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What is a cache?

● supplementary memory system that temporarily stores frequently used 
instructions and data for quicker processing by the central processing unit (CPU) of 
a computer.

● Cache holds a copy of only the most frequently used information or program codes 
stored in the main memory.



Uses the knowledge of the cache size 
and length of cache blocks of the 
machine to optimize cache complexity

Ex: TILED-MULT [Golub and van Loan 
1989]

Cache oblivious vs Cache aware
Algorithm does not use any prior 
knowledge of the machineʼs cache to 
be optimized

Algorithms are simpler and more 
portable

Ex: to be seen



Cache 
Terminology

How do we talk about caches?

● M : number of words that can be 
stored in the cache

● The cache is partitioned into 
cache lines

● B : the number of consecutive 
words stored in a cache line

● There are M / B cache lines
● Cache lines always move 

together between memory
● Q : number of cache misses it 

incurs as function of M and B
○ A cache-oblivious algorithm is 

“good” if it uses cache as effectively 
as a cache aware algorithm



Ideal-Cache Model

● Two-level memory hierarchy
○ Ideal and tall cache
○ Arbitrarily large main 

memory
● Processor can only use words 

in the cache
○ Cache hit vs miss
○ Full cache

● What makes it ideal?
○ Fully associative
○ Optimal offline 

strategy
● Who cares?

○ Model used to analyze 
an algorithmʼs cache 
complexity



Why does the Ideal Cache Model Work? How do 
we use it?
1. Optimal Replacement

a. Proven that the number of 
misses on a (M, B) LRU-cache 
is at most twice as many on a 
(M/2, B) ideal-cache

2. Two levels of memory hierarchy 
a. Proof by induction which 

essentially shows that 
multi-level LRU caches incur 
an optimal number of misses

3. Fully associative and automatic 
replacement
a. Proven that a fully associative 

LRU cache can be maintained 
in memory with no asymptotic 
loss in performance 

The model provides an easy way to examine the 
cache complexity (Q) of algorithms.



Algorithms
Driving Force: Produce efficient algorithms that work with any computerʼs hierarchical 

memory system



Matrix 
Multiplication

Problem:
Multiplying an

m x n matrix by an n x p matrix

W = 𝛩(mnp)

Q = 𝛩(m + n + p + (mn + np + mp)/B + 
mnp/B√M)



Methodology



Let 𝛼 > 0 be the largest constant small enough where max{m, n, p} ≤ 𝛼√M

Cache Complexity Analysis

● Case 4: m,n,p > 𝛼√M

Q = 𝛩(m + n + p + (mn + np + mp)/B + mnp/B√M)

● Case 2: n,p > 𝛼√M

● Case 3: m > 𝛼√M

● Case 1: m,n,p ≤ 𝛼√M



Funnelsort
Problem:

Sort a list of n items

W = O(n lg n)

Q = O(1 + (n/B)(1 + logMn))



Methodology
1. Split the input into n1/3 contiguous arrays of 

size n2/3, and sort these arrays recursively
2. Merge the n1/3 sorted sequences using a 

n1/3-merger

Uses a k-merger built out of √k recursive 
√k-mergers with FIFO queue buffers

Buffers are oversized at size 2k3/2, twice number of 
elements outputted by the √k merger

● Performing inserts and removes on a circular 
queue can cause a small ( O(1 + r/B) ) number 
of cache misses if two cache lines are 
available for the buffer



To sort n elements:

● If n < 𝛼M, the biggest k-merger is the 
n1/3-merger, so S(n) = O((n1/3 )2) = O(n) 
and thus only Q(n) = O(1 + n/B).

● If n > 𝛼M, 

Q(n) = n1/3Q(n2/3) + Qmerge(n1/3)  

         = O(1 + (n/B)(1 + logMn))

● Itʼs been proven that this upper bound 
is also the lower bound for the number 
of cache misses needed for any sorting 
algorithms

Cache Complexity 
Analysis

● S(k) ≤ (√ k + 1)S(√ k) + O(k2) = O(k2)
○ Merger requires O(k2) space for buffers 

and each of the smaller mergers
● Qmerge(k) = O(1 + k + k3/B + (k3logMk)/B

○ Proven through proof by cases where a 
subproblem can and can not fit into the 
cache



Other 
Algorithms

Divide and Conquer is Key!

Matrix Transposition and FFT

● Problem: Transpose an m x n matrix
● Solution: Recursively break the 

matrix into submatrices 
● Q(m, n) = O(1 + mn/B)

Distribution Sort

● Problem: Sort n items
● Solution: uses a “bucket splitting” 

technique to select pivots is a 
distribution sort-- also divide and 
conquer

● Q(n) = O(1 + (n/B)(1 + logMn))



Competitive 
Results

The tests were run on a 450 megahertz AMD K6III 
processor with a 32-kilobyte 2-way 

set-associative L1 cache, a 64-kilobyte 4-way 
set-associative L2 cache, and a 1-megabyte L3 

cache of unknown associativity, all with 32-byte 
cache lines.



Thank you!
Questions and 
comments?


