The More the Merrier: Efficient Multi-Source Graph

Traversal

Authors: : Manuel Then, Moritz Kaufmann, et al

6.827 Paper Presentation
Presenter: Edmund WIllliams

February 2022

6.827 Paper Presentation (Presenter: EdmunThe More the Merrier: Efficient Multi-Source February 2022

Table of Contents

© Problem

6.827 Paper Presentation (Presenter: EdmunThe More the Merrier: Efficient Multi-Source

Problem: How To Make BFS Faster

Previous Ideas

@ Parallel BFS implementations

v

A\

6.827 Paper Presentation (Presenter: EdmunThe More the Merrier: Efficient Multi-Source February 2022

Problem: How To Make BFS Faster

Previous Ideas

@ Parallel BFS implementations

@ Bottom-Up approach (Beamer et al.)

v

A\

6.827 Paper Presentation (Presenter: EdmunThe More the Merrier: Efficient Multi-Source February 2022

Problem: How To Make BFS Faster

Previous Ideas

@ Parallel BFS implementations

@ Bottom-Up approach (Beamer et al.)

v

A\

6.827 Paper Presentation (Presenter: EdmunThe More the Merrier: Efficient Multi-Source February 2022

Problem: How To Make BFS Faster

Previous Ideas

@ Parallel BFS implementations

@ Bottom-Up approach (Beamer et al.)

v

@ Most applications require more than a single BFS traversal

A\

6.827 Paper Presentation (Presenter: EdmunThe More the Merrier: Efficient Multi-Source February 2022

Problem: How To Make BFS Faster

Previous Ideas

@ Parallel BFS implementations

@ Bottom-Up approach (Beamer et al.)

v

@ Most applications require more than a single BFS traversal

@ Instead of making one BFS faster, can we make batches of BFS
traversals run faster?

A\

6.827 Paper Presentation (Presenter: EdmunThe More the Merrier: Efficient Multi-Source February 2022

Table of Contents

© Solution Intuition

6.827 Paper Presentation (Presenter: EdmunThe More the Merrier: Efficient Multi-Source

Intuition

e Due to the small-world principle
most real large graphs have a
relatively small diameter compared
to their size. Because of this most
vertices are explored within a few
steps of the BFS traversal.

100% -

Concurrent BFS
Traversals

e Concurrent BFS traversals are likely

have a large overlap of what I H
0% | —— == -

vertices they are exploring within a T T
single step of a BFS traversal. BFS Lovel

Figure 1: Percentage of vertex explorations that can
be shared per level across 512 concurrent BFSs.

Percentage of Vertices
g
®
L

e Is there a way to efficiently store
this overlap instead of each BFS
maintaining their own data
structures?

6.827 Paper Presentation (Presenter: EdmunThe More the Merrier: Efficient Multi-Source

Table of Contents

© Algorithm + walk-through

6.827 Paper Presentation (Presenter: EdmunThe More the Merrier: Efficient Multi-Source February 2022

Multi-Source BFS Algorithm

Listing 2: The MS-BFS algorithm.

1 Input: G,B. S
2 seen,, < {b;} for all b € B
3 wisit %Ubfcﬁ{{{:‘;,{bf})_}
4 wvisitNext +— &
5
6 while visit # @
7 for each v in wisit
8 B, «— @
9 for each (v',B') € visit where v = v
10 B, « B, UB’
11 for each n € neighbors,
12 D « B, \ seen.,
13 ifD+£ o
14 visitNext « visitNext U {(n,D)}
15 seet,, +— seen, JID
16 do BFS computation on n
17 vistt +— visttNext
18 visitNext +— @

6.827 Paper Presentation (Presenter: EdmunThe More the Merrier: Efficient Multi-Source February 2022

Walk-Through

Initial State

seen; = {b}
seens = {ba}

o= {{y b}

6.827 Paper Presentation (Presenter: EdmunThe More the Merrier: Efficient Multi-Source February 2022

Walk-Through

G 1st BFS Level

TN -

o seen; = {b1} seeng = {by, b2}

o o seens = {ba} seeny = {by,ba}
o

)~ ©

B = {,bl:bg}
S = {1,2}

6.827 Paper Presentation (Presenter: EdmunThe More the Merrier: Efficient Multi-Source February 2022

Walk-Through

2nd BFS Level

TN

seeny = {by,ba} seeny = {by, b}
seens = {by,ba} seens = {by, b}
seens = {by,ba} seeng = {b1, b2}
(5,{b1.b2})
(G._ {tin .1')2})

(1, {ba})
(2,{b1})

visit =

6.827 Paper Presentation (Presenter: EdmunThe More the Merrier: Efficient Multi-Source February 2022

Table of Contents

@ Iteration 2, usage of bitmaps

6.827 Paper Presentation (Presenter: EdmunThe More the Merrier: Efficient Multi-Source February 2022

Bitmap Implementation

A short coming of Iteration 1 was the
overhead of runtime in maintaining
the traversal sets (b; €) when
doing set operations. A solution to
this was to this was the usage of
bitmaps that have constant time
operations.

Listing 3: MS-BFS using bit operations.
1 Input: G,B, S
2 for each b; € B
3 seen[s | +— 1 << by

4 visit] 8; | =1 << by

5 reset visitNext

6

7 while visit # @

8 fori=1,...,N

9 if uisit[ux] = Bz, skip

10 for each n € neigh.bars[ug]
11 I + wisit[vs] & ~seen[n]
12 if D # By
13 visitNext[n] < visitNezt[n] | D
14 seen[n| + seen[n| | D
15 do BFS computation on n
16 visit — visitNext
17 reset visitNext

6.827 Paper Presentation (Presenter: EdmunThe More the Merrier: Efficient Multi-Source

February 2022

Table of Contents

© Iteration 3, optimizing cache misses

6.827 Paper Presentation (Presenter: EdmunThe More the Merrier: Efficient Multi-Source February 2022

Cache Optimization

Listing 4: MS-BFS algorithm using ANP.
1 Input: G.B, S
. . . 2 for each b; € B
Many neighbors of a single vertex in 3 .11 <<,
the visit set are the neighbors of 4 it s] —1 <<
5 reset visitNext
other vertices in the visit set. To f;
avoid exploring the same neighbors 8

multiple times (and possibly multiple

while visit # @
fori=1,...,N
if visit[v;] = By, skip
for each n € neighbors|v;]

cache misses for the same vertex) all 1 visitNezt[n] visitNezt[n] | visit[vi]
! 12
neighbors are accumulated first 13 fori=1...N
. . 14 if visitNert[v:] = Be, skip
before eXp|Ol’Ing them and addlng 15 visitNext[v;] visitNezt|v;] & ~seen[vi]
el 16 seen[vi] +— seen(vi] | visitNext|vi]
them to the visitNext set = if visitNest{v] £ B
18 do BFS computation on v;
19 visit +— visitNext
20 reset visitNext

6.827 Paper Presentation (Presenter: EdmunThe More the Merrier: Efficient Multi-Source February 2022

Table of Contents

@ Experimental Data

6.827 Paper Presentation (Presenter: EdmunThe More the Merrier: Efficient Multi-Source

500

__400 -
[4y]
@D BFS Algorithm
=
E 300 - —s— DO-BFS
c —4— MS-BFS 128
g 200 - —— MS-BFS 128 CL
= -a— T-BFS
=0
X 100 -

n -

I T T
0.0 25 5.0 75 10.0
Vertices (in millions)

Figure 4: Data size scalability results.

6.827 Paper Presentation (Presenter: EdmunThe More the Merrier: Efficient Multi-Source February 2022

BFS Algorithm
—a— DO-BFS

—&— MS-BFS 128
—— MS-BFS 128 Cl
—#- MS5-BFS 64
—— M5-BFS 64 CL
= T-BFS

Figure 5: Multi-core sealability results.

6.827 Paper Presentation (Presenter: EdmunThe More the Merrier: Efficient Multi-Source February 2022

Table 4: Runtime and speedup of MS-BFS com-
pared to T-BFS and DO-BFS.

Graph T-BFS DO-BFS MS-BFS Speedup
LDBC 1M 2:15h 0:22h 0:02h 73.8x, 12.1x
LDBC 10M *259:42h "84:13h 2:56h 88.5x, 28.7x
Wikipedia "32:48h "12:50h 0:26h 75.4x, 29.5x%

Twitter (1M) "156:06h "36:23h 2:52h 54.6x, 12.7x
*Execution aborted after 8 hours; runtime estimated.

6.827 Paper Presentation (Presenter: EdmunThe More the Merrier: Efficient Multi-Source February 2022

	Problem
	Solution Intuition
	Algorithm + walk-through
	Iteration 2, usage of bitmaps
	Iteration 3, optimizing cache misses
	Experimental Data

