Cache-Oblivious Algorithms

Matteo Frigo, Charles E. Leiserson, Harald Prokop and Sridhar Ramachandran (2012)
Presentation by Ricardo Gayle Jr.

What is a cache?

e supplementary memory system that temporarily stores frequently used
instructions and data for quicker processing by the central processing unit (CPU) of
a computer.

e Cache holds a copy of only the most frequently used information or program codes
stored in the main memory.

A
A

|, | Cache Memory ——> —

CPU Primary Memory Secondary Memory

A

Algorithm does not use any prior
knowledge of the machine’s cache to
be optimized

Algorithms are simpler and more
portable

Ex: to be seen

s Cache aware

Cache
Terminology

How do we talk about caches?

Cache

mnnm

M : number of words that can be
stored in the cache

The cache is partitioned into
cache lines

B : the number of consecutive
words stored in a cache line
There are M / B cache lines

Cache lines always move
together between memory
Q : number of cache misses it

incurs as function of M and B
o Acache-oblivious algorithm is
“good” if it uses cache as effectively
as a cache aware algorithm

Ideal-Cache Model

Two-level memory hierarchy
o Idealand tall cache
o Arbitrarily large main
memory
Processor can only use words
in the cache
o Cache hit vs miss
o Fullcache
What makes it ideal?
o Fully associative
o Optimal offline
strategy
Who cares?
o Model used to analyze
an algorithm’s cache
complexity

organized by
optimal replacement

Main
Memory

strategy
Cache
A
CPU
%%
work
M /B Cache lines Q
\ cache

~ 5 Lines mMisses
M= Q(B%) of length B

Why does the Ideal Cache Model Work? How do

we use it?

1. Optimal Replacement
a. Proven that the number of
misses on a (M, B) LRU-cache
is at most twice as many on a
(M/2, B) ideal-cache
2. Two levels of memory hierarchy
a. Proof byinduction which
essentially shows that
multi-level LRU caches incur
an optimal number of misses

3. Fully associative and automatic
replacement
a. Proven that a fully associative
LRU cache can be maintained
in memory with no asymptotic
loss in performance

The model provides an easy way to examine the
cache complexity (Q) of algorithms.

Algorithms

Driving Force: Produce efficient algorithms that work with any computer’s hierarchical
memory system

Matrix
Multiplication

Problem:
Multiplying an
m X n matrix by an n x p matrix

W =6O(mnp)

Q=60(m+n+p+(mn+np+mp)/B+
mnp/BvM)

Methodology

Ifm =n = p =1, REC-MULT performs the scalar multiply-add C < C + AB.
Otherwise, depending on the relative sizes of m, n, and p, we have three cases.

(1) If m > max {n, p}, we split the range of m according to the formula

AR WER

The algorithm recurs twice to compute C1 =C1+ A1B and Cy, = Cy + A9B.
(2) If n > max {m, p}, we split the range of n according to the formula

B
C= (Al A2) (BQ = A¢Bi+ AsB5 . (3)

Specifically, the algorithm first computes C < C + A1B; recursively, and then
it computes C < C + AyBj, also recursively. In particular, we do not allocate
temporary storage for the intermediate products implied by Eq. (3).

(3) If p > max {m, n}, we split the range of p according to the formula

(Cl cz) = A <31 32) = (AB1 ABz> . 4)

Cache Complexity Analysis

Let « > 0 be the largest constant small enough where max{m, n, p} <avM

* Caselimnpsa/M e Case4:m,n,p>avM
Q(m, n, p) = O(1 + (mn +np + mp)/B) O((mn +np + mp)/B) if m,n, p € lav/M/2, a/ M|,
Q(m,n, p) < 2Q(m/2,n, p) + O(1) otherwiseif m>nandm > p,

e Case2:n,p>avM

Ol +n+np/B+m) ifn, p e [av/M/2, a/M]
Q(m,n, p) < {2Q(m,n/2, p) + O(1) otherwiseifn > p, Q(m, n, p) = O(mnp/BVM).
2Q(m, n, p/2) + O(1) otherwise ;

~ 12Q(m, n/2, p) + O(1) otherwise. ifn >mandn > p,
2Q(m,n, p/2) + O(1) otherwise .

Q(m, n, p) = O(np/B + mnp/B/M) Q=6(m+n+p+(mn+np+mp)/B+mnp/BVM)

e Case3:m>ay/M

Q. n) < O(1 +m) if m e [av/M/2, a/M]
77| 2Q(m/2, n, p) + O(1) otherwise ;

Q(m, n, p) = O(m + mnp/ BV M)

Funnelsort =G

Q=0(1+(n/B)(1 +log,,n))

Problem:
Sort a list of n items

Methodology

1. Splitthe inputinto n'® contiguous arrays of
size n?3, and sort these arrays recursively

2. Merge the n'/®sorted sequences using a
n'-merger

Uses a k-merger built out of vk recursive
Vk-mergers with FIFO queue buffers

Buffers are oversized at size 2k*?, twice number of
elements outputted by the vk merger

e Performinginserts and removes on a circular
gueue can cause a small (O(1 +r/B)) number
of cache misses if two cache lines are
available for the buffer

buffers

k-merger

S(k) < (Vk+1)S(V k) + O(k?) = O(k?)
o Merger requires O(k?) space for buffers
and each of the smaller mergers

Q. (k)=0(1+k+k/B+(Klog,k)/B
o gProven through proof by cases where a
subproblem can and can not fit into the
cache

|

' buffers

N

k-merger

Other
Algorithms

Divide and Conquer is Key!

Matrix Transposition and FFT

Problem: Transpose an m x n matrix
Solution: Recursively break the
matrix into submatrices

Q(m, n) =0(1 + mn/B)

Distribution Sort

Problem: Sort n items

Solution: uses a “bucket splitting”
technique to select pivotsis a
distribution sort-- also divide and
conquer

Q(n) =0(1 +(n/B)(1 + log,n))

Competitive
Results

The tests were run on a 450 megahertz AMD Kélll
processor with a 32-kilobyte 2-way
set-associative L1 cache, a 64-kilobyte 4-way
set-associative L2 cache, and a 1-megabyte L3
cache of unknown associativity, all with 32-byte
cache lines.

Time (microseconds)

Fig. 4. Average time to transpose an N x N matrix, divided by N2.

o
o I o
- o N

T
iterative ¢

- recursive +

o
o

—
(2}
°
c
e}
O
o}
(2]
e
Q
S
E
o
£
'—

Average time taken to multiply two N x N matrices, divided by N°.

Mk
0

0
0

200

400

600
N

800

1000

1200

iterative <

| recursive +

&

Lol

R000050000000 000000 00> 0O
A

Lo

Cox> <% SO

100

200

300
N

400

500

Thank you!
Questions and
comments?

