6.827:
Algorithm Engineering

A FASTER ALGORITHM FOR
BETWEENNESS CENTRALITY

Julian Shun
February 8, 2022

Material taken from “A Faster Algorithm for Betweeness Centrality” by Ulrik
Brandes

Graph Centrality Indices

« Used to measure the important of vertices
in a graph
- Applications
 Influential actors in social networks
o Key infrastructure nodes
o Disease super-spreaders

e Terrorism networks
» Web page importance

1
Cc(v) = closeness centrality (Sabidussi, 1966)
() Etev dG('Ua t)
1

= ity (H d H 1
Cg(v) —— W graph centrality (Hage and Harary, 1995)
Cs(v) = Z ost(v) stress centrality (Shimbel, 1953)

s#v#teV

B ost(v) betweenness centrality

Only) = Z Ost (Freeman, 1977; Anthonisse, 1971)

Betweenness Centrality

ki tralit
Cg(v) = Z st(v) betweenness centrality

O st (Freeman, 1977; Anthonisse, 1971)
sFVHALEV

- Pair dependency of vertex v on vertices s

and t is the ratio of shortest paths between
s and t that go through v:

5st (U) = =)

Ost

Og IS the number of shortest paths from s to t
Ost(v) is the number of shortest paths from s to t that go through v

0 if dg(s,t) < dg(s,v) + dg(v,t)
Osp - Oyt Otherwise

ost(v) = {

Betweenness Centrality

« Betweenness centrality of vertex v is
computed as

Cp(v)= Y du(v).

s#FVF£LEV

« Traditional approach for computing
betweenness centrality:
o Compute all pairs shortest paths
o Sum all pair dependencies

* This takes ©(n3) time and ©O(n2) space

« We would like to reduce the time to O(nm)
for unweighted graphs and O(nm + n‘log n)

for weighted graphs, and reduce the space
to O(n + m)

« For sparse graphs (m << n?), this gives an
improvement over the traditional approach

Shortest-Path Counting

« Define predecessors of v on shortest paths
from s:

Ps(v)={u eV : {u,v} € E, dg(s,v) =dg(s,u) + w(u,v)}.

Lemma 3 (Combinatorial shortest-path counting) Fors#v eV

« Shortest paths can be counted using
modification of Dijkstra’s algorithm (weighted)
or breadth-first search (unweighted)

e This takes O(nm) time for unweighted graphs and
O(nm + n?log n) time for weighted graphs

 The remaining bottleneck is to sum pair
dependencies

Ca(v)= Y dx(v).

sFVF#LEV

« Naive approach would take ©(n3) time since
there are ©(n3) triples of vertices in the sum

« Dependency of a vertex s on a vertex v is
defined as

Sse(v) =) 8st(v).

teV

« Special case for shortest paths from s that
form a tree:

Lemma 5 If there is exactly one shortest path from s € V to eacht € V,
the dependency of s on any v € V' obeys

Sse@) = > (1+8s(w)).

w: vEPs(w)

dse(w3)

6.90 (wZ)

« General case:

Theorem 6 The dependency of s € V on any v € V obeys

e) = 3o T (1 ().

Accumulation of Pair Dependencies

 Dependencies of a vertex s on all other

vertices can be computed using a modified
single-source shortest paths algorithm
e Traverse vertices in non-increasing order of

distance from s and accumulate dependencies
using previous formula

« Combined with the counting of shortest
paths, we have:

Theorem 8 Betweenness centrality can be computed in O(nm + n?logn)

time and O(n + m) space for weighted graphs. For unweighted graphs, run-
ning time reduces to O(nm).

Experiments on Random Graphs

« Sun Ultra 10 SparcStation with 440 MHz
clock speed

1000

standard algorithn; —e—
our algorithm —=—

800 |-

600 |-

seconds

400

200

0

1
1500 2000

Figure 3: Seconds needed to the compute betweenness centrality index for
random undirected, unweighted graphs with 100 to 2000 vertices and den-
sities ranging from 10% to 90%

« The new algorithm significantly outperforms
the standard algorithm, and its running time
grows more slowly vs. data size

1000
800 -
600 -
3
400 -
,,,,
200 -
P
e
''''''

******** standard algorithm —&—

******* our algorithm —a—

0 XXX) , . shortest paths only ---%---

0 1000 2000 3000 4000 5000 6000

number of vertices

Figure 4: Seconds needed to the compute betweenness centrality index for
random undirected, unweighted graphs with constant average degree 20.
The funny jumps are attributed to LEDA internals

« Random graphs with fixed average degree of
20

« Again, the new algorithm is again faster than
the standard algorithm

Strengths/Weaknesses

« Asymptotically faster algorithm with
significant speedups in practice
- Applicable to other centrality measures

« Not much performance engineering
discussed

e No discussion of parallelism, locality, and
constant-factor optimizations

Discussion

« Direction optimization is applicable here
» However, early break doesn’t work

- Parallelized version is similar to parallel BFS

o Use fetch-and-add instead of compare-and-
swap

« This algorithm still takes quadratic work,

and cannot scale to the much larger graphs
that we see today

e To scale to large graphs, many approximate

betweenness centrality algorithms have been
proposed

