A Functional Approach to
External Graph Algorithms

J. Abello, A. L. Buchsbaum, and J. R. Westbrook
Algorithmica 2002 | DOI: 10.1007/s00453-001-0088-5

External Memory model

* N = number of items in the instance

* M = number of items that can be fit
In Main memory

* B = number of items per block

* M/B-way merge sort Complexity: Unbounded
O((N/B) logys (N/B))
e Scan Complexity: O(N/B)

Motivation

 What is a functional model?
 Inputs cannot be changed (Lisp)

 Why a functional approach?
* Checkpointing
* Only have to change the file-descriptor table, no copying required
* Increases reliability

* General programming language optimizations can be applied
* Random memory accesses are also reduced

 PRAM Simulation (Chiang et al.)

e Simulating PRAM steps using only one processor and an external disk
* Impractical, requires both a practical PRAM algorithm and an implementation of the
external memory simulation
e Buffer data structures (Arge, Kumar & Schwabe, Fadel, etc.)

* Maintain buffer tree, operation is performed by adding to the root node of a buffer
* Hard to implement and checkpointing is expensive

Problems

* Connected Components
* Maximal set of vertices such that each pair of vertices is connected by some path

* Minimum Spanning Forests
e MST for disconnected graphs

* Bottleneck minimum spanning forests
* Minimize maximum edge weight

* Maximal matching
* Maximal set of edges such that no two edges share a common vertex

 Maximal independent set
* Maximal set of vertices such that no two vertices are adjacent

Functional Graph
Transformations

Selection, Relabeling, Contraction, Vertex/Edge deletion

Selection

N

S G HA e 1B

Select(l, k) returns the k’th biggest element from |
Briefly: identical to median finding algorithm from 6.046

Partition / into cM-element subsets, for some 0 < ¢ < 1.
Determine the median of each subset in main memory. Let S be the set of medians <~ One scan
of the subsets.

m <« Select(S, [S/2]).

Let I;, I, I3 be the sets of elements less than, equal to, and greater than m, respectively. <-- One scan
If |I;| > k, then return Select(fy, k). Kk'thlargest elementisin Il
Else if |I;| + |I2| > k, thenreturn m. mis k’th largest element
Else return Select(l3, k — |I1] — |2]). K'th largest element s in I3

<-- Recursive scans only run on at
most % elements in |

T'(I|)) <2-scan(l)+T(|I|/cM)+ T(3]|I|/4); by induction, T (|I|) = O(scan(|1])),

Relabeling - O(sort(|/|) + sort(|F|))

* Given a rooted forest F as an unordered sequence of oriented tree
edges {(p(v), v), ...} and an edge set | (not necessarily the same edges
in F), the relabel operation replaces each edge (u, v) with its
respective parent (if it exists) in F.

sort(|F]) I/Os
1. Sort F' by source vertex, v. sort(|I) 1/Os

2. Sort I by second component. scan(|F| + |I]) 1/Os

3. Process F' and [in tandem.
(a) Let {s, h} € I be the current edge to be relabeled.
(b) Scan F starting from the current edge until finding (p(v), v) such that v > A.
(¢) If v = h, then add {s, p(v)} to I”; otherwise, add {s, A} to 1”.

4. Repeat steps 2 and 3, relabeling first components of edges in /” to construct 7'.

Relabeling

lef relabel(F, I):
F.sort(key = lambdz
I.sort(key = lam

TER=S]
fioGy shRhFanel:
flag = @
for p, v in F:
if v ="h:
Iii.append((s, p))
flag = 1
break
if flag == 0:
Iii.append((s, h))

Iii.sort(key = lamb
Ii = []
fiop s, Rh T ineaa:
flag = @
for p, v in F:
if v == s:
Ii.append((p, h))
flag = 1
break
if flag == 0:
Ii.append((s, h))
return Ii

N

/

In English: iterate through all edges in I. For each edge (u, v) check if u or v have valid
parents in F. If they do, replace u, v with their respective parents. If not, don’t replace.

1. Sort F' by source vertex, v. Sort(|F]) 1/Os
2. Sort I by second component. Sort(|7]) 1/0s
3. Process F and / in tandem. Scan(|F] + |I]) I/Os

(a) Let {s, h} € I be the current edge to be relabeled.
(b) Scan F starting from the current edge until finding (p(v), v) such that v > A.
(¢c) If v = h, then add {s, p(v)} to I”; otherwise, add {s, 4} to I”.

4. Repeat steps 2 and 3, relabeling first components of edges in I” to construct /’.

Contraction

* A subcomponent is a collection of edges among vertices in the same
connected component of G that aren’t necessarily maximal. A
contraction of G by Cis G/C, the vertices of each subcomponent are
contracted into a supervertex.

o =K@®

* (1, 2), (3, 3)]}

def contract(graph, edges):

subcomponent_map = {}
subcomponents = []
for edge in edges:

e ot Contraction — O(scan(|!|)) 1/Os

if x in subcomponent_map:
subcomponent_map [x].append(y)
else:
subcomponent_map [x] = [yl 1 For eaCh Ci — {{ul, vl}a . .}:
(El) AIQi o 96.
for x in subcomponent_map: . .
vertex = [] (b) Pick u; to be the canonical vertex.
for y in subcomponent_map[x]: .
e T (¢) Foreach {x, y} € C;, add (u1, x) and (u;, y) to relabeling R;.
SRS AR 2. Apply relabeling | J; R; to I, yielding the contracted edge list /’.
relabelling_forest = set([])
for component in subcomponents: RL(foreSt = {(lr 1); (11 2) 1 3)} I - a” the EdgeS)

canonical_vertex = component[@] [0]

for edge in component:
relabelling_forest.add((canonical_vertex, edgel[@]))
relabelling_forest.add((canonical_vertex, edgel1]))

rl = relabel(list(relabelling_forest), graph.edges)

—_—
contract = []
for edge in rl:

if edgel[@] !'= edgell]:
contract.append(edge)

return Graph(contract)

Vertex/Edge deletion

* Edge deletion:

e |\ D:sort | and D lexicographically
e trivial filter: sort(|l]) + sort(N) I/Os

* Vertex deletion:
* Create edge list from vertex list: 1”7 = {{u,v} e I :u g U Av & U}
* Same as before, sort and filter: sort(|]) + sort(N) 1/Os

Creating algorithms with this
framework

Connected Components

def CC(G):
if len(G.edges) == 1:
return [G.edges[0]]

Algorithm CC

Let E, be any half of the edges of G; let G; = (V, E).
Compute CC(G) recursively.

. Let G' = G/CC(Gy).

Compute CC(G’) recursively.

CC(G) = CC(G"YURL(CC(GH, CcC(Gy)).

Step 1: O(scan(|E|))
cc_g_prime = CC(G2) Step 3: O(SOFf(|E|))
return edge_union(cc_g_prime, relabel(cc_g_prime, cc_gl)) Step 5: O(SO?T(|E|))

Gl = Graph(G.edges[:1len(G.edges)//2])

ce gl = CC(G1)

g_prime = contract(G, cc_gl)
remaining_edges = []
for edge in g_prime.edges:
if edge not in G.edges[:len(G.edges)//2]:
remaining_edges.append(edge)

P g i b £

G2 = Graph(remaining_edges)

T(E) <= O(sort(|E|)) + 2T(E/2)
T(E) = O(sort(|E| log, (E/M))

Example: Level 1

def CC(G):
if len(G.edges) == 1:
return [G.edges[0]]

Graph(G.edges[:1len(G.edges)//2])
cc_gl = CC(G1)

<:::::::%{:::::::>
3 @ g_prime = contract(G, cc_gl)

remaining_edges = []
for edge in g_prime.edges:
if edge not in G.edges[:len(G.edges)//2]:
remaining_edges.append(edge)

Graph(remaining_edges)

cc_g_prime = CC(G2)

return edge_union(cc_g_prime, relabel(cc_g_prime, cc_gl))

Example: Level 2

def CC(G):
if len(G.edges) == 1:
5 return [G.edges[0]]

Graph(G.edges[:1len(G.edges)//2])

cc_gl = CC(G1)

p) 6 g_prime = contract(G, cc_g1l)
remaining_edges = []
for edge in g_prime.edges:
if edge not in G.edges[:len(G.edges)//2]:
remaining_edges.append(edge)

Graph(remaining_edges)

cc_g_prime = CC(G2)

return edge_union(cc_g_prime, relabel(cc_g_prime, cc_gl))

Example: G’, CC(G’)

def CC(G):
if len(G.edges) == 1:
5 return [G.edges[0]]

Graph(G.edges[:1len(G.edges)//2])

cc_gl = CC(G1)

g_prime = contract(G, cc_gl)
remaining_edges = []
for edge in g_prime.edges:
if edge not in G.edges[:len(G.edges)//2]:
remaining_edges.append(edge)

Graph(remaining_edges)

cc_g_prime = CC(G2)

return edge_union(cc_g_prime, relabel(cc_g_prime, cc_gl))

def CC(G):
if len(G.edges) == 1:
return [G.edges[0]]

Gl = Graph(G.edges[:len(G.edges)//2])

cerglr=1CC(G1)

g_prime = contract(G, cc_gl)
remaining_edges = []
for edge in g_prime.edges:
if edge not in G.edges[:len(G.edges)//2]:
remaining_edges.append(edge)

G2 = Graph(remaining_edges)

cc_g_prime = CC(G2)

return edge_union(cc_g_prime, relabel(cc_g_prime, cc_gl))

Example: G" after contraction

def CC(G):
if len(G.edges) == 1:
return [G.edges[0]]
G1 Graph(G.edges[:len(G.edges)//2])
cc_gl = CC(G1)
g_prime = contract(G, cc_gl)
remaining_edges = []
for edge in g_prime.edges:
if edge not in G.edges[:len(G.edges)//2]:

remaining_edges.append(edge)

Graph(remaining_edges)
cc_g_prime = CC(G2

return edge_union(cc_g_prime, relabel(cc_g_prime, cc_gl))

Sparsification

e Partition E into E/V lists of no more than V edges each.
* Then, we get from this: O(sort(E) log,(E/M)) I/Os
e To: OWE/V)sort(V)log,(V/M))

* This is better since the number of edges is usually way more than the
number of vertices

e b =

MSF, MM, MIS

Algorithm CC

Let E; be any half of the edges of G; let G; = (V, E}).

Compute CC(G) recursively.

Let G' = G/CC(Gy).

Compute CC(G’) recursively.

CC(G) = CC(G"YURL(CC(G)H, CC(GY)).

W N =

W b=

P R

. G1 < S(G);
. Gy < T1(G, fp(G1));
. fp(G) = Th(G, G1, Gz, fP(G1), fr(G2)).

Algorithm MM

Let E; be any non-empty, proper subset of edges of G; let G; = (V, E).
Compute MM (G) recursively.

Let £/ = E\V(MM(G1));let G’ = (V, E').

Compute MM (G’) recursively.

MM(G) = MM(G') U MM(G,).

Algorithm MSF

. Let E| be any lowest-cost half of the edges of G; i.e., every edge in E\ E;

has weight at least that of the edge of greatest weight in E;. Let G; =
(V, Ev).

Compute MSF(G) recursively.

Let G' = G/MSF(G)).

Compute CC(G’) recursively.

MSF(G) = EX(MSF(G")) UMSF(G/).

Maximal Independent Set / Maximal Matching

Graph G Vertices in L(G) Added edges in L(G)
MIS problems can be converted into a MM problem constructed from edges in
G
/IJ
v/{e 2\
~A /
2

The line graph L(G)

BMSF (Bottleneck MSF)

 Computed similarly to MSF, if lower-weighted half of edges span
graph then it contains a BMSF.

e Otherwise, it contains an edge from the upper half so the lower half
can be contracted

* Divide & conquer again!

Randomized Variants

* Minimum Spanning Forest
* Connected Components

* Maximal Independent Set
* Maximal Matching

1.
2
3.

N

Reduces the number of edges by at least
% (1 — e1/3) and they show that it works
in O(sort(E)) with probability 1 - €

.M~ MUE".

Randomized MM

M < 0.
Set the label of v to 0 with probability 1/2 and to 1 with probability 1/2, Vv € V. O(sort(V))
For each u € V such that u is labeled 1, pick any adjacent v such that v is labeled

0. (If # has no adjacent 0-labeled vertex, then # makes no choice.) Let £’ be the

resulting set of {u, v} edges.

Let V' be the 0-labeled vertices among the edges in E’. For each v € V’, pick any

one incident edge {v, w} € E’. (Note that w is labeled 1.) Let E” be the resulting set g(sort(v))
of {v, w} edges.

E < E\E’.
If E # 0, repeat from step 2.

Boruvka Step

 Selects and contracts the edge of the minimum weight incident on
each vertex
* Sort by first component of edge, scan to select minimum weight edge/vertex
* Sort by second and do the same

Karger Linear-time Randomized MSF/CC

Same as deterministic MISF, divide and conquer on a contracted subgraph except now we expect
G” to have about V/4 and V/8 vertices. We also expect H to have V/2 vertices

1. Perform two Boruvka steps, which reduces the number of vertices by at least a factor
of four. Call the contracted graph G’.

2. Choose a subgraph H of G’ by selecting each edge independently with probability
1/2.

3. Apply the algorithm recursively to find the MSF F of H.

4. Delete from G’ each edge {u, v} such that (1) there is a path, P(u, v), from u to v in
F and (2) the weight of {u, v} exceeds that of the maximum-weight edge on P (u, v).
Call the resulting graph G”.

. Apply the algorithm recursively to G”, yielding MSF F’.

6. Return the edges contracted in step 1 together with those in F’.

()

O (sort(E)) 1/ Os with probability 1 — e~ &)

Semi-External Problems

V<=M, E>M
* Vertices can fit into main memory but edges can’t

* MSF with dynamic trees to maintain internal forest (Kruskal’s
algorithm)

* CC = label edges by components in one scan and sort edge list to
arrange edges by component

* Fast sorting & record/key grouping if number of keys are small
* O(scan(N) logy;z K) 1/0Os

Previous Results

* CC:
* O(sort(E) log, (V/M)) I/Os - Chiang et al. (PRAM)

* O(V + sort(E) log, (M/B)) — Kumar and Schwabe (Buffer Tree)
» Abello et al. performs better when V < M?/ B

* O(max{l, loglogVBP/E} (E/V) sort(V)) — Munagala and Ranade (Multiset)
* Pis number of parallel disks, performs better than our deterministic one
* MSF:
* O(sort(E) log, (V/M)) I/Os - Chiang et al.
* O(sort(E) log, (B) + scan(E) log, (V)) — Kumar and Schwabe
» Abello et al. performs better when V< M B
* MM:
* O(sort(E) log;’ V) - Israeli and Shiloach

Results

Deterministic Randomized
Problem I/0 bound I/O Bound With probability
Connected components O (sort(E) + sort(V) log2 i) O (sort(E)) 1 — S2(E)
MSFs O (sort(E) + sort(V) log, M) O (sort(E)) 1 — S(E)
BMSFs O (sort(E) + Vsort(V) log, H) O(sort(E))] — eS2(E)
Maximal matchings O(%sort(V) log, %) O (sort(E)) 1 — ¢ for any fixed &

Maximal independent sets

O(sort(E))

1 — ¢ for any fixed ¢

