A Functional Approach to External Graph Algorithms

J. Abello, A. L. Buchsbaum, and J. R. Westbrook Algorithmica 2002 | DOI: 10.1007/s00453-001-0088-5

External Memory model

- N = number of items in the instance
- M = number of items that can be fit in main memory
- B = number of items per block
- M/B-way merge sort Complexity: O((N/B) log_{M/B} (N/B))
- Scan Complexity: O(N/B)

Motivation

- What is a functional model?
 - Inputs cannot be changed (Lisp)
- Why a functional approach?
 - Checkpointing
 - Only have to change the file-descriptor table, no copying required
 - Increases reliability
 - General programming language optimizations can be applied
 - Random memory accesses are also reduced
- PRAM Simulation (Chiang et al.)
 - Simulating PRAM steps using only one processor and an external disk
 - Impractical, requires both a practical PRAM algorithm and an implementation of the external memory simulation
- Buffer data structures (Arge, Kumar & Schwabe, Fadel, etc.)
 - Maintain buffer tree, operation is performed by adding to the root node of a buffer
 - Hard to implement and checkpointing is expensive

Problems

- Connected Components
 - Maximal set of vertices such that each pair of vertices is connected by some path
- Minimum Spanning Forests
 - MST for disconnected graphs
- Bottleneck minimum spanning forests
 - Minimize maximum edge weight
- Maximal matching
 - Maximal set of edges such that no two edges share a common vertex
- Maximal independent set
 - Maximal set of vertices such that no two vertices are adjacent

Functional Graph Transformations

Selection, Relabeling, Contraction, Vertex/Edge deletion

Selection

Select(I, k) returns the k'th biggest element from I Briefly: identical to median finding algorithm from 6.046

- 1. Partition I into cM-element subsets, for some 0 < c < 1.
- 2. Determine the median of each subset in main memory. Let *S* be the set of medians <-- One scan of the subsets.
- 3. $m \leftarrow \text{Select}(S, \lceil S/2 \rceil)$.
- 4. Let I_1 , I_2 , I_3 be the sets of elements less than, equal to, and greater than *m*, respectively. <-- One scan
- 5. If $|I_1| \ge k$, then return Select (I_1, k) . k'th largest element is in 11
- 6. Else if $|I_1| + |I_2| \ge k$, then return *m*. m is k'th largest element
- 7. Else return Select $(I_3, k |I_1| |I_2|)$. k'th largest element is in 13

<-- Recursive scans only run on at most ³/₄ elements in I

 $T(|I|) \le 2 \cdot scan(I) + T(|I|/cM) + T(3|I|/4)$; by induction, T(|I|) = O(scan(|I|)),

Relabeling -O(sort(|I|) + sort(|F|))

- Given a rooted forest F as an unordered sequence of oriented tree edges {(p(v), v), ...} and an edge set I (not necessarily the same edges in F), the relabel operation replaces each edge (u, v) with its respective parent (if it exists) in F.
 - 1. Sort F by source vertex, v.
 - 2. Sort I by second component.
 - 3. Process F and I in tandem.
 - (a) Let $\{s, h\} \in I$ be the current edge to be relabeled.
 - (b) Scan F starting from the current edge until finding (p(v), v) such that $v \ge h$.
 - (c) If v = h, then add $\{s, p(v)\}$ to I''; otherwise, add $\{s, h\}$ to I''.
 - 4. Repeat steps 2 and 3, relabeling first components of edges in I'' to construct I'.

sort(|F|) I/Os sort(|I|) I/Os scan(|F| + |I|) I/Os

Relabeling

- def relabel(F, I):

4

- Sort F by source vertex, v.
 Sort I by second component.
 Sort(|I|) I/Os
 Process F and I in tandem.
 Scan(|F| + |I|) I/Os
 Scan(|F| + |I|) I/Os
 Let {s, h} ∈ I be the current edge to be relabeled.
 Scan F starting from the current edge until finding (p(v), v) such that v ≥ h.
 - (c) If v = h, then add $\{s, p(v)\}$ to I''; otherwise, add $\{s, h\}$ to I''.
 - 4. Repeat steps 2 and 3, relabeling first components of edges in I'' to construct I'.

In English: iterate through all edges in I. For each edge (u, v) check if u or v have valid parents in F. If they do, replace u, v with their respective parents. If not, don't replace.

Contraction

• A subcomponent is a collection of edges among vertices in the same connected component of G that aren't necessarily maximal. A contraction of G by C is G/C, the vertices of each subcomponent are contracted into a supervertex.

def contract(graph, edges):
 # create subcomponents from edges
 subcomponent_map = {}
 subcomponents = []
 for edge in edges:
 x = min(edge[0], edge[1])
 y = max(edge[0], edge[1])
 if x in subcomponent_map:
 subcomponent_map[x].append(y)
 else:
 subcomponent_map[x] = [y]

create subcomponent maps

for x in subcomponent_map: vertex = [] for y in subcomponent_map[x]: vertex.append((x, y)) subcomponents.append(vertex)

create R_i

relabelling_forest = set([])
for component in subcomponents:
 canonical_vertex = component[0][0]
 for edge in component:
 relabelling_forest.add((canonical_vertex, edge[0]))
 relabelling_forest.add((canonical_vertex, edge[1]))

relabel

rl = relabel(list(relabelling_forest), graph.edges)

remove self edges

contract = []
for edge in rl:
 if edge[0] != edge[1]:
 contract.append(edge)

return Graph(contract)

Contraction – O(*scan*(|/|)) I/Os

- 1. For each $C_i = \{\{u_1, v_1\}, \ldots\}$:
 - (a) $R_i \leftarrow \emptyset$.
 - (b) Pick u_1 to be the canonical vertex.
 - (c) For each $\{x, y\} \in C_i$, add (u_1, x) and (u_1, y) to relabeling R_i .
- 2. Apply relabeling $\bigcup_i R_i$ to *I*, yielding the contracted edge list *I'*.

Vertex/Edge deletion

- Edge deletion:
 - I \ D: sort I and D lexicographically
 - trivial filter: sort(|I|) + sort(N) I/Os
- Vertex deletion:
 - Create edge list from vertex list: $I'' = \{\{u, v\} \in I : u \notin U \land v \notin U\}$
 - Same as before, sort and filter: *sort*(|*I*|) + sort(N) I/Os

Creating algorithms with this framework

Deterministic Algorithms

Connected Components

def CC(G):

```
if len(G.edges) == 1:
    return [G.edges[0]]
```

```
#1
G1 = Graph(G.edges[:len(G.edges)//2])
#2
cc_g1 = CC(G1)
```

#3

```
g_prime = contract(G, cc_g1)
remaining_edges = []
for edge in g_prime.edges:
    if edge not in G.edges[:len(G.edges)//2]:
        remaining_edges.append(edge)
```

```
G2 = Graph(remaining_edges)
#4
cc_g_prime = CC(G2)
#5
return edge_union(cc_g_prime, relabel(cc_g_prime, cc_g1))
```

Algorithm CC

- 1. Let E_1 be any half of the edges of G; let $G_1 = (V, E_1)$.
- 2. Compute $CC(G_1)$ recursively.
- 3. Let $G' = G/CC(G_1)$.
- 4. Compute CC(G') recursively.
- 5. $CC(G) = CC(G') \cup RL(CC(G'), CC(G_1)).$

Step 1: *O(scan*(|E|)) Step 3: *O(sort*(|E|)) Step 5: *O(sort*(|E|))

 $T(E) \le O(sort(|E|)) + 2T(E/2)$ $T(E) = O(sort(|E| \log_2 (E/M)))$

Example: Level 1

def CC(G): if len(G.edges) == 1: return [G.edges[0]]

#1

G1 = Graph(G.edges[:len(G.edges)//2])
#2
cc_g1 = CC(G1)

#3

g_prime = contract(G, cc_g1)
remaining_edges = []
for edge in g_prime.edges:
 if edge not in G.edges[:len(G.edges)//2]:
 remaining_edges.append(edge)

Example: Level 2

def CC(G): if len(G.edges) == 1: return [G.edges[0]]

#1

G1 = Graph(G.edges[:len(G.edges)//2])
#2
cc_g1 = CC(G1)

#3

g_prime = contract(G, cc_g1)
remaining_edges = []
for edge in g_prime.edges:
 if edge not in G.edges[:len(G.edges)//2]:
 remaining_edges.append(edge)

Example: G', CC(G')

def CC(G): if len(G.edges) == 1: return [G.edges[0]]

#1

G1 = Graph(G.edges[:len(G.edges)//2])
#2
cc_g1 = CC(G1)

#3

g_prime = contract(G, cc_g1)
remaining_edges = []
for edge in g_prime.edges:
 if edge not in G.edges[:len(G.edges)//2]:
 remaining_edges.append(edge)

Example: CC(G') U RL(CC(G'), CC(G1))

def CC(G):

if len(G.edges) == 1:
 return [G.edges[0]]

#1

G1 = Graph(G.edges[:len(G.edges)//2])
#2
cc_g1 = CC(G1)

#3

g_prime = contract(G, cc_g1)
remaining_edges = []
for edge in g_prime.edges:
 if edge not in G.edges[:len(G.edges)//2]:
 remaining_edges.append(edge)

Example: G' after contraction

def CC(G): if len(G.edges) == 1: return [G.edges[0]]

#1

G1 = Graph(G.edges[:len(G.edges)//2])
#2
cc_g1 = CC(G1)

#3

g_prime = contract(G, cc_g1)
remaining_edges = []
for edge in g_prime.edges:
 if edge not in G.edges[:len(G.edges)//2]:
 remaining_edges.append(edge)

Sparsification

- Partition E into E/V lists of no more than V edges each.
- Then, we get from this: $O(sort(E) \log_2(E/M)) I/Os$
- To: $O((E/V)sort(V) \log_2(V/M))$
- This is better since the number of edges is usually way more than the number of vertices

Algorithm CC

- 1. Let E_1 be any half of the edges of G; let $G_1 = (V, E_1)$.
- 2. Compute $CC(G_1)$ recursively.
- 3. Let $G' = G/CC(G_1)$.
- 4. Compute CC(G') recursively.
- 5. $CC(G) = CC(G') \cup RL(CC(G'), CC(G_1)).$

- 1. $G_1 \leftarrow S(G);$
- 2. $G_2 \leftarrow T_1(G, f_{\mathcal{P}}(G_1));$
- 3. $f_{\mathcal{P}}(G) = T_2(G, G_1, G_2, f_{\mathcal{P}}(G_1), f_{\mathcal{P}}(G_2)).$

Algorithm MM

- 1. Let E_1 be any non-empty, proper subset of edges of G; let $G_1 = (V, E_1)$.
- 2. Compute $MM(G_1)$ recursively.
- 3. Let $E' = E \setminus V(MM(G_1))$; let G' = (V, E').
- 4. Compute MM(G') recursively.
- 5. $MM(G) = MM(G') \cup MM(G_1)$.

Algorithm MSF

- 1. Let E_1 be any lowest-cost half of the edges of G; i.e., every edge in $E \setminus E_1$ has weight at least that of the edge of greatest weight in E_1 . Let $G_1 = (V, E_1)$.
- 2. Compute $MSF(G_1)$ recursively.
- 3. Let $G' = G/MSF(G_1)$.
- 4. Compute CC(G') recursively.
- 5. $MSF(G) = EX(MSF(G')) \cup MSF(G_1).$

Maximal Independent Set / Maximal Matching

MIS problems can be converted into a MM problem

The line graph L(G)

BMSF (Bottleneck MSF)

- Computed similarly to MSF, if lower-weighted half of edges span graph then it contains a BMSF.
- Otherwise, it contains an edge from the upper half so the lower half can be contracted
- Divide & conquer again!

Randomized Variants

- Minimum Spanning Forest
- Connected Components
- Maximal Independent Set
- Maximal Matching

Randomized MM

1. $\mathcal{M} \leftarrow \emptyset$.

- 2. Set the label of v to 0 with probability 1/2 and to 1 with probability 1/2, $\forall v \in V$. O(sort(V))
- 3. For each $u \in V$ such that u is labeled 1, pick any adjacent v such that v is labeled 0. (If u has no adjacent 0-labeled vertex, then u makes no choice.) Let E' be the resulting set of $\{u, v\}$ edges.
- 4. Let V' be the 0-labeled vertices among the edges in E'. For each v ∈ V', pick any one incident edge {v, w} ∈ E'. (Note that w is labeled 1.) Let E" be the resulting set O(sort(V)) of {v, w} edges.
- 5. $\mathcal{M} \leftarrow \mathcal{M} \cup E''$.
- 6. $E \leftarrow E \setminus E''$.
- 7. If $E \neq \emptyset$, repeat from step 2.

Reduces the number of edges by at least $\frac{1}{4} (1 - e^{-1/3})$ and they show that it works in O(sort(E)) with probability 1 - ϵ

Boruvka Step

- Selects and contracts the edge of the minimum weight incident on each vertex
 - Sort by first component of edge, scan to select minimum weight edge/vertex
 - Sort by second and do the same

Karger Linear-time Randomized MSF/CC

Same as deterministic MSF, divide and conquer on a contracted subgraph except now we expect G'' to have about V/4 and V/8 vertices. We also expect H to have V/2 vertices

- 1. Perform two Borůvka steps, which reduces the number of vertices by at least a factor of four. Call the contracted graph G'.
- 2. Choose a subgraph H of G' by selecting each edge independently with probability 1/2.
- 3. Apply the algorithm recursively to find the MSF F of H.
- 4. Delete from G' each edge {u, v} such that (1) there is a path, P(u, v), from u to v in F and (2) the weight of {u, v} exceeds that of the maximum-weight edge on P(u, v). Call the resulting graph G".
- 5. Apply the algorithm recursively to G'', yielding MSF F'.
- 6. Return the edges contracted in step 1 together with those in F'.

O(sort(E)) I/Os with probability $1 - e^{-\Omega(E)}$

Semi-External Problems

- *V* <= *M*, *E* > *M*
- Vertices can fit into main memory but edges can't
- MSF with dynamic trees to maintain internal forest (Kruskal's algorithm)
- CC = label edges by components in one scan and sort edge list to arrange edges by component
- Fast sorting & record/key grouping if number of keys are small
 - $O(scan(N) \log_{M/B} K) I/Os$

Previous Results

- CC:
 - O(sort(E) log₂ (V/M)) I/Os Chiang et al. (PRAM)
 - $O(V + sort(E) \log_2(M/B)) Kumar$ and Schwabe (Buffer Tree)
 - Abello et al. performs better when $V < M^2 / B$
 - O(max{1, loglogVBP/E} (E/V) sort(V)) Munagala and Ranade (Multiset)
 - P is number of parallel disks, performs better than our deterministic one
- *MSF*:
 - $O(sort(E) \log_2(V/M))$ I/Os Chiang et al.
 - $O(sort(E) \log_2(B) + scan(E) \log_2(V)) Kumar$ and Schwabe
 - Abello et al. performs better when V < MB
- *MM*:
 - $O(sort(E) \log_2^3 V)$ Israeli and Shiloach

Results

	Deterministic	Randomized	
Problem	I/O bound	I/O Bound	With probability
Connected components	$O(sort(E) + \frac{E}{V}sort(V)\log_2 \frac{V}{M})$	O(sort(E))	$1 - e^{\Omega(E)}$
MSFs	$O(sort(E) + \frac{E}{V}sort(V)\log_2 \frac{V}{M})$	O(sort(E))	$1 - e^{\Omega(E)}$
BMSFs	$O(sort(E) + \frac{E}{V}sort(V)\log_2 \frac{V}{M})$	O(sort(E))	$1 - e^{\Omega(E)}$
Maximal matchings	$O(\frac{E}{V}sort(V)\log_2 \frac{V}{M})$	O(sort(E))	$1 - \varepsilon$ for any fixed ε
Maximal independent sets		O(sort(E))	$1 - \varepsilon$ for any fixed ε