
6.827: 
Algorithm Engineering

A FASTER ALGORITHM FOR
BETWEENNESS CENTRALITY

Julian Shun
February 8, 2022

Material taken from “A Faster Algorithm for Betweeness Centrality” by Ulrik
Brandes



Graph Centrality Indices

• Used to measure the important of vertices 
in a graph

• Applications
∙ Influential actors in social networks
∙ Key infrastructure nodes
∙ Disease super-spreaders
∙ Terrorism networks
∙ Web page importance



Graph Centrality Indices



Betweenness Centrality

• Pair dependency of vertex v on vertices s 
and t is the ratio of shortest paths between 
s and t that go through v:

σst is the number of shortest paths from s to t
σst(v) is the number of shortest paths from s to t that go through v



Betweenness Centrality

• Betweenness centrality of vertex v is 
computed as

• Traditional approach for computing 
betweenness centrality:
∙ Compute all pairs shortest paths
∙ Sum all pair dependencies

• This takes Θ(n3) time and Θ(n2) space



Goal of this paper

• We would like to reduce the time to O(nm) 
for unweighted graphs and O(nm + n2log n) 
for weighted graphs, and reduce the space 
to O(n + m)

• For sparse graphs (m << n2), this gives an 
improvement over the traditional approach



Shortest-Path Counting

• Define predecessors of v on shortest paths 
from s:

• Shortest paths can be counted using 
modification of Dijkstra’s algorithm (weighted) 
or breadth-first search (unweighted)
∙ This takes O(nm) time for unweighted graphs and 

O(nm + n2log n) time for weighted graphs



Summing Pair Dependencies

• The remaining bottleneck is to sum pair 
dependencies

• Naïve approach would take Θ(n3) time since 
there are Θ(n3) triples of vertices in the sum



Accumulation of Pair Dependencies

• Dependency of a vertex s on a vertex v is 
defined as



Accumulation of Pair Dependencies
• Special case for shortest paths from s that 

form a tree:



Accumulation of Pair Dependencies
• General case:



Accumulation of Pair Dependencies

• Dependencies of a vertex s on all other 
vertices can be computed using a modified 
single-source shortest paths algorithm
∙ Traverse vertices in non-increasing order of 

distance from s and accumulate dependencies 
using previous formula

• Combined with the counting of shortest 
paths, we have:



Experiments on Random Graphs
• Sun Ultra 10 SparcStation with 440 MHz 

clock speed 

• The new algorithm significantly outperforms 
the standard algorithm, and its running time 
grows more slowly vs. data size 



Experiments on Random Graphs

• Random graphs with fixed average degree of 
20

• Again, the new algorithm is again faster than 
the standard algorithm



Strengths/Weaknesses

• Asymptotically faster algorithm with 
significant speedups in practice

• Applicable to other centrality measures
• Not much performance engineering 

discussed
∙ No discussion of parallelism, locality, and 

constant-factor optimizations



Discussion

• Direction optimization is applicable here
∙ However, early break doesn’t work

• Parallelized version is similar to parallel BFS
∙ Use fetch-and-add instead of compare-and-

swap
• This algorithm still takes quadratic work, 

and cannot scale to the much larger graphs 
that we see today
∙ To scale to large graphs, many approximate 

betweenness centrality algorithms have been 
proposed 


