## **Cache-Oblivious Algorithms**

Matteo Frigo, Charles E. Leiserson, Harald Prokop and Sridhar Ramachandran (2012) Presentation by Ricardo Gayle Jr.



#### What is a cache?

- supplementary memory system that temporarily stores frequently used instructions and data for quicker processing by the central processing unit (CPU) of a computer.
- Cache holds a copy of only the most frequently used information or program codes stored in the main memory.



### Cache oblivious vs Cache aware

Algorithm does not use any prior knowledge of the machine's cache to be optimized

Algorithms are simpler and more portable

Ex: to be seen

Uses the knowledge of the cache size and length of cache blocks of the machine to optimize cache complexity

Ex: TILED-MULT [Golub and van Loan 1989]



## Cache Terminology

How do we talk about caches?



- M : number of words that can be stored in the cache
- The cache is partitioned into cache lines
- B : the number of consecutive words stored in a cache line
- There are M / B cache lines
- Cache lines always move together between memory
- Q : number of cache misses it incurs as function of M and B
  - A cache-oblivious algorithm is "good" if it uses cache as effectively as a cache aware algorithm

#### Ideal-Cache Model

- Two-level memory hierarchy
  - Ideal and tall cache
  - Arbitrarily large main memory
- Processor can only use words in the cache
  - Cache hit vs miss
  - Full cache
- What makes it ideal?
  - Fully associative
  - Optimal offline strategy
- Who cares?
  - Model used to analyze an algorithm's cache complexity



## Why does the Ideal Cache Model Work? How do we use it?

- 1. Optimal Replacement
  - a. Proven that the number of misses on a (M, B) LRU-cache is at most twice as many on a (M/2, B) ideal-cache
- 2. Two levels of memory hierarchy
  - a. Proof by induction which essentially shows that multi-level LRU caches incur an optimal number of misses

- 3. Fully associative and automatic replacement
  - a. Proven that a fully associative
     LRU cache can be maintained
     in memory with no asymptotic
     loss in performance

The model provides an easy way to examine the cache complexity (Q) of algorithms.

# Algorithms

Driving Force: Produce efficient algorithms that work with any computer's hierarchical memory system

## Matrix Multiplication

Problem: Multiplying an m x n matrix by an n x p matrix  $W = \Theta(mnp)$  $Q = \Theta(m + n + p + (mn + np + mp)/B + mnp/B\sqrt{M})$ 

#### Methodology

If m = n = p = 1, REC-MULT performs the scalar multiply-add  $C \leftarrow C + AB$ . Otherwise, depending on the relative sizes of m, n, and p, we have three cases.

(1) If  $m \ge \max\{n, p\}$ , we split the range of *m* according to the formula

$$\begin{pmatrix} C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix} B = \begin{pmatrix} A_1 B \\ A_2 B \end{pmatrix} .$$
(2)

The algorithm recurs twice to compute  $C_1 = C_1 + A_1B$  and  $C_2 = C_2 + A_2B$ . (2) If  $n \ge \max\{m, p\}$ , we split the range of *n* according to the formula

$$C = \begin{pmatrix} A_1 & A_2 \end{pmatrix} \begin{pmatrix} B_1 \\ B_2 \end{pmatrix} = A_1 B_1 + A_2 B_2 .$$
(3)

Specifically, the algorithm first computes  $C \leftarrow C + A_1B_1$  recursively, and then it computes  $C \leftarrow C + A_2B_2$ , also recursively. In particular, we do not allocate temporary storage for the intermediate products implied by Eq. (3).

(3) If  $p \ge \max\{m, n\}$ , we split the range of p according to the formula

$$\begin{pmatrix} C_1 & C_2 \end{pmatrix} = A \begin{pmatrix} B_1 & B_2 \end{pmatrix} = \begin{pmatrix} A B_1 & A B_2 \end{pmatrix} .$$
(4)

#### **Cache Complexity Analysis**

Let  $\alpha > 0$  be the largest constant small enough where  $max\{m, n, p\} \le \alpha \sqrt{M}$ 

• Case 1:  $m, n, p \le \alpha \sqrt{M}$ 

 $Q(m, n, p) = \Theta(1 + (mn + np + mp)/B).$ 

• Case 2:  $n, p > \alpha \sqrt{M}$ 

 $Q(m, n, p) \leq \begin{cases} \Theta(1 + n + np/\mathcal{B} + m) & \text{if } n, p \in [\alpha \sqrt{\mathcal{M}}/2, \alpha \sqrt{\mathcal{M}}] \\ 2Q(m, n/2, p) + O(1) & \text{otherwise if } n \geq p \\ 2Q(m, n, p/2) + O(1) & \text{otherwise }; \end{cases}$ 

 $Q(m,n,p) = \Theta(np/\mathcal{B} + mnp/\mathcal{B}\sqrt{\mathcal{M}})$ 

#### • Case 3: $m > \alpha \sqrt{M}$

 $Q(m,n) \leq \begin{cases} \Theta(1+m) & \text{if } m \in [\alpha \sqrt{\mathcal{M}}/2, \alpha \sqrt{\mathcal{M}}] \\ 2Q(m/2, n, p) + O(1) & \text{otherwise }; \end{cases}$  $Q(m,n, p) = \Theta(m + mnp/\mathcal{B}\sqrt{\mathcal{M}}).$ 

• Case 4:  $m, n, p > \alpha \sqrt{M}$ 

 $Q(m, n, p) \leq \begin{cases} \Theta((mn + np + mp)/\mathcal{B}) & \text{if } m, n, p \in [\alpha \sqrt{\mathcal{M}}/2, \alpha \sqrt{\mathcal{M}}] \\ 2Q(m/2, n, p) + O(1) & \text{otherwise if } m \ge n \text{ and } m \ge p \\ 2Q(m, n/2, p) + O(1) & \text{otherwise. if } n > m \text{ and } n \ge p \\ 2Q(m, n, p/2) + O(1) & \text{otherwise .} \end{cases}$ 

 $Q(m, n, p) = \Theta(mnp/\mathcal{B}\sqrt{\mathcal{M}}).$ 

 $Q = \Theta(m + n + p + (mn + np + mp)/B + mnp/B\sqrt{M})$ 

## Funnelsort

Problem: Sort a list of *n* items  $W = O(n \lg n)$  $Q = O(1 + (n/B)(1 + \log_M n))$ 

#### Methodology

- 1. Split the input into n<sup>1/3</sup> contiguous arrays of size n<sup>2/3</sup>, and sort these arrays recursively
- Merge the n<sup>1/3</sup> sorted sequences using a n<sup>1/3</sup>-merger

Uses a k-merger built out of  $\sqrt{k}$  recursive  $\sqrt{k}$ -mergers with FIFO queue buffers

Buffers are oversized at size  $2k^{3/2}$ , twice number of elements outputted by the  $\sqrt{k}$  merger

• Performing inserts and removes on a circular queue can cause a small (O(1 + r/B)) number of cache misses if two cache lines are available for the buffer



## Cache Complexity Analysis

- $S(k) \le (\sqrt{k} + 1)S(\sqrt{k}) + O(k^2) = O(k^2)$ 
  - Merger requires  $O(k^2)$  space for buffers and each of the smaller mergers
- $Q_{merge}(k) = O(1 + k + k^3/B + (k^3 \log_M k)/B)$   $\circ$  Proven through proof by cases where a
  - Subproblem can and can not fit into the cache



#### To sort *n* elements:

- If  $n < \alpha M$ , the biggest k-merger is the  $n^{1/3}$ -merger, so  $S(n) = O((n^{1/3})^2) = O(n)$  and thus only Q(n) = O(1 + n/B).
- If  $n > \alpha M$ ,

 $Q(n) = n^{1/3}Q(n^{2/3}) + Q_{merge}(n^{1/3})$  $= O(1 + (n/B)(1 + \log_M n))$ 

 It's been proven that this upper bound is also the lower bound for the number of cache misses needed for any sorting algorithms

## Other Algorithms

Divide and Conquer is Key!

Matrix Transposition and FFT

- Problem: Transpose an *m x n* matrix
- Solution: Recursively break the matrix into submatrices
- Q(m, n) = O(1 + mn/B)

#### **Distribution Sort**

- Problem: Sort *n* items
- Solution: uses a "bucket splitting" technique to select pivots is a distribution sort-- also divide and conquer
- $Q(n) = O(1 + (n/B)(1 + \log_M n))$

## Competitive Results

The tests were run on a 450 megahertz AMD K6III processor with a 32-kilobyte 2-way set-associative L1 cache, a 64-kilobyte 4-way set-associative L2 cache, and a 1-megabyte L3 cache of unknown associativity, all with 32-byte cache lines.



Fig. 4. Average time to transpose an  $N \times N$  matrix, divided by  $N^2$ .





Thank you! Questions and comments?