Engineering a Cache-Oblivious
Sorting Algorithm (Brodal et al.)

Kliment Serafimov, 6.827, Spring 2022

Motivation

e Sortingis afundamental problem.

e Cache obliviousness provides guarantees regardless of cache spec.
o No needto fine tuning.
o No need for parameter dependence.

Set up

e Working inthe RAM model, assuming input sizes that fitin RAM.
e Target runtime (in cache misses): O(N/B log_(M) (N))
o Missize of cache
o Bissize of the cache line
o Nissize of input
e Need the (weaker) tall cache assumption: M > B*(1+c), c > O (Brodal et al)
o Pays additional cost factor of 1/c
o Standard tall cache assumption: M > B*2

Algorithm

Main algorithm:

1. Split Ninto N*(1/d) segments of size N*(1-1/d) each
2. Sort each segment recursively (use standard sort for base case)
3. Apply a(N*(1/d))-merger on the sorted segments.

K-merger algorithm:

1. Construct a k-merger tree (16-merger tree shown in figure)
a. With carefully constructed buffer sizes

2. Apply the fill procedure enough times to sort
a. Eachinvocation sorts k*d elements.

Buffer sizes of a k-merger:

1. Buffer size at the middle (depth d/2) of the tree are: a*d*(3/2)

2. Recurse ontop and bottom trees.
a. ‘Van Emde Boas-style recursion

Procedure FILL(v)
while v’s output buffer is not full
if left input buffer empty
FiLL(left child of v)
if right input buffer empty
FiLL(right child of v)
perform one merge step

Input
buffers

Output
buffer

Analysis:

High level idea:

e Sortingis constrained within one subset of the buffers at a time due to the Van Emde
Boas-style recursion of setting buffer sizes.
e Seeboard for intuition

Implementation and Experiments

e Machines used for evaluation:
o Pentium 4, Pentium Ill, MIPS 10000, AMD Athlon, [tanium 2
Merger implementation
o Recursive vsiterative
e Memory navigation:
o Pointer based, index arithmetic
e Memory layout:
o BFS, DFS, Van Emde Boas.
o Layout nodes and buffers separately, vs together
e Memory allocation:
o Custom allocator, standard allocator (only used with pointer-based navigation)
e Results of 28 experiments: best choice of parameters:
o (1) recursive invocation, (2) pointer-based navigation, (3) VEB layout
o (4) nodes and buffers laid out separately, and (5) allocation by the standard allocator.

More parameters!

e Varying degree of the merger: z = {2..9}
o Bestchoice:4o0r5
e Merger construction caching
o Gave speedup of 3-5%
e Buffer size scaling parameter a, and d.
o Bestchoicefora=16,andd =2
e Base-case sorting algorithm
o Usestd::sort

Comparisons and baselines

e Compared against cache aware sorting algorithms as well as quicksort.

e See paper for charts!

e Main takeaway: performance depends on the architecture and the input size
o Insome cases the overhead of funnelsort is not worth the gain

o For architectures with fast CPUs (where cache misses are costlier in comparison)
and large input sizes, Funnelsort wins!

Discussion question

e Canwe have an even simpler algorithm?

