
A Functional Approach to
External Graph Algorithms

J. Abello, A. L. Buchsbaum, and J. R. Westbrook
Algorithmica 2002 | DOI: 10.1007/s00453-001-0088-5

External Memory model

• N = number of items in the instance
• M = number of items that can be fit

in main memory
• B = number of items per block

• M/B-way merge sort Complexity:
O((N/B) logM/B (N/B))
• Scan Complexity: O(N/B)

M

B

B

B

B

Unbounded

Motivation
• What is a functional model?

• Inputs cannot be changed (Lisp)
• Why a functional approach?

• Checkpointing
• Only have to change the file-descriptor table, no copying required
• Increases reliability

• General programming language optimizations can be applied
• Random memory accesses are also reduced

• PRAM Simulation (Chiang et al.)
• Simulating PRAM steps using only one processor and an external disk
• Impractical, requires both a practical PRAM algorithm and an implementation of the

external memory simulation
• Buffer data structures (Arge, Kumar & Schwabe, Fadel, etc.)

• Maintain buffer tree, operation is performed by adding to the root node of a buffer
• Hard to implement and checkpointing is expensive

Problems

• Connected Components
• Maximal set of vertices such that each pair of vertices is connected by some path

• Minimum Spanning Forests
• MST for disconnected graphs

• Bottleneck minimum spanning forests
• Minimize maximum edge weight

• Maximal matching
• Maximal set of edges such that no two edges share a common vertex

• Maximal independent set
• Maximal set of vertices such that no two vertices are adjacent

Functional Graph
Transformations
Selection, Relabeling, Contraction, Vertex/Edge deletion

Selection

<-- One scan

<-- One scan

<-- Recursive scans only run on at
most ¾ elements in I

Select(I, k) returns the k’th biggest element from I
Briefly: identical to median finding algorithm from 6.046

k’th largest element is in I1

k’th largest element is in I3

m is k’th largest element

Relabeling - O(sort(|I|) + sort(|F|))

• Given a rooted forest F as an unordered sequence of oriented tree
edges {(p(v), v), …} and an edge set I (not necessarily the same edges
in F), the relabel operation replaces each edge (u, v) with its
respective parent (if it exists) in F.

sort(|F|) I/Os
sort(|I|) I/Os
scan(|F| + |I|) I/Os

Relabeling

In English: iterate through all edges in I. For each edge (u, v) check if u or v have valid
parents in F. If they do, replace u, v with their respective parents. If not, don’t replace.

Contraction

• A subcomponent is a collection of edges among vertices in the same
connected component of G that aren’t necessarily maximal. A
contraction of G by C is G/C, the vertices of each subcomponent are
contracted into a supervertex.
• {[(1, 2), (1, 3)]}

4
2

5
3

1

41

5

Contraction – O(scan(|I|)) I/Os

4
2

5
3

1

4

1
Canonical

5

RL(forest = {(1, 1), (1, 2), (1, 3)}, I = all the edges)

Vertex/Edge deletion

• Edge deletion:
• I \ D: sort I and D lexicographically
• trivial filter: sort(|I|) + sort(N) I/Os

• Vertex deletion:
• Create edge list from vertex list:
• Same as before, sort and filter: sort(|I|) + sort(N) I/Os

Creating algorithms with this
framework
Deterministic Algorithms

Connected Components

Step 1: O(scan(|E|))
Step 3: O(sort(|E|))
Step 5: O(sort(|E|))

T(E) <= O(sort(|E|)) + 2T(E/2)
T(E) = O(sort(|E| log2 (E/M))

Example: Level 1

1

2 3

4

5

6

Example: Level 2

1

2 3

4

5

6

Example: G’, CC(G’)

1

2 3

4

5

6

Example: CC(G’) U RL(CC(G’), CC(G1))

1

2 3

4

5

6

Example: G’ after contraction

1

2 3

4

5

6

Sparsification

• Partition E into E/V lists of no more than V edges each.
• Then, we get from this:
• To:

• This is better since the number of edges is usually way more than the
number of vertices

MSF, MM, MIS

Maximal Independent Set / Maximal Matching

MIS problems can be converted into a MM problem

BMSF (Bottleneck MSF)

• Computed similarly to MSF, if lower-weighted half of edges span
graph then it contains a BMSF.
• Otherwise, it contains an edge from the upper half so the lower half

can be contracted
• Divide & conquer again!

Randomized Variants

• Minimum Spanning Forest
• Connected Components
• Maximal Independent Set
• Maximal Matching

Randomized MM

0

1

0

1

O(sort(V))

O(sort(V))

Reduces the number of edges by at least
¼ (1 – e-1/3) and they show that it works
in O(sort(E)) with probability 1 - ε

Boruvka Step

• Selects and contracts the edge of the minimum weight incident on
each vertex
• Sort by first component of edge, scan to select minimum weight edge/vertex
• Sort by second and do the same

2 4

31 5

6

5

2

2

1

2
7

Karger Linear-time Randomized MSF/CC
Same as deterministic MSF, divide and conquer on a contracted subgraph except now we expect
G’’ to have about V/4 and V/8 vertices. We also expect H to have V/2 vertices

Semi-External Problems

• V <= M, E > M
• Vertices can fit into main memory but edges can’t
• MSF with dynamic trees to maintain internal forest (Kruskal’s

algorithm)
• CC = label edges by components in one scan and sort edge list to

arrange edges by component
• Fast sorting & record/key grouping if number of keys are small
• O(scan(N) logM/B K) I/Os

Previous Results

• CC:
• O(sort(E) log2 (V/M)) I/Os - Chiang et al. (PRAM)
• O(V + sort(E) log2 (M/B)) – Kumar and Schwabe (Buffer Tree)

• Abello et al. performs better when V < M2 / B
• O(max{1, loglogVBP/E} (E/V) sort(V)) – Munagala and Ranade (Multiset)

• P is number of parallel disks, performs better than our deterministic one

• MSF:
• O(sort(E) log2 (V/M)) I/Os - Chiang et al.
• O(sort(E) log2 (B) + scan(E) log2 (V)) – Kumar and Schwabe

• Abello et al. performs better when V < M B

• MM:
• O(sort(E) log2

3 V) - Israeli and Shiloach

Results

