“Step” - Outer loop 
over frontier levels

Inner building next 
frontier level

Small-world “signature” – most work 
“squeezed” into first 2-4 frontier iterations

Child node – a 
node which 
could be a 
child of the 
frontier

Peer – also in 
frontier

Parent –
previous 
frontier



Beamer, et. al. Direction-optimized BFS (2012)

• Beamer, et. al. contribution: considers the unique impact of low network 
diameter on BFS

• Naïve BFS is “top-down”, however BFS invariant is “bottom-up”
• BFS invariant – every node in the BFS tree must have a parent

• Modify BFS to exploit a unique observation about edge complexity
• Theoretical minimum edge examinations is n – 1 (tree topology)

• Edges do not need to be explored in both directions

• => “Bottom-up” BFS – minimize edge exploration – iterate over potential 
frontierNext nodes & find first frontier neighbor to satisfy invariant
• Minimizing edge exploration is realistic when most nodes are in frontier

• => Tuning: need to parameterize which frontier levels should use “top-down” vs 
“bottom-up”



Motivating experiment: top-down BFS

• Absolute & relative breakdown of edge examination work by frontier level
(outer-loop step)

• Most edge exploration is unnecessary

Small-world “signature” – most work 
“squeezed” into first 2-4 frontier 
iterations



Beamer, et. al. Bottom-up BFS
BU-BFS (vertices, edges, source)

while size(frontier) > 0 do:

parallel-for v in vertices do:

if parents[v] == -1 do:

for n in neighbors[v] do:

if n in frontier do:

parents[v] <- n

next <- union(next,v)

break

endif

endfor

endif

endfor

endwhile

endfunction

parallel-for v in vertices do: //For each node…

if parents[v] == -1 do: //If invariant is unsatisfied…

for n in neighbors[v] do: //Search for frontier neighbor..

if n in frontier do:

parents[v] <- n //Choose frontier neighbor as parent…

next <- union(next,v)

break //Examine no more neighbors!

endif

endfor

endif

endfor



Performance comparison

• “Top-down” BFS • “Bottom-up” BFS
TD-BFS (vertices, edges, source)

while size(frontier) > 0 do:

prefix-sum on degree array (not shown)

parallel-for v in frontier do:

parallel-for n in neighbors[v] do:

if parents[n] == -1 do:

parents[n] <- v //atomic

next <- union(next,n)

endif

endfor

filter on frontierNext array (not shown)

endfor

endwhile

endfunction

BU-BFS (vertices, edges, source)

while size(frontier) > 0 do:

parallel-for v in vertices do:

if parents[v] == -1 do:

for n in neighbors[v] do:

if n in frontier do:

parents[v] <- n

next <- union(next,v)

break

endif

endfor

endif

endfor

endwhile

endfunction

Asymptotic sequential 
complexity:

O(m+n)

Span: O(Δ(log m))
Work: O(m+n)
Run-time:
O(m+n + Δ(log m))

Work-efficient:
Only if Δ(log m) is O(m+n)

Asymptotic sequential complexity:

O((m+n)Δ)

Span: O(Δ(meanBFS(maxkernel(d))))
Work:
O((m+n)Δ)

Run-time:
O((m+n)Δ + Δ(meanBFS(maxkernel(d))))

Work-efficient:
Only if
meanBFS(maxkernel(d)) is O(m+n) 

Worst-case: all 
neighbors
(serial)

Worst-case: all
nodes

Max iterations == 
graph diameter



Performance comparison
TOP-DOWN BFS BOTTOM-UP BFS

SEQUENTIAL WORST-CASE 

ASYMPTOTIC PERFORMANCE

O(m+n) O((m+n)Δ)

O((m+n)log n)
PARALLEL WORST-CASE 

ASYMPTOTIC WORK

O(m+n) O((m+n)Δ)

O((m+n)log n)
PARALLEL WORST-CASE 

ASYMPTOTIC SPAN

O(Δ(log m))

O((log n)(log m))

O(Δ(meanBFS(maxkernel(d))))

O((m+n)log n)
PARALLEL WORST-CASE 

ASYMPTOTIC RUN-TIME

O(m+n + Δ(log m))

O(m+n)

O((m+n)Δ + Δ(meanBFS(maxkernel(d))))

O((m+n)(log n))
WORK EFFICIENT? Ambiguous

Yes

Ambiguous

Yes
BETTER ASYMPTOTIC RUN-

TIME, MAKING ASSUMPTIONS 

ABOUT Δ AND D?

Better Worse

Above: a comparison of top-down and bottom-up BFS, in 

terms of asymptotic worst-case sequential and parallel 

complexity. Values in red assume Δ = O(log n) (Watts, et. al. 

(1998)) and meanBFS(maxkernel(d)) = O(m+n) or better. 

These are asymptotics



Hybrid BFS motivating experiment:
Top-down vs bottom-up for BFS

• Bottom-up vs top-down BFS – comparative run-time by frontier level

Top-down 
regime

Top-down regime

(Bottom-up more 
expensive)

Bottom-up 
regime

(large frontier)

No one-size-fits-all!

Need a way to choose…



Hybrid-heuristic BFS

• Heuristic
• Switch from top-down to bottom-up:

• Switch from bottom-up to top-down:

• Number of edges to check from the frontier (mf)

• Number of frontier vertices (nf)

• Number of edges to check from unexplored vertices (mu)

Large frontier

Early/late small 
frontier



Experiment (real & synthetic data)

• Comparison: Hybrid heuristic, hybrid-oracle, top-down(-check), bottom-up

• Workloads: synthetic graphs, real social graphs (Facebook, Flickr, …)

• Testbench: 16-cores – 2x sockets, each an 8-core (2 thread/core) Intel Sandy Bridge processor @2.7GHz + 20MB LLC, 128GB DRAM 

Synthetic graphs Real social graphs

Baseline

~3x

8x

• Significant hybrid-BFS speed-up (3x – 8x)

• Hybrid-BFS benefit dwarves tuning error - <25% 
tuning penalty

• Bottom-up alone is scarcely more than 1x, 
sometimes worse

• Speed-up results 
from avoiding edge 
examinations 



Comparing against prior results

• State-of-the-art prior results
• Chhugani, et. al. (2012) – load-balancing, caching, communication

• Hong, et. al. (2011) – frontier-wise hybridization of sequential, multi-core & 
GPU 



Experiment (against prior results)

• Comparison against Hong. et. al. and Chhugani et. al

• Testbench: 8-cores – 2x sockets, each an 4-core (2 thread/core) Intel Nehalem-EP 
processor @2.67GHz + 8MB LLC, 12GB DRAM 

• ≥2x speed-up



Comparing against prior results

• State-of-the art GPU result
• Merrill, et. al. (2012) – task & memory management on CPU/GPU



Experiment (against prior results)

• Comparison against Hong. et. al. and Chhugani et. al

• Testbench: 8-cores – 2x sockets, each an 4-core (2 thread/core) Intel Nehalem-EP 
processor @2.67GHz + 8MB LLC, 12GB DRAM 

• ≥2x speed-up



Experiment (parameter tuning)

Tuning α against test graphs

Tuning β against test 
graphs

• Limited sensitivity to parameter 
tuning



Conclusion

• Strengths – by saving on edge examinations, bottom-up BFS 
outperforms Top-down BFS during the frontier step which 
encompasses most of the graph. 

• One weakness of Bottom-up BFS is that it can be substantially less 
performant than Top-down BFS, 
• Due to the linear complexity and potentially non-trivial span of the bottom-up 

BFS kernel

• Runtime: O((m+n)Δ + Δ(meanBFS(maxkernel(d))))



Conclusion

• => Direction-optimized BFS rests heavily on the tuning of the top-
down/bottom-up cross-over heuristic

• The authors demonstrate that hybrid-heuristic BFS performance is 
not highly-sensitive to tuning parameters

• Empirically, the hybrid-BFS speed-up dwarves tuning loss, for 
tuning methodology employed in this work

• Novel result – prior work is focused on spot-optimizations; Beamer, 
et. al. re-engineering BFS for actually-existing social graph topologies

• Using application to inform design & experimentation – good AE 
discipline!

• Simple & platform independent!



Conclusion

Directions for future work

• Real-world graph degree scaling

• Real-world graph diameter scaling

• Parallelizing the bottom-up “parent search” inner loop

• Maximizing generalizability for tuning parameters
• Statistical regularization



Discussion questions

• What if the network isn’t scale-invariant? What is the impact of scale-
invariance on data parallelism

• How would DO BFS handle workloads which do not match its design 
assumptions?

• Impact of changing workloads?

• How to efficiently model scale-invariance?


