
Cache-Oblivious Algorithms
Matteo Frigo, Charles E. Leiserson, Harald Prokop and Sridhar Ramachandran (2012)
Presentation by Ricardo Gayle Jr.

What is a cache?

● supplementary memory system that temporarily stores frequently used
instructions and data for quicker processing by the central processing unit (CPU) of
a computer.

● Cache holds a copy of only the most frequently used information or program codes
stored in the main memory.

Uses the knowledge of the cache size
and length of cache blocks of the
machine to optimize cache complexity

Ex: TILED-MULT [Golub and van Loan
1989]

Cache oblivious vs Cache aware
Algorithm does not use any prior
knowledge of the machineʼs cache to
be optimized

Algorithms are simpler and more
portable

Ex: to be seen

Cache
Terminology

How do we talk about caches?

● M : number of words that can be
stored in the cache

● The cache is partitioned into
cache lines

● B : the number of consecutive
words stored in a cache line

● There are M / B cache lines
● Cache lines always move

together between memory
● Q : number of cache misses it

incurs as function of M and B
○ A cache-oblivious algorithm is

“good” if it uses cache as effectively
as a cache aware algorithm

Ideal-Cache Model

● Two-level memory hierarchy
○ Ideal and tall cache
○ Arbitrarily large main

memory
● Processor can only use words

in the cache
○ Cache hit vs miss
○ Full cache

● What makes it ideal?
○ Fully associative
○ Optimal offline

strategy
● Who cares?

○ Model used to analyze
an algorithmʼs cache
complexity

Why does the Ideal Cache Model Work? How do
we use it?
1. Optimal Replacement

a. Proven that the number of
misses on a (M, B) LRU-cache
is at most twice as many on a
(M/2, B) ideal-cache

2. Two levels of memory hierarchy
a. Proof by induction which

essentially shows that
multi-level LRU caches incur
an optimal number of misses

3. Fully associative and automatic
replacement
a. Proven that a fully associative

LRU cache can be maintained
in memory with no asymptotic
loss in performance

The model provides an easy way to examine the
cache complexity (Q) of algorithms.

Algorithms
Driving Force: Produce efficient algorithms that work with any computerʼs hierarchical

memory system

Matrix
Multiplication

Problem:
Multiplying an

m x n matrix by an n x p matrix

W = 𝛩(mnp)

Q = 𝛩(m + n + p + (mn + np + mp)/B +
mnp/B√M)

Methodology

Let 𝛼 > 0 be the largest constant small enough where max{m, n, p} ≤ 𝛼√M

Cache Complexity Analysis

● Case 4: m,n,p > 𝛼√M

Q = 𝛩(m + n + p + (mn + np + mp)/B + mnp/B√M)

● Case 2: n,p > 𝛼√M

● Case 3: m > 𝛼√M

● Case 1: m,n,p ≤ 𝛼√M

Funnelsort
Problem:

Sort a list of n items

W = O(n lg n)

Q = O(1 + (n/B)(1 + logMn))

Methodology
1. Split the input into n1/3 contiguous arrays of

size n2/3, and sort these arrays recursively
2. Merge the n1/3 sorted sequences using a

n1/3-merger

Uses a k-merger built out of √k recursive
√k-mergers with FIFO queue buffers

Buffers are oversized at size 2k3/2, twice number of
elements outputted by the √k merger

● Performing inserts and removes on a circular
queue can cause a small (O(1 + r/B)) number
of cache misses if two cache lines are
available for the buffer

To sort n elements:

● If n < 𝛼M, the biggest k-merger is the
n1/3-merger, so S(n) = O((n1/3)2) = O(n)
and thus only Q(n) = O(1 + n/B).

● If n > 𝛼M,

Q(n) = n1/3Q(n2/3) + Qmerge(n1/3)

 = O(1 + (n/B)(1 + logMn))

● Itʼs been proven that this upper bound
is also the lower bound for the number
of cache misses needed for any sorting
algorithms

Cache Complexity
Analysis

● S(k) ≤ (√ k + 1)S(√ k) + O(k2) = O(k2)
○ Merger requires O(k2) space for buffers

and each of the smaller mergers
● Qmerge(k) = O(1 + k + k3/B + (k3logMk)/B

○ Proven through proof by cases where a
subproblem can and can not fit into the
cache

Other
Algorithms

Divide and Conquer is Key!

Matrix Transposition and FFT

● Problem: Transpose an m x n matrix
● Solution: Recursively break the

matrix into submatrices
● Q(m, n) = O(1 + mn/B)

Distribution Sort

● Problem: Sort n items
● Solution: uses a “bucket splitting”

technique to select pivots is a
distribution sort-- also divide and
conquer

● Q(n) = O(1 + (n/B)(1 + logMn))

Competitive
Results

The tests were run on a 450 megahertz AMD K6III
processor with a 32-kilobyte 2-way

set-associative L1 cache, a 64-kilobyte 4-way
set-associative L2 cache, and a 1-megabyte L3

cache of unknown associativity, all with 32-byte
cache lines.

Thank you!
Questions and
comments?

