
Julienne and the Graph-Based Benchmark Suite

1

Laxman Dhulipala
Google Research / UMD
https://ldhulipala.github.io/

Based on joint work with
Guy Blelloch, Jessica Shi, Julian Shun, and Tom Tseng

https://ldhulipala.github.io/

2

Graph Processing: algorithms and systems that
enable us to analyze and understand graphs

2

Graph Processing: algorithms and systems that
enable us to analyze and understand graphs

Input Graph

2

Graph Processing: algorithms and systems that
enable us to analyze and understand graphs

Input Graph Graph Processing

Graph
Clustering

Dense
Subgraphs

…

Connectivity

Distance
Computations

Algorithms

2

Graph Processing: algorithms and systems that
enable us to analyze and understand graphs

Input Graph Output

✤ Understanding
✤ Visualizations
✤ Graph-based features
✤ System-optimization

Graph Processing

Graph
Clustering

Dense
Subgraphs

…

Connectivity

Distance
Computations

Algorithms

2

Graph Processing: algorithms and systems that
enable us to analyze and understand graphs

Input Graph Output

✤ Understanding
✤ Visualizations
✤ Graph-based features
✤ System-optimization

Graph Processing

Graph
Clustering

Dense
Subgraphs

…

Connectivity

Distance
Computations

Algorithms✤ Static
✤ Dynamic

Large-Scale Graph Processing

✤ 3.5 billion vertices and 128 billion
edges

✤ ~1TB of memory to store

WebDataCommons hyperlink graph

3

“…[the 2012 graph is the] largest
hyperlink graph that is available to the

public outside companies such as
Google, Yahoo, and Microsoft.”

✤ Largest publicly available graph

Large-Scale Graph Processing

✤ 3.5 billion vertices and 128 billion
edges

✤ ~1TB of memory to store

WebDataCommons hyperlink graph

3

“…[the 2012 graph is the] largest
hyperlink graph that is available to the

public outside companies such as
Google, Yahoo, and Microsoft.”

✤ Largest publicly available graph

Large-Scale Graph Processing

✤ 3.5 billion vertices and 128 billion
edges

✤ ~1TB of memory to store

WebDataCommons hyperlink graph

Sources: https://snap.stanford.edu/data/, http://law.di.unimi.it/datasets.php, http://webdatacommons.org/hyperlinkgraph/

1995 2000 2005 2010 2015 2020
Number of Vertices + Edges

101

103

105

107

109

1011

1013

1015

Y
ea

r

Graph Type
Web

Social

Collaboration

Biology

Other

human brain graph (expected)
n = 1011 m = 1014

Year of sourcing vs total number of vertices and edges
for real-world graphs from the SNAP and LAW datasets

3

https://snap.stanford.edu/data/
http://law.di.unimi.it/datasets.php
http://webdatacommons.org/hyperlinkgraph/

“…[the 2012 graph is the] largest
hyperlink graph that is available to the

public outside companies such as
Google, Yahoo, and Microsoft.”

✤ Largest publicly available graph

Large-Scale Graph Processing

✤ 3.5 billion vertices and 128 billion
edges

✤ ~1TB of memory to store

WebDataCommons hyperlink graph

Sources: https://snap.stanford.edu/data/, http://law.di.unimi.it/datasets.php, http://webdatacommons.org/hyperlinkgraph/

1995 2000 2005 2010 2015 2020
Number of Vertices + Edges

101

103

105

107

109

1011

1013

1015

Y
ea

r

Graph Type
Web

Social

Collaboration

Biology

Other

human brain graph (expected)
n = 1011 m = 1014

Year of sourcing vs total number of vertices and edges
for real-world graphs from the SNAP and LAW datasets

Parallelism is the key to processing very large
graphs in a timely manner

4

https://snap.stanford.edu/data/
http://law.di.unimi.it/datasets.php
http://webdatacommons.org/hyperlinkgraph/

5

Shared-Memory Parallelism

5

Shared-Memory Parallelism

Shared-Memory Machines

• Cost for a 1TB memory machine with 72
processors is about $20,000.

5

Shared-Memory Parallelism

Shared-Memory Machines

• Cost for a 1TB memory machine with 72
processors is about $20,000.

5

Shared-Memory Parallelism

Shared-Memory Machines

• Cost for a 1TB memory machine with 72
processors is about $20,000.

• Can rent a similar machine (96 processors and
1.5TB memory) for $11/hour on Google Cloud

5

Shared-Memory Parallelism

Shared-Memory Machines

• Cost for a 1TB memory machine with 72
processors is about $20,000.

• Can rent a similar machine (96 processors and
1.5TB memory) for $11/hour on Google Cloud

A single shared-memory machine can already
store the largest publicly available graph
datasets, with plenty of room to spare

WebDataCommons Graph
• 3.5 billion vertices and 128 billion edges

6

Work-Depth Model

Computation Graph

2

1

3

4

5

6

7 9

8 10

11

12

20

13

14

15

19

16

17

18

6

Work-Depth Model

Computation Graph

2

1

3

4

5

6

7 9

8 10

11

12

20

13

14

15

19

16

17

18

Work = total number of vertices in the
computation graph

6

Work-Depth Model

Computation Graph

2

1

3

4

5

6

7 9

8 10

11

12

20

13

14

15

19

16

17

18

Work = total number of vertices in the
computation graph

Depth = longest directed path in the graph
(dependence length)

Computation Graph

2

1

3

4

5

6

7 9

8 10

11

12

20

13

14

15

19

16

17

18

6

Work-Depth Model

Computation Graph

2

1

3

4

5

6

7 9

8 10

11

12

20

13

14

15

19

16

17

18

Work = total number of vertices in the
computation graph

Depth = longest directed path in the graph
(dependence length)

Running Time = 𝖶𝗈𝗋𝗄 /#𝖯𝗋𝗈𝖼𝖾𝗌𝗌𝗈𝗋𝗌 + O(𝖣𝖾𝗉𝗍𝗁)

Computation Graph

2

1

3

4

5

6

7 9

8 10

11

12

20

13

14

15

19

16

17

18

6

Work-Depth Model

Computation Graph

2

1

3

4

5

6

7 9

8 10

11

12

20

13

14

15

19

16

17

18

Work = total number of vertices in the
computation graph

Depth = longest directed path in the graph
(dependence length)

Running Time = 𝖶𝗈𝗋𝗄 /#𝖯𝗋𝗈𝖼𝖾𝗌𝗌𝗈𝗋𝗌 + O(𝖣𝖾𝗉𝗍𝗁)

A work-efficient parallel algorithm has work
that asymptotically matches that of the best
sequential algorithm for the problem

Computation Graph

2

1

3

4

5

6

7 9

8 10

11

12

20

13

14

15

19

16

17

18

6

Work-Depth Model

Computation Graph

2

1

3

4

5

6

7 9

8 10

11

12

20

13

14

15

19

16

17

18

Goal: work-efficient and low
(polylogarithmic) depth algorithms

Work = total number of vertices in the
computation graph

Depth = longest directed path in the graph
(dependence length)

Running Time = 𝖶𝗈𝗋𝗄 /#𝖯𝗋𝗈𝖼𝖾𝗌𝗌𝗈𝗋𝗌 + O(𝖣𝖾𝗉𝗍𝗁)

A work-efficient parallel algorithm has work
that asymptotically matches that of the best
sequential algorithm for the problem

Computation Graph

2

1

3

4

5

6

7 9

8 10

11

12

20

13

14

15

19

16

17

18

7

Theoretical Efficiency

A parallel algorithm is theoretically-efficient if it has good bounds on its
work and depth

Why do we care about theoretical bounds?

7

Theoretical Efficiency

A parallel algorithm is theoretically-efficient if it has good bounds on its
work and depth

Why do we care about theoretical bounds?

Input-agnostic design
• Design codes without worrying too much about

your datasets

7

Theoretical Efficiency

A parallel algorithm is theoretically-efficient if it has good bounds on its
work and depth

Why do we care about theoretical bounds?

Input-agnostic design
• Design codes without worrying too much about

your datasets

7

Theoretical Efficiency

A parallel algorithm is theoretically-efficient if it has good bounds on its
work and depth

Why do we care about theoretical bounds?

Robustness to bad inputs
• Perform well even on new classes of graphs
• Understand how they will scale on larger graphs

Input-agnostic design
• Design codes without worrying too much about

your datasets

7

Theoretical Efficiency

A parallel algorithm is theoretically-efficient if it has good bounds on its
work and depth

Why do we care about theoretical bounds?

Robustness to bad inputs
• Perform well even on new classes of graphs
• Understand how they will scale on larger graphs

Input-agnostic design
• Design codes without worrying too much about

your datasets

Work-efficiency matters in practice
• Work-efficient algorithms can be much faster

than work-inefficient algorithms

7

Theoretical Efficiency

A parallel algorithm is theoretically-efficient if it has good bounds on its
work and depth

Why do we care about theoretical bounds?

Robustness to bad inputs
• Perform well even on new classes of graphs
• Understand how they will scale on larger graphs

Input-agnostic design
• Design codes without worrying too much about

your datasets

Work-efficiency matters in practice
• Work-efficient algorithms can be much faster

than work-inefficient algorithms

Up to 9x faster using a work-efficient k-
core algorithm (described in this talk)

How do we design theoretically-efficient
parallel graph algorithms for a certain class of

bucketing-based problems

8

Julienne: A Framework for Parallel Graph Algorithms
using Work-efficient Bucketing [DBS’17]

https://people.csail.mit.edu/jshun/bucketing.pdf
https://people.csail.mit.edu/jshun/bucketing.pdf

9

Frontier-Based Algorithms in Ligra

Primitives

• Frontier data-structure (vertexSubset)

• Map over vertices in a frontier (vertexMap)

• Map over out-edges of a frontier to generate new frontier (edgeMap)

9

Frontier-Based Algorithms in Ligra

Primitives

• Frontier data-structure (vertexSubset)

• Map over vertices in a frontier (vertexMap)

• Map over out-edges of a frontier to generate new frontier (edgeMap)

Example: Breadth-First Search

Round 1

: in frontier : unvisited : visited

9

Frontier-Based Algorithms in Ligra

Primitives

• Frontier data-structure (vertexSubset)

• Map over vertices in a frontier (vertexMap)

• Map over out-edges of a frontier to generate new frontier (edgeMap)

Round 2

Example: Breadth-First Search

Round 1

: in frontier : unvisited : visited

9

Frontier-Based Algorithms in Ligra

Primitives

• Frontier data-structure (vertexSubset)

• Map over vertices in a frontier (vertexMap)

• Map over out-edges of a frontier to generate new frontier (edgeMap)

Round 2

Example: Breadth-First Search

Round 1

: in frontier : unvisited : visited

Round 3

9

Frontier-Based Algorithms in Ligra

Primitives

• Frontier data-structure (vertexSubset)

• Map over vertices in a frontier (vertexMap)

• Map over out-edges of a frontier to generate new frontier (edgeMap)

Round 2 Round 4

Example: Breadth-First Search

Round 1

: in frontier : unvisited : visited

Round 3

10

Weighted Breadth-First Search

s

1

4

2

5

6

3

7

1 1

2

3

2

1

1

3
1

Problem: Compute the shortest path distances from s

Given: with positive integer edge weights, and a source s G = (V, E, w)

Frontier-based approach: on each step, visit all
neighbors that had their distance decrease

11

Weighted Breadth-First Search

s

1

4

2

5

6

3

7

1 1

2

3

2

1

1

3
1

Problem: Compute the shortest path distances from s

Given: with positive integer edge weights, and a source s G = (V, E, w)

Frontier-based approach: on each step, visit all
neighbors that had their distance decrease

Round 1

Frontier: s

Distances: s: 0

12

Weighted Breadth-First Search

s

1

4

2

5

6

3

7

1 1

2

3

2

1

1

3
1

Problem: Compute the shortest path distances from s

Given: with positive integer edge weights, and a source s G = (V, E, w)

Frontier-based approach: on each step, visit all
neighbors that had their distance decrease

Round 1

Frontier: s

Distances: s: 0

13

Weighted Breadth-First Search

s

1

4

2

5

6

3

7

1 1

2

3

2

1

1

3
1

Problem: Compute the shortest path distances from s

Given: with positive integer edge weights, and a source s G = (V, E, w)

Round 2

Frontier: 1 4

Distances: s: 0
1: 1
4: 3

14

Weighted Breadth-First Search

s

1

4

2

5

6

3

7

1 1

2

3

2

1

1

3
1

Problem: Compute the shortest path distances from s

Given: with positive integer edge weights, and a source s G = (V, E, w)

Round 2

Distances: s: 0
1: 1
4: 3

Frontier: 1 4

15

Weighted Breadth-First Search

s

1

4

2

5

6

3

7

1 1

2

3

2

1

1

3
1

Problem: Compute the shortest path distances from s

Given: with positive integer edge weights, and a source s G = (V, E, w)

Round 3

Frontier: 4 2

Distances: s: 0
1: 1
4: 2
6: 5

5 6 3

16

Weighted Breadth-First Search

s

1

4

2

5

6

3

7

1 1

2

3

2

1

1

3
1

Problem: Compute the shortest path distances from s

Given: with positive integer edge weights, and a source s G = (V, E, w)

Round 3

Frontier: 4 2

Distances: s: 0
1: 1
4: 2
6: 5

5 6 3

16

Weighted Breadth-First Search

s

1

4

2

5

6

3

7

1 1

2

3

2

1

1

3
1

Problem: Compute the shortest path distances from s

Given: with positive integer edge weights, and a source s G = (V, E, w)

Round 3

Frontier: 4 2

Distances: s: 0
1: 1
4: 2
6: 5

5 6 3

Not work-efficient!

17

Sequential Weighted Breadth-First Search

s

1

4

2

5

6

3

7

1 1

2

3

2

1

1

3
1

Problem: Compute the shortest path distances from s

Given: with positive integer edge weights, and a source s G = (V, E, w)

Idea:
• Run Dijkstra’s algorithm, but use
buckets instead of a PQ

• Represent buckets using dynamic
arrays

• Runs in workO(m + r𝗌𝗋𝖼)

18

Sequential Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2

3

2

1

1

3 1

Round 1 2 7 3

5

6s

0 1 2 3 4 5

19

Sequential Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2

3

2

1

1

3 1

Round 1 2 7 3

5

6s

0 1 2 3 4 5

20

Sequential Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2

3

2

1

1

3 1

Round 1 2 7 3

5

6s 1

0 1 2 3 4 5

4

21

Sequential Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2

3

2

1

1

3 1

Round 1 2 7 3

5

61

0 1 2 3 4 5

4

22

Sequential Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2

3

2

1

1

3 1

Round 2 2 7 3

5

61

0 1 2 3 4 5

4

23

Sequential Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2

3

2

1

1

3 1

Round 2 2 7 3

5

61

0 1 2 3 4 5

4

24

Sequential Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2

3

2

1

1

3 1

Round 2 2 7 3

5

61

0 1 2 3 4 5

4

2

25

Sequential Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2

3

2

1

1

3 1

Round 2 7 36

0 1 2 3 4 5

4

2

26

Sequential Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2

3

2

1

1

3 1

Round 3 7 36

0 1 2 3 4 5

4

2

26

Sequential Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2

3

2

1

1

3 1

Round 3 7 36

0 1 2 3 4 5

4

2

O(m + r𝗌𝗋𝖼)Runs in work

27

Bucketing

The algorithm uses buckets to organize work for future iterations

27

Bucketing

This algorithms is parallelizable

• In each step:
1. Process all vertices in the next bucket in parallel

2. Update buckets of neighbors in parallel

The algorithm uses buckets to organize work for future iterations

28

Sequential Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2

3

2

1

1

3 1

Round 3 7 36

0 1 2 3 4 5

4

2

Sequential:
process

vertices one
by one

29

Parallel Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2

3

2

1

1

3 1

Round 3 7 36

0 1 2 3 4 5

4

2
(1) Process

vertices in the
same bucket

in parallel

30

Parallel Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2

3

2

1

1

3 1

Round 3 7 36

0 1 2 3 4 5

4

2
(2) Insert

neighbors
into buckets

in parallel7 36

0 1 2 3 4 5

4

2

3

6

5

30

Parallel Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2

3

2

1

1

3 1

Round 3 7 36

0 1 2 3 4 5

4

2
(2) Insert

neighbors
into buckets

in parallel7 36

0 1 2 3 4 5

4

2

3

6

5

work
depth

Resulting algorithm performs:

(assuming efficient bucketing)

O(m + r𝗌𝗋𝖼)
O(r𝗌𝗋𝖼 log n)

31

Parallel Bucketing

Bucketing is useful for more than just wBFS

31

Parallel Bucketing

Bucketing is useful for more than just wBFS

Parallel Approximate Set Cover
[BPT’12]

d � 2�

d � �

Parallel Shortest Paths
[MB’03]

Parallel k-Tip Decomposition
[SS’20]

32

Parallel Bucketing

Bucketing is useful for more than just wBFS

1. Multiple vertices insert into the same bucket in parallel

2. Possible to make work-efficient parallel implementations?

Challenges

Goals
• Simplify expressing algorithms using an interface

• Theoretically efficient, reusable implementation

33

Julienne: Results

Shared memory framework for bucketing-based algorithms

Bucketing implementation is
work-efficient

33

Julienne: Results

Shared memory framework for bucketing-based algorithms

Extend Ligra with an interface for bucketing
• Theoretical bounds for primitives
• Fast implementations of primitives

Bucketing implementation is
work-efficient

33

Julienne: Results

Shared memory framework for bucketing-based algorithms

Extend Ligra with an interface for bucketing
• Theoretical bounds for primitives
• Fast implementations of primitives

Can implement a bucketing algorithm with

expected work and

O((K + L) log n) depth w.h.p.

• n vertices
• T total buckets
• U updates

over K Update calls, and L calls to NextBucket

O(n + T + U)
Bucketing implementation is

work-efficient

34

Bucketing Interface

Ligra

Graph

vertexSubset

Julienne

Bucketing Interface

34

Bucketing Interface

Ligra

Graph

vertexSubset

Julienne

Bucketing Interface Bucketing Interface:

(1) Create bucket structure

(2) Get the next bucket (vertexSubset)

(3) Update buckets of a subset
 of identifiers

35

Bucketing Interface

n : int

D : identifier � bucket id

O : bucket order

MakeBuckets : buckets

Initialize bucket structure

36

Bucketing Interface

n : int

D : identifier � bucket id

O : bucket order

MakeBuckets : buckets

Initialize bucket structure

D(1) = 0, D(2) = 1, D(3) = 4, . . .

37

Bucketing Interface

n : int

D : identifier � bucket id

O : bucket order

MakeBuckets : buckets

Initialize bucket structure

1

4 2 7 3

5

6

D(1) = 0, D(2) = 1, D(3) = 4, . . .

38

Bucketing Interface

NextBucket : bucket

1

4 2 7 3

5

6

Extract identifiers in the next non-empty bucket

39

Bucketing Interface

NextBucket : bucket

1

4 2 7 3

5

6

Extract identifiers in the next non-empty bucket

Order: increasing

40

Bucketing Interface

2 7 3

5

6

1

4 NextBucket : bucket

Extract identifiers in the next non-empty bucket

Order: increasing

41

Bucketing Interface

4 2 7 3

5

6

Update buckets for k identifiers

UpdateBuckets
k : int

F : int � (identifier, bucket dest)

1

42

Bucketing Interface

1

4 2 7 3

5

6

[(1,1), (7,2), (6,2)]

Update buckets for k identifiers

UpdateBuckets
k : int

F : int � (identifier, bucket dest)

43

Bucketing Interface

1

4 2 7 3

5

6

[(1,1), (7,2), (6,2)]

Update buckets for k identifiers

UpdateBuckets
k : int

F : int � (identifier, bucket dest)

44

Bucketing Interface

74 2

1

3

5

[(1,1), (7,2), (6,2)]

6

Update buckets for k identifiers

UpdateBuckets
k : int

F : int � (identifier, bucket dest)

1

7 6

45

Bucketing Interface

74 2 3

5

[(1,1), (7,2), (6,2)]

6

Update buckets for k identifiers

UpdateBuckets
k : int

F : int � (identifier, bucket dest)

1

46

Sequential Bucketing

Can implement sequential bucketing with:
• n identifiers
• T total buckets
• K calls to UpdateBuckets, where each updates the ids in

O(n + T +
K�

i=0

|Si|) work in

Si

46

Sequential Bucketing

Can implement sequential bucketing with:
• n identifiers
• T total buckets
• K calls to UpdateBuckets, where each updates the ids in

O(n + T +
K�

i=0

|Si|) work in

Si

Idea:
• Use dynamic arrays that are updated lazily

47

Parallel Bucketing

Can implement parallel bucketing with:
• n identifiers
• T total buckets
• K calls to UpdateBuckets, where each updates the ids in
• L calls to NextBucket

O(n + T +
K�

i=0

|Si|) expected work and in

O((K + L) log n) depth w.h.p.

Si

47

Parallel Bucketing

Can implement parallel bucketing with:
• n identifiers
• T total buckets
• K calls to UpdateBuckets, where each updates the ids in
• L calls to NextBucket

O(n + T +
K�

i=0

|Si|) expected work and in

O((K + L) log n) depth w.h.p.

Si

Idea:
• Use dynamic arrays
• MakeBuckets: call UpdateBuckets. NextBucket: parallel filter

48

Parallel Bucketing
UpdateBuckets:

• Use work-efficient semisort [Gu et al. 2015]
• Given k (key, value) pairs, semisorts in expected work and

depth w.h.p.

O(k) O(log k)

48

Parallel Bucketing
UpdateBuckets:

[(3,9), (4,7), …, (2,1), (1,1)]

• Use work-efficient semisort [Gu et al. 2015]
• Given k (key, value) pairs, semisorts in expected work and

depth w.h.p.

O(k) O(log k)

48

Parallel Bucketing
UpdateBuckets:

[(3,9), (4,7), …, (2,1), (1,1)]

[(2,1), (1,1), (7,1), …, (4,7), (6,7), …, (3,9)]

All ids going to bucket 1

• Use work-efficient semisort [Gu et al. 2015]
• Given k (key, value) pairs, semisorts in expected work and

depth w.h.p.

O(k) O(log k)

48

Parallel Bucketing
UpdateBuckets:

[(3,9), (4,7), …, (2,1), (1,1)]

[(2,1), (1,1), (7,1), …, (4,7), (6,7), …, (3,9)]

All ids going to bucket 1

• Use work-efficient semisort [Gu et al. 2015]
• Given k (key, value) pairs, semisorts in expected work and

depth w.h.p.

O(k) O(log k)

• Prefix sum to compute #ids going to each bucket
• Resize buckets and inject all ids in parallel

48

Parallel Bucketing
UpdateBuckets:

[(3,9), (4,7), …, (2,1), (1,1)]

[(2,1), (1,1), (7,1), …, (4,7), (6,7), …, (3,9)]

All ids going to bucket 1

• Use work-efficient semisort [Gu et al. 2015]
• Given k (key, value) pairs, semisorts in expected work and

depth w.h.p.

O(k) O(log k)

• Prefix sum to compute #ids going to each bucket
• Resize buckets and inject all ids in parallel

Can see paper for details on practical implementation and
optimizations

49

k-Core Decomposition

49

k-Core Decomposition

maximal connected subgraph of G where all vertices have
degree at least k within the subgraph

k-core :

49

k-Core Decomposition

maximal connected subgraph of G where all vertices have
degree at least k within the subgraph

k-core :

coreness : largest k-core that a given vertex participates in

49

k-Core Decomposition

maximal connected subgraph of G where all vertices have
degree at least k within the subgraph

k-core :

coreness : largest k-core that a given vertex participates in

49

k-Core Decomposition

1-core

maximal connected subgraph of G where all vertices have
degree at least k within the subgraph

k-core :

coreness : largest k-core that a given vertex participates in

49

k-Core Decomposition

2-core

1-core

maximal connected subgraph of G where all vertices have
degree at least k within the subgraph

k-core :

coreness : largest k-core that a given vertex participates in

49

k-Core Decomposition

2-core3-core

1-core

maximal connected subgraph of G where all vertices have
degree at least k within the subgraph

k-core :

coreness : largest k-core that a given vertex participates in

49

k-Core Decomposition

2-core3-core

1-core

maximal connected subgraph of G where all vertices have
degree at least k within the subgraph

k-core :

coreness : largest k-core that a given vertex participates in

Widely used in network analysis tasks such as
unsupervised clustering of social and biological networks

50

The Peeling Algorithm

k = 1

50

The Peeling Algorithm

k = 1 k = 1

50

The Peeling Algorithm

k = 1 k = 1 k = 1

50

The Peeling Algorithm

• Current degree of remaining vertices decreases as
vertices are peeled from the graph

k = 1 k = 1 k = 1

50

The Peeling Algorithm

• Current degree of remaining vertices decreases as
vertices are peeled from the graph

• Once a vertex’s current degree is less than or equal to
the current core number, it gets peeled

k = 1 k = 1 k = 1

51

The Peeling Algorithm

k = 1 k = 1 k = 1

51

The Peeling Algorithm

k = 2

k = 1 k = 1 k = 1

51

The Peeling Algorithm

k = 2 k = 2

k = 1 k = 1 k = 1

51

The Peeling Algorithm

k = 2 k = 2

k = 3

k = 1 k = 1 k = 1

51

The Peeling Algorithm

k = 2 k = 2

k = 3 k = 3

k = 1 k = 1 k = 1

51

The Peeling Algorithm

k = 2 k = 2

k = 3 k = 3

2-core3-core

1-core

k = 1 k = 1 k = 1

52

The Peeling Algorithm

k = 2 k = 2

k = 3 k = 3

2-core3-core

1-core

k = 1 k = 1

Classic sequential implementations of this peeling
algorithm run in O(m) time [AM’84, BZ’03]

k = 1

53

Parallel Peeling
Remove all vertices with degree less than or equal to the

current core number in parallel

53

Parallel Peeling

k = 1

Remove all vertices with degree less than or equal to the
current core number in parallel

53

Parallel Peeling

k = 1

2 7 3

5

6

1 2 3 4 5

Remove all vertices with degree less than or equal to the
current core number in parallel

53

Parallel Peeling

k = 1

2 7 3

5

6

1 2 3 4 5

k = 1

2 → 1

2 → 1

4 → 2

Remove all vertices with degree less than or equal to the
current core number in parallel

53

Parallel Peeling

k = 1

2 7 3

5

6

1 2 3 4 5

k = 1

2 → 1

2 → 1

4 → 2

2 7 3

5

6

1 2 3 4 5

Remove all vertices with degree less than or equal to the
current core number in parallel

54

Insert vertices in bucket structure by degree

55

Insert vertices in bucket structure by degree

56

Insert vertices in bucket structure by degree
While not all vertices have been processed yet:

57

Insert vertices in bucket structure by degree
While not all vertices have been processed yet:

1. Extract the next bucket, set core numbers

58

Insert vertices in bucket structure by degree
While not all vertices have been processed yet:

1. Extract the next bucket, set core numbers

59

Insert vertices in bucket structure by degree
While not all vertices have been processed yet:

1. Extract the next bucket, set core numbers

60

Insert vertices in bucket structure by degree
While not all vertices have been processed yet:

1. Extract the next bucket, set core numbers
2. Sum edges removed from each neighbor of this frontier

61

Insert vertices in bucket structure by degree
While not all vertices have been processed yet:

1. Extract the next bucket, set core numbers
2. Sum edges removed from each neighbor of this frontier

(1)
(2)
(1)

62

Insert vertices in bucket structure by degree
While not all vertices have been processed yet:

1. Extract the next bucket, set core numbers
2. Sum edges removed from each neighbor of this frontier
3. Compute the new buckets for the neighbors

(1)
(2)
(1)

63

Insert vertices in bucket structure by degree
While not all vertices have been processed yet:

1. Extract the next bucket, set core numbers
2. Sum edges removed from each neighbor of this frontier
3. Compute the new buckets for the neighbors

(1)
(2)
(1)

(0)
(3)
(2)

64

Insert vertices in bucket structure by degree
While not all vertices have been processed yet:

1. Extract the next bucket, set core numbers
2. Sum edges removed from each neighbor of this frontier
3. Compute the new buckets for the neighbors
4. Update the bucket structure with the (neighbors, buckets)

(1)
(2)
(1)

(0)
(3)
(2)

65

Insert vertices in bucket structure by degree
While not all vertices have been processed yet:

1. Extract the next bucket, set core numbers
2. Sum edges removed from each neighbor of this frontier

(1)
(2)
(1)

3. Compute the new buckets for the neighbors

(0)
(3)
(2)

4. Update the bucket structure with the (neighbors, buckets)

66

Insert vertices in bucket structure by degree
While not all vertices have been processed yet:

1. Extract the next bucket, set core numbers
2. Sum edges removed from each neighbor of this frontier

(1)
(2)
(1)

3. Compute the new buckets for the neighbors

(0)
(3)
(2)

4. Update the bucket structure with the (neighbors, buckets)

67

Insert vertices in bucket structure by degree
While not all vertices have been processed yet:

1. Extract the next bucket, set core numbers
2. Sum edges removed from each neighbor of this frontier
3. Compute the new buckets for the neighbors
4. Update the bucket structure with the (neighbors, buckets)

68

68

We process each edge at most once in each direction:

68

We process each edge at most once in each direction:
updates = O(|E|)

68

We process each edge at most once in each direction:

buckets � |V |
updates = O(|E|)

68

We process each edge at most once in each direction:

buckets � |V |

calls to NextBucket = �

updates = O(|E|)

68

We process each edge at most once in each direction:

buckets � |V |

calls to UpdateBuckets = �

calls to NextBucket = �

updates = O(|E|)

68

We process each edge at most once in each direction:

buckets � |V |

calls to UpdateBuckets = �

calls to NextBucket = �

updates = O(|E|)

Therefore the algorithm runs in:

expected workO(|E| + |V |)
depth w.h.p.O(� log |V |)

68

We process each edge at most once in each direction:

On the largest graph we test on, � = 130, 728

buckets � |V |

calls to UpdateBuckets = �

calls to NextBucket = �

updates = O(|E|)

Therefore the algorithm runs in:

expected workO(|E| + |V |)
depth w.h.p.O(� log |V |)

68

We process each edge at most once in each direction:

On the largest graph we test on, � = 130, 728

On 72 cores, our code finishes in a few minutes, but the
work-inefficient algorithm does not terminate within 3 hours

buckets � |V |

calls to UpdateBuckets = �

calls to NextBucket = �

updates = O(|E|)

Therefore the algorithm runs in:

expected workO(|E| + |V |)
depth w.h.p.O(� log |V |)

69

69

We process each edge at most once in each direction:

69

We process each edge at most once in each direction:
updates = O(|E|)

69

We process each edge at most once in each direction:

buckets � |V |
updates = O(|E|)

69

We process each edge at most once in each direction:

buckets � |V |

calls to NextBucket = �

updates = O(|E|)

69

We process each edge at most once in each direction:

buckets � |V |

calls to UpdateBuckets = �

calls to NextBucket = �

updates = O(|E|)

69

We process each edge at most once in each direction:

buckets � |V |

calls to UpdateBuckets = �

calls to NextBucket = �

updates = O(|E|)

Therefore the algorithm runs in:

expected workO(|E| + |V |)
depth w.h.p.O(� log |V |)

69

We process each edge at most once in each direction:

On the largest graph we test on, � = 130, 728

buckets � |V |

calls to UpdateBuckets = �

calls to NextBucket = �

updates = O(|E|)

Therefore the algorithm runs in:

expected workO(|E| + |V |)
depth w.h.p.O(� log |V |)

69

We process each edge at most once in each direction:

On the largest graph we test on, � = 130, 728

On 72 cores, our code finishes in a few minutes, but the
work-inefficient algorithm does not terminate within 3 hours

buckets � |V |

calls to UpdateBuckets = �

calls to NextBucket = �

updates = O(|E|)

Therefore the algorithm runs in:

expected workO(|E| + |V |)
depth w.h.p.O(� log |V |)

69

We process each edge at most once in each direction:

On the largest graph we test on, � = 130, 728

On 72 cores, our code finishes in a few minutes, but the
work-inefficient algorithm does not terminate within 3 hours

buckets � |V |

calls to UpdateBuckets = �

calls to NextBucket = �

updates = O(|E|)

Therefore the algorithm runs in:

expected workO(|E| + |V |)
depth w.h.p.O(� log |V |)

Efficient peeling using Julienne

A Work-Efficient k-core Decomposition Algorithm

❖ Actual code is under 50
lines of C++

❖ Parallel cost:

O(ρ log n) depth whp

O(m + n) expected work

Julienne Algorithm in GBBS

ρ is the number of peeling roundswhere

70

A Work-Efficient k-core Decomposition Algorithm

❖ Actual code is under 50
lines of C++

❖ Parallel cost:

O(ρ log n) depth whp

O(m + n) expected work

Julienne Algorithm in GBBS

Our algorithm is the first work-efficient algorithm for
k-core decomposition with non-trivial parallelism

ρ is the number of peeling roundswhere

70

71

Work and Depth of Algorithms in Julienne

Algorithm Work Depth

k-core

wBFS

Delta-stepping

Approx Set Cover

O(|E| + |V |) O(� log |V |)

O(D + |E|) O(D log |V |)

O(w�) O(d� log |V |)

O(M) O(log3 M)

M : sum of sizes of sets

: diameterD

: work and number of rounds of the delta-stepping algorithmw�, d�

� : number of rounds of parallel peeling

[2]

[1] Meyer, Sanders: Δ-stepping: a parallelizable shortest path algorithm

[2] Blelloch, Peng, Tangwongsan: Linear-work greedy parallel approximate set cover and variants

[1]

http://www.sciencedirect.com/science/article/pii/S0196677403000762
http://dl.acm.org/authorize?437654

72

Experimental Results

 10

 100

 1000

 1 2 4 8 16 32 64 72 72h

R
u

n
n

in
g

 t
im

e
 (

se
co

n
d

s)

Number of threads

Julienne (work-efficient)
Ligra (work-inefficient)

• Between 4-41x speedup over sequential peeling

• Speedups are smaller on small graphs with large

• 2-9x faster than work-inefficient implementation

�

|V| = 121M

|E| = 3.6B

Friendster

Across all inputs:

73

Experimental Results: Hyperlink Graphs

Hyperlink graphs extracted from Common Crawl Corpus

Graph |V| |E| |E|(symmetrized)

HL2014 1.7B 64B 124B

HL2012 3.5B 128B 225B

• Previous analyses use supercomputers [1] or external memory [2]

• HL2012-Sym requires ~1TB of memory uncompressed

[1] Slota et al., 2015, Supercomputing for Web Graph Analytics

[2] Zheng et al., 2015, FlashGraph: Processing Billion-Node Graphs on
 an Array of Commodity SSDs

74

Experimental Results: Hyperlink Graphs

• Able to process in main-memory of 1TB machine by compressing

• 23-43x speedup across applications

Graph k-core wBFS Set Cover

HL2014 97.2 9.02 45.1

HL2012 206 — 104

Running time in seconds on 72 cores with hyperthreading

75

k-Core Decomposition on the WebDataCommons Graph

k-core : maximal connected subgraph of G
s.t. all vertices have degree at least k

2-core3-core

1-core

BlueWaters [SRM’16]

Time

Processors

Memory

Quality

363 seconds

8192

16 TB

Approximate

Cost Very Expensive

75

k-Core Decomposition on the WebDataCommons Graph

k-core : maximal connected subgraph of G
s.t. all vertices have degree at least k

2-core3-core

1-core

BlueWaters [SRM’16]

Time

Processors

Memory

Quality

363 seconds

8192

16 TB

Approximate

Cost Very Expensive

GBBS [DBS’18]

184 seconds

72

1 TB

Exact

Highly Affordable

75

k-Core Decomposition on the WebDataCommons Graph

k-core : maximal connected subgraph of G
s.t. all vertices have degree at least k

2-core3-core

1-core

BlueWaters [SRM’16]

Time

Processors

Memory

Quality

363 seconds

8192

16 TB

Approximate

Cost Very Expensive

GBBS [DBS’18]

184 seconds

72

1 TB

Exact

Highly Affordable

1.95x faster than the approximate distributed result by SRM’16, using
56.8x fewer hyper-threads and 16.3x less memory

76

Summary: Julienne

Julienne: framework for bucketing-based algorithms

76

Summary: Julienne

Julienne: framework for bucketing-based algorithms

• Codes:
• Simple (< 100 lines each)
• Theoretically efficient (strong bounds on work and depth)
• Good performance in practice
• Code included as part of the GBBS library

76

Summary: Julienne

Julienne: framework for bucketing-based algorithms

• Codes:
• Simple (< 100 lines each)
• Theoretically efficient (strong bounds on work and depth)
• Good performance in practice
• Code included as part of the GBBS library

d � 2�

d � �

k-core Delta-stepping
wBFS

Parallel Approximate
Set Cover

Parallel k-Tip
Decomposition

77

Theoretically-Efficient Parallel Graph Algorithms
can be Fast and Scalable [DBS’18]

Can we solve a broad set of fundamental graph
problems on the largest graphs, affordably and quickly?

78

❖ Introduce a benchmark suite for graph problems with over
20 important problems

❖ GBBS algorithms achieve state-of-the-art results on the
largest publicly available graphs

github.com/paralg/gbbs

Subgraph Problems
k-Core Decomposition
k-Truss Decomposition
Apx. Densest Subgraph
Triangle Counting
Higher-Clique Counting

Connectivity Problems
Low-Diameter Decomposition
Connectivity
Spanning Forest
Biconnectivity
Minimum Spanning Forest
Strongly Connected Components

Covering Problems
Maximal Ind. Set
Maximal Matching
Apx. Set Cover
Graph Coloring

Shortest Path Problems
Breadth-First Search
Betweenness Centrality
Bellman-Ford
General Weight SSSP
Integral Weight SSSP
SS Widest Path
k-Spanner

Eigenvector Problems
PageRank
Personalized PageRank
Personalized SimRank

The Graph-Based Benchmark Suite (GBBS)

https://github.com/paralg/gbbs

Benchmarking Connectivity on WebDataCommons Graph

Benchmarks are based on I/O specifications, e.g.,

Maximal Independent Set
Input: an undirected graph
Output: , a set of vertices such that no two vertices in are
neighbors, and all vertices in have a neighbor in

k-core (Coreness)
Input: an undirected graph
Output: A mapping from each vertex to its coreness value (the
maximum k such that the vertex is in a non-empty k-core)

79

Benchmarking Connectivity on WebDataCommons Graph

Benchmarks are based on I/O specifications, e.g.,

Maximal Independent Set
Input: an undirected graph
Output: , a set of vertices such that no two vertices in are
neighbors, and all vertices in have a neighbor in

k-core (Coreness)
Input: an undirected graph
Output: A mapping from each vertex to its coreness value (the
maximum k such that the vertex is in a non-empty k-core)

I/O specification makes it easy to compare different algorithm
implementations

79

80

GBBS Results on WDC Hyperlink Graph

Br
ea
dt
h-
Fi
rst

Se
ar
ch

In
te
gr
al-

W
eig

ht
SS

SP

Be
llm

an
-F
or
d

Si
ng

le-
So

ur
ce

W
id
es
t P

at
h

Si
ng

le-
So

ur
ce

Be
tw

ee
nn

es
s Ce

nt
ra
lit
y

O
(k
)-S

pa
nn

er

Lo
w-

Diam
et
er

Dec
om

po
sit

ion

Co
nn

ec
tiv

ity

Sp
an

ni
ng

Fo
re
st

Bi
co

nn
ec
tiv

ity

St
ro
ng

ly
Co

nn
ec
te
d
Co

m
po

ne
nt
s

M
in
im

um
Sp

an
ni
ng

Fo
re
st

M
ax
im

al
In
de

pe
nd

en
t S

et

M
ax
im

al
M
at
ch

in
g

Gr
ap

h
Co

lor
in
g

k-
Co

re

Ap
pr
ox
im

at
e
Se

t C
ov

er

Ap
pr
ox
im

at
e
Den

se
st

Su
bg

ra
ph

Pa
ge

Ra
nk

Ite
ra
tio

n
0

25

50

75

100

125

150

175

200

R
u
n
n
in

g
T

im
e

(S
ec

on
d
s)

11

58 59
48

37 36

20 25
35

165

185 187

32

108

158

184

98

51

13

80

GBBS Results on WDC Hyperlink Graph

Br
ea
dt
h-
Fi
rst

Se
ar
ch

In
te
gr
al-

W
eig

ht
SS

SP

Be
llm

an
-F
or
d

Si
ng

le-
So

ur
ce

W
id
es
t P

at
h

Si
ng

le-
So

ur
ce

Be
tw

ee
nn

es
s Ce

nt
ra
lit
y

O
(k
)-S

pa
nn

er

Lo
w-

Diam
et
er

Dec
om

po
sit

ion

Co
nn

ec
tiv

ity

Sp
an

ni
ng

Fo
re
st

Bi
co

nn
ec
tiv

ity

St
ro
ng

ly
Co

nn
ec
te
d
Co

m
po

ne
nt
s

M
in
im

um
Sp

an
ni
ng

Fo
re
st

M
ax
im

al
In
de

pe
nd

en
t S

et

M
ax
im

al
M
at
ch

in
g

Gr
ap

h
Co

lor
in
g

k-
Co

re

Ap
pr
ox
im

at
e
Se

t C
ov

er

Ap
pr
ox
im

at
e
Den

se
st

Su
bg

ra
ph

Pa
ge

Ra
nk

Ite
ra
tio

n
0

25

50

75

100

125

150

175

200

R
u
n
n
in

g
T

im
e

(S
ec

on
d
s)

11

58 59
48

37 36

20 25
35

165

185 187

32

108

158

184

98

51

13

A broad set of fundamental graph problems can be solved
on a graph with over 200 billion edges in 3 minutes

O(m)
O(m)†

O(𝖽𝗂𝖺𝗆(G) ⋅ m)

O(m)

O(m)†

O(m)†

O(m log n)†
O(m)†

O(m log n)

O(m)†
O(m)†

O(m3/2)

O(m)†
O(m)

† : * :

O(𝖽𝗂𝖺𝗆(G) ⋅ m)
O(m)

O(m)

O(m)†

in expectation whp

Problem Work Depth
Breadth-First Search (BFS)

Integral-Weight SSSP (weighted BFS)

General-Weight SSSP (Bellman-Ford)

Single-Source Widest Path (Bellman-Ford)

Single-Source Betweenness Centrality (BC)

O(k)-Spanner

Low-Diameter Decomposition (LDD)

Connectivity (CC)

Spanning Forest

Biconnectivity

Strongly Connected Components (SCC)

Minimum Spanning Forest (MSF)

Maximal Independent Set (MIS)

Maximal Matching (MM)

Graph Coloring

k-core

Approximate Set Cover

Triangle Counting (TC)

Approximate Densest Subgraph

PageRank Iteration

Õ(𝖽𝗂𝖺𝗆(G))
Õ(𝖽𝗂𝖺𝗆(G))*
Õ(𝖽𝗂𝖺𝗆(G))
Õ(𝖽𝗂𝖺𝗆(G))

O(m)
O(m)†

O(𝖽𝗂𝖺𝗆(G) ⋅ m)

O(m)

O(m)†

O(m)†

O(m log n)†
O(m)†

O(m log n)

O(log2 n)*
O(log3 n)*

O(max(𝖢𝖢, 𝖡𝖥𝖲))
Õ(𝖽𝗂𝖺𝗆(G))*
O(log2 n)

O(m)†
O(m)†

O(m3/2)

O(m)†

O(log2 n)*

O(log3 n)*

O(log n + L log Δ)
O(ρ log n)*

O(log2 n)*

O(log n)

O(m)

O(𝖽𝗂𝖺𝗆(G) ⋅ m)
O(m)

O(m)

O(m)†

O(m)

Õ(𝖽𝗂𝖺𝗆(G))
Õ(k log n)*

O(log3 n)*

O(log2 n)
O(n + m) O(log n)

Work and Depth of GBBS Results

81

O(m)
O(m)†

O(𝖽𝗂𝖺𝗆(G) ⋅ m)

O(m)

O(m)†

O(m)†

O(m log n)†
O(m)†

O(m log n)

O(m)†
O(m)†

O(m3/2)

O(m)†
O(m)

† : * :

O(𝖽𝗂𝖺𝗆(G) ⋅ m)
O(m)

O(m)

O(m)†

in expectation whp

Problem Work Depth
Breadth-First Search (BFS)

Integral-Weight SSSP (weighted BFS)

General-Weight SSSP (Bellman-Ford)

Single-Source Widest Path (Bellman-Ford)

Single-Source Betweenness Centrality (BC)

O(k)-Spanner

Low-Diameter Decomposition (LDD)

Connectivity (CC)

Spanning Forest

Biconnectivity

Strongly Connected Components (SCC)

Minimum Spanning Forest (MSF)

Maximal Independent Set (MIS)

Maximal Matching (MM)

Graph Coloring

k-core

Approximate Set Cover

Triangle Counting (TC)

Approximate Densest Subgraph

PageRank Iteration

Õ(𝖽𝗂𝖺𝗆(G))
Õ(𝖽𝗂𝖺𝗆(G))*
Õ(𝖽𝗂𝖺𝗆(G))
Õ(𝖽𝗂𝖺𝗆(G))

O(m)
O(m)†

O(𝖽𝗂𝖺𝗆(G) ⋅ m)

O(m)

O(m)†

O(m)†

O(m log n)†
O(m)†

O(m log n)

O(log2 n)*
O(log3 n)*

O(max(𝖢𝖢, 𝖡𝖥𝖲))
Õ(𝖽𝗂𝖺𝗆(G))*
O(log2 n)

O(m)†
O(m)†

O(m3/2)

O(m)†

O(log2 n)*

O(log3 n)*

O(log n + L log Δ)
O(ρ log n)*

O(log2 n)*

O(log n)

O(m)

O(𝖽𝗂𝖺𝗆(G) ⋅ m)
O(m)

O(m)

O(m)†

O(m)

Õ(𝖽𝗂𝖺𝗆(G))
Õ(k log n)*

O(log3 n)*

O(log2 n)
O(n + m) O(log n)

Work and Depth of GBBS Results

Main Challenge:
How do we build simple and provably-efficient implementations of

these algorithms that work on the largest real-world graphs?

81

82

GBBS Library

Bucketing Graph Vertex

ParlayLib

Parallel Runtime

Graph Representations

Cilk, OpenMP, TBB,
Homegrown

Compression Library

Core GBBS Interfaces
❖ High-level graph processing interface

in the lineage of Ligra [SB’12]

82

GBBS Library

Bucketing Graph Vertex

ParlayLib

Parallel Runtime

Graph Representations

Cilk, OpenMP, TBB,
Homegrown

Compression Library

Core GBBS Interfaces
❖ High-level graph processing interface

in the lineage of Ligra [SB’12]

❖ Provides many useful primitives

• Map
• Reduce
• Filter
• Pack
• Intersect

Vertex Operations

• Filter
• Pack
• Contract

Graph Operations

82

GBBS Library

Bucketing Graph Vertex

ParlayLib

Parallel Runtime

Graph Representations

Cilk, OpenMP, TBB,
Homegrown

Compression Library

Core GBBS Interfaces
❖ High-level graph processing interface

in the lineage of Ligra [SB’12]

❖ Provides many useful primitives

• Map
• Reduce
• Filter
• Pack
• Intersect

Vertex Operations

• Filter
• Pack
• Contract

Graph Operations

Graph |V| |E| Size (CSR) Compressed Bytes/edge

WDC Hyperlink 3.5B 128B 1080GB 446GB 1.74

WDC Hyperlink (Sym) 3.5B 225B 928 GB 351GB 1.56

❖ Compressed graph representations
based on extending Ligra+

83

Vertex Interface

Vertex-Vertex
operators:

intersection : (nghlist � nghlist) � int
union : (nghlist � nghlist) � int
difference : (nghlist � nghlist) � int

Neighborhood
operators:

map : (edge � void) � void
reduce : (edge � E) � E monoid � E
scan : (edge � E) � E monoid � E
count : (edge � bool) � int
filter : (edge � bool) � E seq
pack : (edge � bool) � void
iterate : (edge � bool) � void
i-th : int � edge
degree : unit � int
getNeighbors : unit � nghlist

}
}
}

Work Depth

Provides functional primitives for commonly used vertex
operations with good theoretical bounds on their cost

84

Provides functional primitives
for performing whole-graph
operations, and for operations
that consume and produce
vertexSubsets

Graph Interface

VertexSubset
operators:

edgeMap : vset ∗ (edge → bool)
 ∗ (vtxid → bool) → vset
edgeMapVal : vset ∗ (edge → O option)
 ∗ (vtxid → bool) → O vset
srcReduce : vset ∗ (edge → O) ∗ O monoid
 ∗ (vtxid → bool) → O vset
srcCount : vset ∗ (edge → bool)
 ∗ (vtxid → bool) → int vset
srcPack : vset ∗ (edge → bool)
 ∗ (vtxid → bool) → int vset
nghReduce : vset ∗ (edge → R) ∗ R monoid
 ∗ (vtxid → bool)
 ∗ (R → O option) → O vset
nghCount : vset ∗ (edge → bool)
 ∗ (vtxid → bool)
 ∗ (int → O option) → O vset

Graph
operators:

numVertices : unit → int
numEdges : unit → int
getVertex : int → vertex
filterGraph : (edge → bool) → graph
packGraph : (edge → bool) → unit
extractEdges : (edge → bool)
 → edge sequence
contractGraph : int sequence → graph

Work Depth

}

}

}
}
}

85

edgeMap [SB’13]

Output

vertexSubset

Inputs

vertexSubset

Map function

Condition function

85

edgeMap [SB’13]

U N(U)

Output

vertexSubset

Inputs

vertexSubset

Map function

Condition function

85

edgeMap [SB’13]

U N(U)

Consider (u, v) ∈ E s.t. u ∈ U and C(v)

Output

vertexSubset

Inputs

vertexSubset

Map function

Condition function

85

edgeMap [SB’13]

U N(U)

Consider (u, v) ∈ E s.t. u ∈ U and C(v)
 If F(u, v) = 𝖳𝗋𝗎𝖾 return v in output, O

Output

vertexSubset

Inputs

vertexSubset

Map function

Condition function

85

edgeMap [SB’13]

U N(U)

Consider (u, v) ∈ E s.t. u ∈ U and C(v)
 If F(u, v) = 𝖳𝗋𝗎𝖾 return v in output, O

Output

vertexSubset

Operator specification doesn’t insist on
a particular implementation. Thus, Ligra
(and GBBS) can implement direction-

optimization “under the hood”

Inputs

vertexSubset

Map function

Condition function

86

Generalizing edgeMap to Other Graph Operations

OutputInputs

vertexSubset

Map function

Combine function

F : 𝖾𝖽𝗀𝖾 → 𝖮

U

M : 𝖮 𝗆𝗈𝗇𝗈𝗂𝖽 (𝖮 → 𝖮 → 𝖮, 𝗂𝖽𝖾𝗇𝗍𝗂𝗍𝗒)

Condition function C : 𝗏𝗍𝗑𝗂𝖽 → 𝖻𝗈𝗈𝗅

𝖮 𝗏𝖾𝗋𝗍𝖾𝗑𝖲𝗎𝖻𝗌𝖾𝗍 R

86

Generalizing edgeMap to Other Graph Operations

OutputInputs

vertexSubset

Map function

Combine function

F : 𝖾𝖽𝗀𝖾 → 𝖮

U

M : 𝖮 𝗆𝗈𝗇𝗈𝗂𝖽 (𝖮 → 𝖮 → 𝖮, 𝗂𝖽𝖾𝗇𝗍𝗂𝗍𝗒)

Condition function C : 𝗏𝗍𝗑𝗂𝖽 → 𝖻𝗈𝗈𝗅

𝖮 𝗏𝖾𝗋𝗍𝖾𝗑𝖲𝗎𝖻𝗌𝖾𝗍 R

U N(U)

86

Generalizing edgeMap to Other Graph Operations

OutputInputs

vertexSubset

Map function

Combine function

F : 𝖾𝖽𝗀𝖾 → 𝖮

U

M : 𝖮 𝗆𝗈𝗇𝗈𝗂𝖽 (𝖮 → 𝖮 → 𝖮, 𝗂𝖽𝖾𝗇𝗍𝗂𝗍𝗒)

Condition function C : 𝗏𝗍𝗑𝗂𝖽 → 𝖻𝗈𝗈𝗅

𝖮 𝗏𝖾𝗋𝗍𝖾𝗑𝖲𝗎𝖻𝗌𝖾𝗍 R

U N(U)

Aggregating results at the source
vertices yields a src- version

86

Generalizing edgeMap to Other Graph Operations

OutputInputs

vertexSubset

Map function

Combine function

F : 𝖾𝖽𝗀𝖾 → 𝖮

U

M : 𝖮 𝗆𝗈𝗇𝗈𝗂𝖽 (𝖮 → 𝖮 → 𝖮, 𝗂𝖽𝖾𝗇𝗍𝗂𝗍𝗒)

Condition function C : 𝗏𝗍𝗑𝗂𝖽 → 𝖻𝗈𝗈𝗅

𝖮 𝗏𝖾𝗋𝗍𝖾𝗑𝖲𝗎𝖻𝗌𝖾𝗍 R

U N(U)

Aggregating results at the source
vertices yields a src- version

Aggregating results at the neighbor
vertices yields a ngh- version)

87

Example: Updating Induced Degrees in Parallel using nghCount

k = 1 k = 1

2 → 1

2 → 1

4 → 2

87

Example: Updating Induced Degrees in Parallel using nghCount

2 2
2

1

nghCountInput vertexSubset

k = 1 k = 1

2 → 1

2 → 1

4 → 2

87

Example: Updating Induced Degrees in Parallel using nghCount

2 2
2

1

nghCountInput vertexSubset

k = 1 k = 1

2 → 1

2 → 1

4 → 2

Our Implementation

O (|U | + ∑
u∈U

d(u)) expected work O(log n) depth whp

❖ We provide a provably-efficient
implementation of nghCount that takes

O(m)
O(m)†

O(𝖽𝗂𝖺𝗆(G) ⋅ m)

O(m)

O(m)†

O(m)†

O(m log n)†
O(m)†

O(m log n)

O(m)†
O(m)†

O(m3/2)

O(m)†
O(m)

† : * :

O(𝖽𝗂𝖺𝗆(G) ⋅ m)
O(m)

O(m)

O(m)†

in expectation whp

Problem Work Depth
Breadth-First Search (BFS)

Integral-Weight SSSP (weighted BFS)

General-Weight SSSP (Bellman-Ford)

Single-Source Widest Path (Bellman-Ford)

Single-Source Betweenness Centrality (BC)

O(k)-Spanner

Low-Diameter Decomposition (LDD)

Connectivity (CC)

Spanning Forest

Biconnectivity

Strongly Connected Components (SCC)

Minimum Spanning Forest (MSF)

Maximal Independent Set (MIS)

Maximal Matching (MM)

Graph Coloring

k-core

Approximate Set Cover

Triangle Counting (TC)

Approximate Densest Subgraph

PageRank Iteration

Õ(𝖽𝗂𝖺𝗆(G))
Õ(𝖽𝗂𝖺𝗆(G))*
Õ(𝖽𝗂𝖺𝗆(G))
Õ(𝖽𝗂𝖺𝗆(G))

O(m)
O(m)†

O(𝖽𝗂𝖺𝗆(G) ⋅ m)

O(m)

O(m)†

O(m)†

O(m log n)†
O(m)†

O(m log n)

O(log2 n)*
O(log3 n)*

O(max(𝖢𝖢, 𝖡𝖥𝖲))
Õ(𝖽𝗂𝖺𝗆(G))*
O(log2 n)

O(m)†
O(m)†

O(m3/2)

O(m)†

O(log2 n)*

O(log3 n)*

O(log n + L log Δ)
O(ρ log n)*

O(log2 n)*

O(log n)

O(m)

O(𝖽𝗂𝖺𝗆(G) ⋅ m)
O(m)

O(m)

O(m)†

O(m)

Õ(𝖽𝗂𝖺𝗆(G))
Õ(k log n)*

O(log3 n)*

O(log2 n)
O(n + m) O(log n)

Connectivity Problems in GBBS

❖ Connectivity and related
problems are probably the best
studied problems in the parallel
algorithms literature

❖ Practical work-efficient
implementations of these
problems are absent in the
experimental literature

88

O(m)
O(m)†

O(𝖽𝗂𝖺𝗆(G) ⋅ m)

O(m)

O(m)†

O(m)†

O(m log n)†
O(m)†

O(m log n)

O(m)†
O(m)†

O(m3/2)

O(m)†
O(m)

† : * :

O(𝖽𝗂𝖺𝗆(G) ⋅ m)
O(m)

O(m)

O(m)†

in expectation whp

Problem Work Depth
Breadth-First Search (BFS)

Integral-Weight SSSP (weighted BFS)

General-Weight SSSP (Bellman-Ford)

Single-Source Widest Path (Bellman-Ford)

Single-Source Betweenness Centrality (BC)

O(k)-Spanner

Low-Diameter Decomposition (LDD)

Connectivity (CC)

Spanning Forest

Biconnectivity

Strongly Connected Components (SCC)

Minimum Spanning Forest (MSF)

Maximal Independent Set (MIS)

Maximal Matching (MM)

Graph Coloring

k-core

Approximate Set Cover

Triangle Counting (TC)

Approximate Densest Subgraph

PageRank Iteration

Õ(𝖽𝗂𝖺𝗆(G))
Õ(𝖽𝗂𝖺𝗆(G))*
Õ(𝖽𝗂𝖺𝗆(G))
Õ(𝖽𝗂𝖺𝗆(G))

O(m)
O(m)†

O(𝖽𝗂𝖺𝗆(G) ⋅ m)

O(m)

O(m)†

O(m)†

O(m log n)†
O(m)†

O(m log n)

O(log2 n)*
O(log3 n)*

O(max(𝖢𝖢, 𝖡𝖥𝖲))
Õ(𝖽𝗂𝖺𝗆(G))*
O(log2 n)

O(m)†
O(m)†

O(m3/2)

O(m)†

O(log2 n)*

O(log3 n)*

O(log n + L log Δ)
O(ρ log n)*

O(log2 n)*

O(log n)

O(m)

O(𝖽𝗂𝖺𝗆(G) ⋅ m)
O(m)

O(m)

O(m)†

O(m)

Õ(𝖽𝗂𝖺𝗆(G))
Õ(k log n)*

O(log3 n)*

O(log2 n)
O(n + m) O(log n)

Connectivity Problems in GBBS

GBBS provides simple and high-
level implementations of

connectivity problems based on
low-diameter decomposition

❖ Connectivity and related
problems are probably the best
studied problems in the parallel
algorithms literature

❖ Practical work-efficient
implementations of these
problems are absent in the
experimental literature

88

Connectivity Problems in GBBS using LDD

O(
log n

�
)

total cut edges � �m
max diameter is O(log n/�)

Low-Diameter Decomposition [MPX’13]

O(m + n)

O(log2 n)

work

depth whp

89

Connectivity Problems in GBBS using LDD

O(
log n

�
)

total cut edges � �m
max diameter is O(log n/�)

Low-Diameter Decomposition [MPX’13]

O(m + n)

O(log2 n)

work

depth whp

Undirected Connectivity [SDB’14]

Spanning Forest [SDB’14]

O(m + n)

O(log3 n)

expected work

depth whp

89

Connectivity Problems in GBBS using LDD

O(
log n

�
)

total cut edges � �m
max diameter is O(log n/�)

Low-Diameter Decomposition [MPX’13]

O(m + n)

O(log2 n)

work

depth whp

Biconnectivity [SV’87]

O(m + n)

O(𝖽𝗂𝖺𝗆(G) + log3 n)

expected work

depth whp

Undirected Connectivity [SDB’14]

Spanning Forest [SDB’14]

O(m + n)

O(log3 n)

expected work

depth whp

89

Connectivity Problems in GBBS using LDD

O(
log n

�
)

total cut edges � �m
max diameter is O(log n/�)

Low-Diameter Decomposition [MPX’13]

O(m + n)

O(log2 n)

work

depth whp

Biconnectivity [SV’87]

O(m + n)

O(𝖽𝗂𝖺𝗆(G) + log3 n)

expected work

depth whp

Undirected Connectivity [SDB’14]

Spanning Forest [SDB’14]

O(m + n)

O(log3 n)

expected work

depth whp

graph

Cluster labels F : 𝗏𝗍𝗑𝗂𝖽 → 𝗂𝗇𝗍

G(V, E)
Output

graph G′ (V′ , E′)
Input

Graph Contraction

89

O(m)
O(m)†

O(𝖽𝗂𝖺𝗆(G) ⋅ m)

O(m)

O(m)†

O(m)†

O(m log n)†
O(m)†

O(m log n)

O(m)†
O(m)†

O(m3/2)

O(m)†
O(m)

† : * :

O(𝖽𝗂𝖺𝗆(G) ⋅ m)
O(m)

O(m)

O(m)†

in expectation whp

Problem Work Depth
Breadth-First Search (BFS)

Integral-Weight SSSP (weighted BFS)

General-Weight SSSP (Bellman-Ford)

Single-Source Widest Path (Bellman-Ford)

Single-Source Betweenness Centrality (BC)

O(k)-Spanner

Low-Diameter Decomposition (LDD)

Connectivity (CC)

Spanning Forest

Biconnectivity

Strongly Connected Components (SCC)

Minimum Spanning Forest (MSF)

Maximal Independent Set (MIS)

Maximal Matching (MM)

Graph Coloring

k-core

Approximate Set Cover

Triangle Counting (TC)

Approximate Densest Subgraph

PageRank Iteration

Õ(𝖽𝗂𝖺𝗆(G))
Õ(𝖽𝗂𝖺𝗆(G))*
Õ(𝖽𝗂𝖺𝗆(G))
Õ(𝖽𝗂𝖺𝗆(G))

O(m)
O(m)†

O(𝖽𝗂𝖺𝗆(G) ⋅ m)

O(m)

O(m)†

O(m)†

O(m log n)†
O(m)†

O(m log n)

O(log2 n)*
O(log3 n)*

O(max(𝖢𝖢, 𝖡𝖥𝖲))
Õ(𝖽𝗂𝖺𝗆(G))*
O(log2 n)

O(m)†
O(m)†

O(m3/2)

O(m)†

O(log2 n)*

O(log3 n)*

O(log n + L log Δ)
O(ρ log n)*

O(log2 n)*

O(log n)

O(m)

O(𝖽𝗂𝖺𝗆(G) ⋅ m)
O(m)

O(m)

O(m)†

O(m)

Õ(𝖽𝗂𝖺𝗆(G))
Õ(k log n)*

O(log3 n)*

O(log2 n)
O(n + m) O(log n)

“Hard” Problems in GBBS

❖ Work-efficient, polylog depth
algorithms not known for these
problems

❖ Instead, focus on work-efficiency
at the expense of parametrizing
depth in terms of some other
graph parameter (usually
diameter)

90

O(m)
O(m)†

O(𝖽𝗂𝖺𝗆(G) ⋅ m)

O(m)

O(m)†

O(m)†

O(m log n)†
O(m)†

O(m log n)

O(m)†
O(m)†

O(m3/2)

O(m)†
O(m)

† : * :

O(𝖽𝗂𝖺𝗆(G) ⋅ m)
O(m)

O(m)

O(m)†

in expectation whp

Problem Work Depth
Breadth-First Search (BFS)

Integral-Weight SSSP (weighted BFS)

General-Weight SSSP (Bellman-Ford)

Single-Source Widest Path (Bellman-Ford)

Single-Source Betweenness Centrality (BC)

O(k)-Spanner

Low-Diameter Decomposition (LDD)

Connectivity (CC)

Spanning Forest

Biconnectivity

Strongly Connected Components (SCC)

Minimum Spanning Forest (MSF)

Maximal Independent Set (MIS)

Maximal Matching (MM)

Graph Coloring

k-core

Approximate Set Cover

Triangle Counting (TC)

Approximate Densest Subgraph

PageRank Iteration

Õ(𝖽𝗂𝖺𝗆(G))
Õ(𝖽𝗂𝖺𝗆(G))*
Õ(𝖽𝗂𝖺𝗆(G))
Õ(𝖽𝗂𝖺𝗆(G))

O(m)
O(m)†

O(𝖽𝗂𝖺𝗆(G) ⋅ m)

O(m)

O(m)†

O(m)†

O(m log n)†
O(m)†

O(m log n)

O(log2 n)*
O(log3 n)*

O(max(𝖢𝖢, 𝖡𝖥𝖲))
Õ(𝖽𝗂𝖺𝗆(G))*
O(log2 n)

O(m)†
O(m)†

O(m3/2)

O(m)†

O(log2 n)*

O(log3 n)*

O(log n + L log Δ)
O(ρ log n)*

O(log2 n)*

O(log n)

O(m)

O(𝖽𝗂𝖺𝗆(G) ⋅ m)
O(m)

O(m)

O(m)†

O(m)

Õ(𝖽𝗂𝖺𝗆(G))
Õ(k log n)*

O(log3 n)*

O(log2 n)
O(n + m) O(log n)

“Hard” Problems in GBBS

Transitive Closure Bottleneck:
See book chapter by

Karp and Ramachandran

❖ Work-efficient, polylog depth
algorithms not known for these
problems

❖ Instead, focus on work-efficiency
at the expense of parametrizing
depth in terms of some other
graph parameter (usually
diameter)

90

Case Study: Connectivity on WebDataCommons Graph

102 103 104 105

Memory Used (GB)

0

200

400

600

800

1000

R
un

ni
ng

T
im

e
(S

ec
on

ds
)

FlashGraph

Mosaic

GraFBoost

Slota

Stergiou

Gluon
FastSVGBBS

External Memory

Distributed Memory

Shared Memory

100 101 102 103 104 105 106

Number of Processors

0

200

400

600

800

1000

R
un

ni
ng

T
im

e
(S

ec
on

ds
)

FlashGraph

Mosaic

GraFBoost

Slota

Stergiou

Gluon
FastSV

GBBS

External Memory

Distributed Memory

Shared Memory

91

Case Study: Connectivity on WebDataCommons Graph

102 103 104 105

Memory Used (GB)

0

200

400

600

800

1000

R
un

ni
ng

T
im

e
(S

ec
on

ds
)

FlashGraph

Mosaic

GraFBoost

Slota

Stergiou

Gluon
FastSVGBBS

External Memory

Distributed Memory

Shared Memory

100 101 102 103 104 105 106

Number of Processors

0

200

400

600

800

1000

R
un

ni
ng

T
im

e
(S

ec
on

ds
)

FlashGraph

Mosaic

GraFBoost

Slota

Stergiou

Gluon
FastSV

GBBS

External Memory

Distributed Memory

Shared Memory

Outperform external memory results by orders
of magnitude using comparable hardware.

91

Case Study: Connectivity on WebDataCommons Graph

102 103 104 105

Memory Used (GB)

0

200

400

600

800

1000

R
un

ni
ng

T
im

e
(S

ec
on

ds
)

FlashGraph

Mosaic

GraFBoost

Slota

Stergiou

Gluon
FastSVGBBS

External Memory

Distributed Memory

Shared Memory

100 101 102 103 104 105 106

Number of Processors

0

200

400

600

800

1000

R
un

ni
ng

T
im

e
(S

ec
on

ds
)

FlashGraph

Mosaic

GraFBoost

Slota

Stergiou

Gluon
FastSV

GBBS

External Memory

Distributed Memory

Shared Memory

Outperform external memory results by orders
of magnitude using comparable hardware.

Outperform distributed memory results using
orders of magnitude less hardware.

91

92

Recent Results that use GBBS

92

Recent Results that use GBBS

SAGE
Semi-Asymmetric
Graph Engine

Design extensions of GBBS algorithms to a
semi-asymmetric setting for NVRAM
machines, and achieve state-of-the-art running
times (VLDB’20)

with Charles McGuffey, Hongbo Kang, Yan Gu, Guy
Blelloch, Phil Gibbons, and Julian Shun

92

Recent Results that use GBBS

Framework for parallel connectivity, spanning
forest, and incremental connectivity
(VLDB’21)

with Changwan Hong and Julian Shun

ConnectIt

SAGE
Semi-Asymmetric
Graph Engine

Design extensions of GBBS algorithms to a
semi-asymmetric setting for NVRAM
machines, and achieve state-of-the-art running
times (VLDB’20)

with Charles McGuffey, Hongbo Kang, Yan Gu, Guy
Blelloch, Phil Gibbons, and Julian Shun

92

Recent Results that use GBBS

Framework for parallel connectivity, spanning
forest, and incremental connectivity
(VLDB’21)

with Changwan Hong and Julian Shun

ConnectIt

SAGE
Semi-Asymmetric
Graph Engine

Design extensions of GBBS algorithms to a
semi-asymmetric setting for NVRAM
machines, and achieve state-of-the-art running
times (VLDB’20)

with Charles McGuffey, Hongbo Kang, Yan Gu, Guy
Blelloch, Phil Gibbons, and Julian Shun

ArbClique

Implement state-of-the-art k-clique counting
(exact+approximate), and k-clique densest-
subgraph algorithms in GBBS (ACDA’21)

with Jessica Shi and Julian Shun

92

Recent Results that use GBBS

Framework for parallel connectivity, spanning
forest, and incremental connectivity
(VLDB’21)

with Changwan Hong and Julian Shun

ConnectIt

SAGE
Semi-Asymmetric
Graph Engine

Design extensions of GBBS algorithms to a
semi-asymmetric setting for NVRAM
machines, and achieve state-of-the-art running
times (VLDB’20)

with Charles McGuffey, Hongbo Kang, Yan Gu, Guy
Blelloch, Phil Gibbons, and Julian Shun

ArbClique

Implement state-of-the-art k-clique counting
(exact+approximate), and k-clique densest-
subgraph algorithms in GBBS (ACDA’21)

with Jessica Shi and Julian Shun

Lots of other ongoing work!

Efficient parallel graph algorithms for
motifs (cycles, cliques)

Shared-memory parallel graph
embedding

Parallel Graph Clustering (SCAN,
Hierarchical Agglomerative Clustering)

Parallel Batch-Dynamic k-Core
Decomposition, Triangle Counting

93

GBBS @ Graph Mining Team (Google Research)

Goal: accelerate parallel graph clustering algorithms by 10—100x using
scalable (work-efficient) parallel graph algorithms

Parallel Density, Correlation, and Modularity
Clustering (VLDB’21)

with Jessica Shi, David Eisenstat, Jakub Lacki, Vahab
Mirrokni

ParHAC: Parallel Hierarchical Agglomerative
Graph Clustering (in submission for VLDB’22)

Feel free to contact me (laxmand@google.com)

Simple, scalable, and compressed *mutable*
dynamic graph representations

Scalable flat metric clustering (k-Means, etc)

Ongoing work:Recent work / in submission:

Hierarchical Agglomerative Graph Clustering
in Nearly Linear Time (ICML’21)

mailto:laxmand@google.com

