
Engineering a Cache-Oblivious
Sorting Algorithm (Brodal et al.)

Kliment Serafimov, 6.827, Spring 2022

Motivation

● Sorting is a fundamental problem.

● Cache obliviousness provides guarantees regardless of cache spec.

○ No need to fine tuning.

○ No need for parameter dependence.

● Working in the RAM model, assuming input sizes that fit in RAM.

● Target runtime (in cache misses): O(N/B log_(M) (N))
○ M is size of cache

○ B is size of the cache line

○ N is size of input

● Need the (weaker) tall cache assumption: M > B^(1+c), c > 0 (Brodal et al)
○ Pays additional cost factor of 1/c

○ Standard tall cache assumption: M > B^2

Set up

Algorithm
Main algorithm:

1. Split N into N^(1/d) segments of size N^(1-1/d) each
2. Sort each segment recursively (use standard sort for base case)
3. Apply a (N^(1/d))-merger on the sorted segments.

K-merger algorithm:

1. Construct a k-merger tree (16-merger tree shown in figure)
a. With carefully constructed buffer sizes

2. Apply the fill procedure enough times to sort
a. Each invocation sorts k^d elements.

Buffer sizes of a k-merger:

1. Buffer size at the middle (depth d/2) of the tree are: a*d^(3/2)
2. Recurse on top and bottom trees.

a. ‘Van Emde Boas’-style recursion

Analysis:

High level idea:

● Sorting is constrained within one subset of the buffers at a time due to the Van Emde

Boas-style recursion of setting buffer sizes.

● See board for intuition

● Machines used for evaluation:

○ Pentium 4, Pentium III, MIPS 10000, AMD Athlon, Itanium 2

● Merger implementation

○ Recursive vs iterative

● Memory navigation:

○ Pointer based, index arithmetic

● Memory layout:

○ BFS, DFS, Van Emde Boas.

○ Lay out nodes and buffers separately, vs together

● Memory allocation:

○ Custom allocator, standard allocator (only used with pointer-based navigation)

● Results of 28 experiments: best choice of parameters:
○ (1) recursive invocation, (2) pointer-based navigation, (3) vEB layout
○ (4) nodes and buffers laid out separately, and (5) allocation by the standard allocator.

Implementation and Experiments

More parameters!

● Varying degree of the merger: z = {2..9}

○ Best choice: 4 or 5
● Merger construction caching

○ Gave speedup of 3-5%

● Buffer size scaling parameter a, and d.

○ Best choice for a = 16, and d = 2

● Base-case sorting algorithm

○ Use std::sort

Comparisons and baselines

● Compared against cache aware sorting algorithms as well as quicksort.

● See paper for charts!

● Main takeaway: performance depends on the architecture and the input size
○ In some cases the overhead of funnelsort is not worth the gain

○ For architectures with fast CPUs (where cache misses are costlier in comparison)

and large input sizes, Funnelsort wins!

Discussion question

● Can we have an even simpler algorithm?

