A Functional Approach to External Graph Algorithms

J. Abello, A. L. Buchsbaum, and J. R. Westbrook Algorithmica 2002 | DOI: 10.1007/s00453-001-0088-5

External Memory model

- \bullet N = number of items in the instance
- M = number of items that can be fit in main memory
- \cdot B = number of items per block
- M/B-way merge sort Complexity: $O((N/B) \log_{M/B} (N/B))$
- Scan Complexity: O(N/B)

Motivation

- What is a functional model?
	- Inputs cannot be changed (Lisp)
- Why a functional approach?
	- Checkpointing
		- Only have to change the file-descriptor table, no copying required
		- Increases reliability
	- General programming language optimizations can be applied
	- Random memory accesses are also reduced
- PRAM Simulation (Chiang et al.)
	- Simulating PRAM steps using only one processor and an external disk
	- Impractical, requires both a practical PRAM algorithm and an implementation of the external memory simulation
- Buffer data structures (Arge, Kumar & Schwabe, Fadel, etc.)
	- Maintain buffer tree, operation is performed by adding to the root node of a buffer
	- Hard to implement and checkpointing is expensive

Problems

- Connected Components
	- Maximal set of vertices such that each pair of vertices is connected by some path
- Minimum Spanning Forests
	- MST for disconnected graphs
- Bottleneck minimum spanning forests
	- Minimize maximum edge weight
- Maximal matching
	- Maximal set of edges such that no two edges share a common vertex
- Maximal independent set
	- Maximal set of vertices such that no two vertices are adjacent

Functional Graph Transformations

Selection, Relabeling, Contraction, Vertex/Edge deletion

Selection

Select(I, k) returns the k'th biggest element from I Briefly: identical to median finding algorithm from 6.046

- 1. Partition I into cM-element subsets, for some $0 < c < 1$.
- <-- One scan 2. Determine the median of each subset in main memory. Let S be the set of medians of the subsets.
- 3. $m \leftarrow$ Select(S, [S/2]).
- 4. Let I_1 , I_2 , I_3 be the sets of elements less than, equal to, and greater than m, respectively. <-- One scan
- 5. If $|I_1| \geq k$, then return $\text{Select}(I_1, k)$. K'th largest element is in I1
- 6. Else if $|I_1| + |I_2| \ge k$, then return m. m is k'th largest element
- 7. Else return $\text{Select}(I_3, k |I_1| |I_2|).$ k'th largest element is in I3

<-- Recursive scans only run on at most ¾ elements in I

 $T(|I|) \leq 2 \cdot scan(I) + T(|I|/cM) + T(3|I|/4)$; by induction, $T(|I|) = O(scan(|I|)),$

Relabeling - O(*sort*(|*I*|) + *sort*(|*F*|))

- Given a rooted forest *F* as an unordered sequence of oriented tree edges {(p(v), v), …} and an edge set *I* (not necessarily the same edges in F), the relabel operation replaces each edge (u, v) with its respective parent (if it exists) in *F*.
	- 1. Sort F by source vertex, v .
	- 2. Sort *I* by second component.
	- 3. Process F and I in tandem.
		- (a) Let $\{s, h\} \in I$ be the current edge to be relabeled.
		- (b) Scan F starting from the current edge until finding $(p(v), v)$ such that $v \geq h$.
		- (c) If $v = h$, then add $\{s, p(v)\}\$ to I''; otherwise, add $\{s, h\}$ to I''.
	- 4. Repeat steps 2 and 3, relabeling first components of edges in I'' to construct I' .

sort(|*F*|) I/Os *sort*(|*I*|) I/Os $\textit{scan}(|F| + |I|)$ I/Os

Relabeling

- def relabel(F , I):
- $# 1$ F.sort(key = lambda $x : x[1]$) $#2$ I.sort(key = lambda $x : x[1]$) $#3$ $Iii = []$ for s , h in I: $# a$ $flag = 0$ for $p. v in F: # b$ if $v == h$: Iii.append((s, p)) # c $flag = 1$ break if flaq == $0:$ Iii.append((s, h)) # c

$#4$

Iii.sort(key = lambda x : $x[0]$) $I_i = []$ for s, h in Iii: flag = θ for p , v in F : if $v == s$: I i.append $((p, h))$ flag = 1 break if flag == $0:$ I i.append $((s, h))$ return Ii

- 1. Sort F by source vertex, v . 2. Sort *I* by second component. 3. Process F and I in tandem.
	- (a) Let $\{s, h\} \in I$ be the current edge to be relabeled.
	- (b) Scan F starting from the current edge until finding $(p(v), v)$ such that $v \geq h$.
	- (c) If $v = h$, then add {s, $p(v)$ } to I''; otherwise, add {s, h} to I''.
- 4. Repeat steps 2 and 3, relabeling first components of edges in I'' to construct I' .

In English: iterate through all edges in I. For each edge (u, v) check if u or v have valid parents in F. If they do, replace u, y with their respective parents. If not, don't replace.

Sort($|F|$) I/Os Sort $(|I|)$ I/Os $Scan(|F| + |I|)$ I/Os

Contraction

• A subcomponent is a collection of edges among vertices in the same connected component of G that aren't necessarily maximal. A contraction of G by C is G/C, the vertices of each subcomponent are contracted into a supervertex.

def contract(graph, edges): # create subcomponents from edges subcomponent map = $\{\}$ subcomponents = $[]$ for edge in edges: $x = min(edge[0], edge[1])$ $y = max(edqe[0], edqe[1])$ if x in subcomponent_map: subcomponent map $[x]$. append (y) else: subcomponent map $[x] = [y]$

create subcomponent maps

for x in subcomponent map: $vertex = []$ for y in subcomponent_map[x]: $vertex.append((x, y))$ subcomponents.append(vertex)

create R i

 $relabelling_forest = set([])$ for component in subcomponents: $canonical_vertex = component[0][0]$ for edge in component: relabelling_forest.add((canonical_vertex, edge[0])) relabelling_forest.add((canonical_vertex, edge[1]))

relabel

 $rl = relabel(list(relabelling_fores), graph. edges)$

remove self edges

 $contract = []$ for edge in rl: if $edge[0]$!= $edge[1]$: contract.append(edge)

return Graph(contract)

Contraction $-O(scan(1))$ I/Os

- 1. For each $C_i = \{ \{u_1, v_1\}, \ldots \}$:
	- (a) $R_i \leftarrow \emptyset$.
	- (b) Pick u_1 to be the canonical vertex.
	- (c) For each $\{x, y\} \in C_i$, add (u_1, x) and (u_1, y) to relabeling R_i .
- 2. Apply relabeling $\bigcup_i R_i$ to I, yielding the contracted edge list I'.

Vertex/Edge deletion

- Edge deletion:
	- I \ D: sort I and D lexicographically
	- trivial filter: $sort(|I|) + sort(N)$ I/Os
- Vertex deletion:
	- Create edge list from vertex list: $I'' = \{ \{u, v\} \in I : u \notin U \land v \notin U \}$
	- Same as before, sort and filter: $sort(|I|) + sort(N)$ I/Os

Creating algorithms with this framework

Deterministic Algorithms

Connected Components

$def CC(G):$

```
if len(G. edges) == 1:
  return [G.edges[0]]
```
$#1$

```
G1 = Graph(G. edges[:len(G. edges)//2])#2cc_{q1} = CC(G1)
```
$#3$

```
g_prime = contract(G, cc_g1)
remaining_eedges = []for edge in g_prime.edges:
  if edge not in G.edges[:len(G.edges)//2]:
    remaining_edges.append(edge)
```

```
G2 = Graph(remaining\_edges)#4cc\_g\_prime = CC(G2)#5return edge_union(cc_g_prime, relabel(cc_g_prime, cc_g1))
```
Algorithm CC

- 1. Let E_1 be any half of the edges of G; let $G_1 = (V, E_1)$.
- 2. Compute $CC(G_1)$ recursively.
- 3. Let $G' = G/CC(G_1)$.
- 4. Compute $CC(G')$ recursively.
- 5. $CC(G) = CC(G') \cup RL(CC(G'), CC(G_1)).$

Step 1: $O(\text{scan}(|E|))$ Step 3: $O(sort(|E|))$ Step 5: $O(sort(|E|))$

 $T(E) \leq O(sort(|E|)) + 2T(E/2)$ $T(E) = O(sort(|E| \log_2 (E/M))$

Example: Level 1

 $def CC(G):$ if $len(G. edges) == 1$: return [G.edges[0]]

$#1$

 $G1 = Graph(G. edges[:len(G. edges))/2])$ $#2$ $cc_g1 = CC(G1)$

$#3$

 g_p rime = contract(G, cc_g1) $remaining_eedges = []$ for edge in g_prime.edges: if edge not in G.edges[:len(G.edges)//2]: remaining_edges.append(edge)

Example: Level 2

 $def CC(G):$ if $len(G. edges) == 1$: return [G.edges[0]]

$#1$

 $G1 = Graph(G. edges[:len(G. edges))/2])$ $#2$ $cc_g1 = CC(G1)$

$#3$

 g_p rime = contract(G, cc_g1) $remaining_eedges = []$ for edge in g_prime.edges: if edge not in G.edges[:len(G.edges)//2]: remaining_edges.append(edge)

Example: G', CC(G')

 $def CC(G):$ if $len(G. edges) == 1$: return [G.edges[0]]

$#1$

 $G1 = Graph(G. edges[:len(G. edges))/2])$ $#2$ $cc_g1 = CC(G1)$

$#3$

 g_p rime = contract(G, cc_g1) $remaining_eedges = []$ for edge in g_prime.edges: if edge not in G.edges[:len(G.edges)//2]: remaining_edges.append(edge)

Example: CC(G') U RL(CC(G'), CC(G1))

$def CC(G):$

if $len(G. edges) == 1$: return [G.edges[0]]

$#1$

 $G1 = Graph(G. edges[:len(G. edges))/2])$ $#2$ $cc_g1 = CC(G1)$

$#3$

 g_p rime = contract(G, cc_g1) $remaining_eedges = []$ for edge in g_prime.edges: if edge not in G.edges[:len(G.edges)//2]: remaining_edges.append(edge)

Example: G' after contraction

 $def CC(G):$ if $len(G. edges) == 1$: return [G.edges[0]]

$#1$

 $G1 = Graph(G. edges[:len(G. edges))/2])$ $#2$ $cc_g1 = CC(G1)$

$#3$

 g_p rime = contract(G, cc_g1) $remaining_eedges = []$ for edge in g_prime.edges: if edge not in G.edges[:len(G.edges)//2]: remaining_edges.append(edge)

Sparsification

- Partition E into E/V lists of no more than V edges each.
- Then, we get from this: $O(sort(E) \log_2(E/M)) I/Os$
- To: $O((E/V) sort(V) \log_2(V/M))$
- This is better since the number of edges is usually way more than the number of vertices

Algorithm CC

- 1. Let E_1 be any half of the edges of G; let $G_1 = (V, E_1)$.
- 2. Compute $CC(G₁)$ recursively.
- 3. Let $G' = G/CC(G_1)$.
- 4. Compute $CC(G')$ recursively.
- 5. $CC(G) = CC(G') \cup RL(CC(G'), CC(G_1)).$

1. $G_1 \leftarrow S(G);$ 2. $G_2 \leftarrow T_1(G, f_{\mathcal{P}}(G_1));$ 3. $f_{\mathcal{P}}(G) = T_2(G, G_1, G_2, f_{\mathcal{P}}(G_1), f_{\mathcal{P}}(G_2)).$

Algorithm MM

- 1. Let E_1 be any non-empty, proper subset of edges of G; let $G_1 = (V, E_1)$.
- 2. Compute $MM(G_1)$ recursively.
- 3. Let $E' = E \setminus V(MM(G_1))$; let $G' = (V, E')$.
- 4. Compute $MM(G')$ recursively.
- 5. $MM(G) = MM(G') \cup MM(G_1)$.

Algorithm MSF

- 1. Let E_1 be any lowest-cost half of the edges of G; i.e., every edge in $E \backslash E_1$ has weight at least that of the edge of greatest weight in E_1 . Let $G_1 =$ (V, E_1) .
- 2. Compute $MSF(G_1)$ recursively.
- 3. Let $G' = G/MSF(G_1)$.
- 4. Compute $CC(G')$ recursively.
- 5. $MSF(G) = EX(MSF(G')) \cup MSF(G_1)$.

Maximal Independent Set / Maximal Matching

MIS problems can be converted into a MM problem

The line graph L(G)

BMSF (Bottleneck MSF)

- Computed similarly to MSF, if lower-weighted half of edges span graph then it contains a BMSF.
- Otherwise, it contains an edge from the upper half so the lower half can be contracted
- Divide & conquer again!

Randomized Variants

- Minimum Spanning Forest
- Connected Components
- Maximal Independent Set
- Maximal Matching

Randomized MM

1. $M \leftarrow \emptyset$.

- 2. Set the label of v to 0 with probability 1/2 and to 1 with probability $1/2$, $\forall v \in V$. O(sort(V))
- 3. For each $u \in V$ such that u is labeled 1, pick any adjacent v such that v is labeled 0. (If u has no adjacent 0-labeled vertex, then u makes no choice.) Let E' be the resulting set of $\{u, v\}$ edges.
- 4. Let V' be the 0-labeled vertices among the edges in E'. For each $v \in V'$, pick any one incident edge $\{v, w\} \in E'$. (Note that w is labeled 1.) Let E'' be the resulting set O(sort(V)) of $\{v, w\}$ edges.
- 5. $M \leftarrow M \cup E''.$
- 6. $E \leftarrow E \backslash E''$.
- 7. If $E \neq \emptyset$, repeat from step 2.

Reduces the number of edges by at least $\frac{1}{4}$ (1 – e^{-1/3}) and they show that it works in $O(sort(E))$ with probability 1 - ε

Boruvka Step

- Selects and contracts the edge of the minimum weight incident on each vertex
	- Sort by first component of edge, scan to select minimum weight edge/vertex
	- Sort by second and do the same

Karger Linear-time Randomized MSF/CC

Same as deterministic MSF, divide and conquer on a contracted subgraph except now we expect G" to have about $V/4$ and $V/8$ vertices. We also expect H to have $V/2$ vertices

- 1. Perform two Borůvka steps, which reduces the number of vertices by at least a factor of four. Call the contracted graph G' .
- 2. Choose a subgraph H of G' by selecting each edge independently with probability $1/2.$
- 3. Apply the algorithm recursively to find the MSF F of H .
- 4. Delete from G' each edge $\{u, v\}$ such that (1) there is a path, $P(u, v)$, from u to v in F and (2) the weight of $\{u, v\}$ exceeds that of the maximum-weight edge on $P(u, v)$. Call the resulting graph G'' .
- 5. Apply the algorithm recursively to G'' , yielding MSF F' .
- 6. Return the edges contracted in step 1 together with those in F' .

 $O(\text{sort}(E))$ I/Os with probability $1 - e^{-\Omega(E)}$

Semi-External Problems

- *V <= M, E > M*
- Vertices can fit into main memory but edges can't
- MSF with dynamic trees to maintain internal forest (Kruskal's algorithm)
- CC = label edges by components in one scan and sort edge list to arrange edges by component
- Fast sorting & record/key grouping if number of keys are small
	- $O(\text{scan}(N) \log_{MR} K) I/Os$

Previous Results

- \bullet CC:
	- *O(sort(E) log₂ (V/M)) I/Os Chiang et al. (PRAM)*
	- $O(V + sort(E) log₂(M/B)) Kumar$ and Schwabe (Buffer Tree)
		- *Abello et al. performs better when* $V \leq M^2/B$
	- *O(max{1, loglogVBP/E} (E/V) sort(V)) – Munagala and Ranade (Multiset)*
		- P is number of parallel disks, performs better than our deterministic one
- *MSF:*
	- $O(\text{sort}(E) \log_2 (V/M))$ I/Os Chiang et al.
	- $O(\text{sort}(E) \log_2(B) + \text{scan}(E) \log_2(V)) -$ *Kumar and Schwabe*
		- *Abello et al. performs better when V < M B*
- *MM:*
	- $O(\text{sort}(E) \log_2^3 V)$ *Israeli and Shiloach*

Results

