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Graph Processing: algorithms and systems that 
enable us to analyze and understand graphs

Input Graph Output

✤ Understanding
✤ Visualizations
✤ Graph-based features
✤ System-optimization

Graph Processing

Graph 
Clustering

Dense 
Subgraphs

…

Connectivity

Distance 
Computations

Algorithms✤ Static
✤ Dynamic
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“…[the 2012 graph is the] largest 
hyperlink graph that is available to the 

public outside companies such as 
Google, Yahoo, and Microsoft.”

✤ Largest publicly available graph

Large-Scale Graph Processing

✤ 3.5 billion vertices and 128 billion 
edges

✤ ~1TB of memory to store

WebDataCommons hyperlink graph

Sources: https://snap.stanford.edu/data/, http://law.di.unimi.it/datasets.php, http://webdatacommons.org/hyperlinkgraph/
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Google, Yahoo, and Microsoft.”

✤ Largest publicly available graph

Large-Scale Graph Processing

✤ 3.5 billion vertices and 128 billion 
edges

✤ ~1TB of memory to store

WebDataCommons hyperlink graph
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Year of sourcing vs total number of vertices and edges 
for real-world graphs from the SNAP and LAW datasets

Parallelism is the key to processing very large 
graphs in a timely manner
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Shared-Memory Parallelism

Shared-Memory Machines

• Cost for a 1TB memory machine with 72 
processors is about $20,000.

• Can rent a similar machine (96 processors and 
1.5TB memory) for $11/hour on Google Cloud 

A single shared-memory machine can already 
store the largest publicly available graph 
datasets, with plenty of room to spare

WebDataCommons Graph
• 3.5 billion vertices and 128 billion edges
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Theoretical Efficiency

A parallel algorithm is theoretically-efficient if it has good bounds on its 
work and depth

Why do we care about theoretical bounds?

Robustness to bad inputs
• Perform well even on new classes of graphs
• Understand how they will scale on larger graphs

Input-agnostic design
• Design codes without worrying too much about 

your datasets

Work-efficiency matters in practice
• Work-efficient algorithms can be much faster 

than work-inefficient algorithms

Up to 9x faster using a work-efficient k-
core algorithm (described in this talk)



How do we design theoretically-efficient 
parallel graph algorithms for a certain class of 

bucketing-based problems

8

Julienne: A Framework for Parallel Graph Algorithms 
using Work-efficient Bucketing [DBS’17]

https://people.csail.mit.edu/jshun/bucketing.pdf
https://people.csail.mit.edu/jshun/bucketing.pdf
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Frontier-Based Algorithms in Ligra

Primitives

• Frontier data-structure (vertexSubset)

• Map over vertices in a frontier (vertexMap)

• Map over out-edges of a frontier to generate new frontier (edgeMap)

Round 2 Round 4

Example: Breadth-First Search

Round 1

: in frontier : unvisited : visited

Round 3
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Weighted Breadth-First Search

s
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Problem: Compute the shortest path distances from s

Given:                       with positive integer edge weights, and a source s G = (V, E, w)

Round 3

Frontier: 4 2

Distances: s: 0
1: 1
4: 2
6: 5

5 6 3

Not work-efficient!
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Sequential Weighted Breadth-First Search
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Problem: Compute the shortest path distances from s

Given:                       with positive integer edge weights, and a source s G = (V, E, w)

Idea: 
• Run Dijkstra’s algorithm, but use 
buckets instead of a PQ

• Represent buckets using dynamic 
arrays

• Runs in                   workO(m + r𝗌𝗋𝖼)
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Sequential Weighted Breadth-First Search
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O(m + r𝗌𝗋𝖼)Runs in                  work
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Bucketing

This algorithms is parallelizable 

• In each step:
1. Process all vertices in the next bucket in parallel

2. Update buckets of neighbors in parallel

The algorithm uses buckets to organize work for future iterations
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Sequential Weighted Breadth-First Search
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by one
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Parallel Weighted Breadth-First Search
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Parallel Weighted Breadth-First Search
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Parallel Weighted Breadth-First Search
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(2) Insert 

neighbors 
into buckets 

in parallel7 36
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depth

Resulting algorithm performs:

(assuming efficient bucketing)

O(m + r𝗌𝗋𝖼)
O(r𝗌𝗋𝖼 log n)
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Parallel Bucketing

Bucketing is useful for more than just wBFS

Parallel Approximate Set Cover
[BPT’12]

d � 2�

d � �

Parallel Shortest Paths
[MB’03]

Parallel k-Tip Decomposition
[SS’20]
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Parallel Bucketing

Bucketing is useful for more than just wBFS

1. Multiple vertices insert into the same bucket in parallel

2. Possible to make work-efficient parallel implementations?

Challenges

Goals
• Simplify expressing algorithms using an interface

• Theoretically efficient, reusable implementation
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Julienne: Results

Shared memory framework for bucketing-based algorithms

Extend Ligra with an interface for bucketing
• Theoretical bounds for primitives 
• Fast implementations of primitives 

Can implement a bucketing algorithm with

expected work and 

O((K + L) log n) depth w.h.p.

• n vertices 
• T total buckets 
• U updates

over K Update calls, and L calls to NextBucket

O(n + T + U)
Bucketing implementation is 

work-efficient
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Bucketing Interface

Ligra

Graph

vertexSubset

Julienne

Bucketing Interface
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Bucketing Interface

Ligra

Graph

vertexSubset

Julienne

Bucketing Interface Bucketing Interface:

(1) Create bucket structure

(2) Get the next bucket (vertexSubset)

(3) Update buckets of a subset  
     of identifiers
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Initialize bucket structure



36

Bucketing Interface

n : int

D : identifier � bucket id

O : bucket order

MakeBuckets : buckets

Initialize bucket structure

D(1) = 0, D(2) = 1, D(3) = 4, . . .



37

Bucketing Interface

n : int

D : identifier � bucket id

O : bucket order

MakeBuckets : buckets

Initialize bucket structure

1

4 2 7 3

5

6

D(1) = 0, D(2) = 1, D(3) = 4, . . .
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Bucketing Interface

NextBucket : bucket

1

4 2 7 3

5

6

Extract identifiers in the next non-empty bucket
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Bucketing Interface

NextBucket : bucket
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Order: increasing
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Bucketing Interface

2 7 3

5

6

1

4 NextBucket : bucket

Extract identifiers in the next non-empty bucket

Order: increasing
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Bucketing Interface

4 2 7 3

5

6

Update buckets for k identifiers

UpdateBuckets
k : int

F : int � (identifier, bucket dest)

1
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Bucketing Interface
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[(1,1), (7,2), (6,2)]

Update buckets for k identifiers

UpdateBuckets
k : int

F : int � (identifier, bucket dest)
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Bucketing Interface

1

4 2 7 3
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[(1,1), (7,2), (6,2)]

Update buckets for k identifiers

UpdateBuckets
k : int

F : int � (identifier, bucket dest)
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Bucketing Interface

74 2
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[(1,1), (7,2), (6,2)]

6

Update buckets for k identifiers

UpdateBuckets
k : int

F : int � (identifier, bucket dest)

1

7 6
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Bucketing Interface

74 2 3

5

[(1,1), (7,2), (6,2)]

6

Update buckets for k identifiers

UpdateBuckets
k : int

F : int � (identifier, bucket dest)

1



46

Sequential Bucketing

Can implement sequential bucketing with:
• n identifiers 
• T total buckets 
• K calls to UpdateBuckets, where each updates the ids in

O(n + T +
K�

i=0

|Si|) work in 

Si
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Sequential Bucketing

Can implement sequential bucketing with:
• n identifiers 
• T total buckets 
• K calls to UpdateBuckets, where each updates the ids in

O(n + T +
K�

i=0

|Si|) work in 

Si

Idea:
• Use dynamic arrays that are updated lazily
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Parallel Bucketing

Can implement parallel bucketing with:
• n identifiers 
• T total buckets 
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• L calls to NextBucket
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Parallel Bucketing

Can implement parallel bucketing with:
• n identifiers 
• T total buckets 
• K calls to UpdateBuckets, where each updates the ids in 
• L calls to NextBucket

O(n + T +
K�

i=0

|Si|) expected work and in 

O((K + L) log n) depth w.h.p.

Si

Idea:
• Use dynamic arrays 
• MakeBuckets: call UpdateBuckets. NextBucket: parallel filter
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Parallel Bucketing
UpdateBuckets:

• Use work-efficient semisort [Gu et al. 2015] 
• Given k (key, value) pairs, semisorts in          expected work and               

depth w.h.p.

O(k) O(log k)



48

Parallel Bucketing
UpdateBuckets:

[(3,9), (4,7), …, (2,1), (1,1)]

• Use work-efficient semisort [Gu et al. 2015] 
• Given k (key, value) pairs, semisorts in          expected work and               

depth w.h.p.

O(k) O(log k)
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Parallel Bucketing
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All ids going to bucket 1

• Use work-efficient semisort [Gu et al. 2015] 
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Parallel Bucketing
UpdateBuckets:

[(3,9), (4,7), …, (2,1), (1,1)]

[(2,1), (1,1), (7,1), …, (4,7), (6,7), …, (3,9)] 

All ids going to bucket 1

• Use work-efficient semisort [Gu et al. 2015] 
• Given k (key, value) pairs, semisorts in          expected work and               

depth w.h.p.

O(k) O(log k)

• Prefix sum to compute #ids going to each bucket
• Resize buckets and inject all ids in parallel

Can see paper for details on practical implementation and 
optimizations
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k-Core Decomposition

2-core3-core

1-core

maximal connected subgraph of G where all vertices have 
degree at least k within the subgraph

k-core : 

coreness : largest k-core that a given vertex participates in

Widely used in network analysis tasks such as 
unsupervised clustering of social and biological networks
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The Peeling Algorithm

• Current degree of remaining vertices decreases as 
vertices are peeled from the graph

• Once a vertex’s current degree is less than or equal to 
the current core number, it gets peeled

k = 1 k = 1 k = 1
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The Peeling Algorithm

k = 2 k = 2

k = 3 k = 3

2-core3-core

1-core

k = 1 k = 1

Classic sequential implementations of this peeling 
algorithm run in O(m) time [AM’84, BZ’03]

k = 1
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Parallel Peeling
Remove all vertices with degree less than or equal to the 

current core number in parallel
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k = 1

2 7 3

5

6

1 2 3 4 5

k = 1

2 → 1

2 → 1

4 → 2

2 7 3

5

6

1 2 3 4 5

Remove all vertices with degree less than or equal to the 
current core number in parallel
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Insert vertices in bucket structure by degree
While not all vertices have been processed yet:

1. Extract the next bucket, set core numbers
2. Sum edges removed from each neighbor of this frontier
3. Compute the new buckets for the neighbors
4. Update the bucket structure with the (neighbors, buckets)
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We process each edge at most once in each direction:

On the largest graph we test on, � = 130, 728

On 72 cores, our code finishes in a few minutes, but the  
work-inefficient algorithm does not terminate within 3 hours

# buckets � |V |

# calls to UpdateBuckets = �

# calls to NextBucket = �

# updates = O(|E|)

Therefore the algorithm runs in:

expected workO(|E| + |V |)
depth w.h.p.O(� log |V |)

Efficient peeling using Julienne



A Work-Efficient k-core Decomposition Algorithm

❖ Actual code is under 50 
lines of C++

❖ Parallel cost:

O(ρ log n) depth whp

O(m + n) expected work

Julienne Algorithm in GBBS

ρ is the number of peeling roundswhere

70



A Work-Efficient k-core Decomposition Algorithm

❖ Actual code is under 50 
lines of C++

❖ Parallel cost:

O(ρ log n) depth whp

O(m + n) expected work

Julienne Algorithm in GBBS

Our algorithm is the first work-efficient algorithm for 
k-core decomposition with non-trivial parallelism

ρ is the number of peeling roundswhere

70
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Work and Depth of Algorithms in Julienne

Algorithm Work Depth

k-core

wBFS

Delta-stepping

Approx Set Cover

O(|E| + |V |) O(� log |V |)

O(D + |E|) O(D log |V |)

O(w�) O(d� log |V |)

O(M) O(log3 M)

M : sum of sizes of sets

: diameterD

: work and number of rounds of the delta-stepping algorithmw�, d�

� : number of rounds of parallel peeling

[2]

[1] Meyer, Sanders: Δ-stepping: a parallelizable shortest path algorithm

[2] Blelloch, Peng, Tangwongsan: Linear-work greedy parallel approximate set cover and variants

[1]

http://www.sciencedirect.com/science/article/pii/S0196677403000762
http://dl.acm.org/authorize?437654
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Experimental Results
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Ligra (work-inefficient)

• Between 4-41x speedup over sequential peeling

• Speedups are smaller on small graphs with large

• 2-9x faster than work-inefficient implementation  

�

|V| = 121M

|E| = 3.6B

Friendster

Across all inputs:
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Experimental Results: Hyperlink Graphs

Hyperlink graphs extracted from Common Crawl Corpus

Graph |V| |E| |E|(symmetrized)

HL2014 1.7B 64B 124B

HL2012 3.5B 128B 225B

• Previous analyses use supercomputers [1] or external memory [2]

• HL2012-Sym requires ~1TB of memory uncompressed

[1] Slota et al., 2015, Supercomputing for Web Graph Analytics

[2] Zheng et al., 2015, FlashGraph: Processing Billion-Node Graphs on 
     an Array of Commodity SSDs



74

Experimental Results: Hyperlink Graphs

• Able to process in main-memory of 1TB machine by compressing

• 23-43x speedup across applications

Graph k-core wBFS Set Cover

HL2014 97.2 9.02 45.1

HL2012 206 — 104

Running time in seconds on 72 cores with hyperthreading 
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k-Core Decomposition on the WebDataCommons Graph

k-core : maximal connected subgraph of G 
s.t. all vertices have degree at least k

2-core3-core

1-core

BlueWaters [SRM’16]

Time
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Quality

363 seconds
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16 TB

Approximate

Cost Very Expensive
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k-Core Decomposition on the WebDataCommons Graph

k-core : maximal connected subgraph of G 
s.t. all vertices have degree at least k

2-core3-core

1-core

BlueWaters [SRM’16]

Time

Processors

Memory

Quality

363 seconds

8192

16 TB

Approximate

Cost Very Expensive

GBBS [DBS’18]

184 seconds

72

1 TB

Exact

Highly Affordable

1.95x faster than the approximate distributed result by SRM’16, using 
56.8x fewer hyper-threads and 16.3x less memory
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Summary: Julienne

Julienne: framework for bucketing-based algorithms

• Codes:
• Simple (< 100 lines each)
• Theoretically efficient (strong bounds on work and depth)
• Good performance in practice
• Code included as part of the GBBS library

d � 2�

d � �

k-core Delta-stepping
wBFS

Parallel Approximate
Set Cover

Parallel k-Tip 
Decomposition 
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Theoretically-Efficient Parallel Graph Algorithms 
can be Fast and Scalable [DBS’18]

Can we solve a broad set of fundamental graph 
problems on the largest graphs, affordably and quickly?
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❖ Introduce a benchmark suite for graph problems with over 
20 important problems

❖ GBBS algorithms achieve state-of-the-art results on the 
largest publicly available graphs

github.com/paralg/gbbs

Subgraph Problems
k-Core Decomposition
k-Truss Decomposition
Apx. Densest Subgraph
Triangle Counting
Higher-Clique Counting

Connectivity Problems
Low-Diameter Decomposition
Connectivity
Spanning Forest
Biconnectivity
Minimum Spanning Forest
Strongly Connected Components

Covering Problems
Maximal Ind. Set
Maximal Matching
Apx. Set Cover
Graph Coloring

Shortest Path Problems
Breadth-First Search
Betweenness Centrality
Bellman-Ford
General Weight SSSP
Integral Weight SSSP
SS Widest Path
k-Spanner

Eigenvector Problems
PageRank
Personalized PageRank
Personalized SimRank

The Graph-Based Benchmark Suite (GBBS)

https://github.com/paralg/gbbs


Benchmarking Connectivity on WebDataCommons Graph

Benchmarks are based on I/O specifications, e.g.,

Maximal Independent Set
Input:            an undirected graph
Output:         , a set of vertices such that no two vertices in    are 
neighbors, and all vertices in          have a neighbor in   

k-core (Coreness)
Input:            an undirected graph
Output: A mapping from each vertex to its coreness value (the  
maximum k such that the vertex is in a non-empty k-core)

79
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k-core (Coreness)
Input:            an undirected graph
Output: A mapping from each vertex to its coreness value (the  
maximum k such that the vertex is in a non-empty k-core)

I/O specification makes it easy to compare different algorithm 
implementations
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GBBS Results on WDC Hyperlink Graph
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A broad set of fundamental graph problems can be solved 
on a graph with over 200 billion edges in 3 minutes
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O(m)†

O(m log n)
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O(m)†
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† : * :

O(𝖽𝗂𝖺𝗆(G) ⋅ m)
O(m)

O(m)

O(m)†

in expectation whp

Problem  Work  Depth
Breadth-First Search (BFS)

Integral-Weight SSSP (weighted BFS)

General-Weight SSSP (Bellman-Ford)

Single-Source Widest Path (Bellman-Ford)

Single-Source Betweenness Centrality (BC)

O(k)-Spanner

Low-Diameter Decomposition (LDD)

Connectivity (CC)

Spanning Forest

Biconnectivity

Strongly Connected Components (SCC)

Minimum Spanning Forest (MSF)

Maximal Independent Set (MIS)

Maximal Matching (MM)

Graph Coloring

k-core 

Approximate Set Cover

Triangle Counting (TC)

Approximate Densest Subgraph

PageRank Iteration

Õ(𝖽𝗂𝖺𝗆(G))
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Õ(𝖽𝗂𝖺𝗆(G))
Õ(𝖽𝗂𝖺𝗆(G))

O(m)
O(m)†

O(𝖽𝗂𝖺𝗆(G) ⋅ m)

O(m)

O(m)†

O(m)†

O(m log n)†
O(m)†

O(m log n)

O(log2 n)*
O(log3 n)*

O(max(𝖢𝖢, 𝖡𝖥𝖲))
Õ(𝖽𝗂𝖺𝗆(G))*
O(log2 n)

O(m)†
O(m)†

O(m3/2)

O(m)†

O(log2 n)*

O(log3 n)*

O(log n + L log Δ)
O(ρ log n)*

O(log2 n)*

O(log n)

O(m)

O(𝖽𝗂𝖺𝗆(G) ⋅ m)
O(m)

O(m)

O(m)†

O(m)

Õ(𝖽𝗂𝖺𝗆(G))
Õ(k log n)*

O(log3 n)*

O(log2 n)
O(n + m) O(log n)

Work and Depth of GBBS Results
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Õ(𝖽𝗂𝖺𝗆(G))
Õ(k log n)*

O(log3 n)*

O(log2 n)
O(n + m) O(log n)

Work and Depth of GBBS Results

Main Challenge:
How do we build simple and provably-efficient implementations of 

these algorithms that work on the largest real-world graphs?
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GBBS Library

Bucketing Graph Vertex

ParlayLib

Parallel Runtime

Graph Representations

Cilk, OpenMP,  TBB,
Homegrown

Compression Library

Core GBBS Interfaces
❖ High-level graph processing interface 

in the lineage of Ligra [SB’12]

❖ Provides many useful primitives

• Map
• Reduce
• Filter
• Pack
• Intersect

Vertex Operations

• Filter
• Pack
• Contract

Graph Operations

Graph |V| |E| Size (CSR) Compressed Bytes/edge

WDC Hyperlink 3.5B 128B 1080GB 446GB 1.74

WDC Hyperlink (Sym) 3.5B 225B 928 GB 351GB 1.56

❖ Compressed graph representations 
based on extending Ligra+
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Vertex Interface

Vertex-Vertex
operators:

intersection : (nghlist � nghlist) � int
union : (nghlist � nghlist) � int
difference : (nghlist � nghlist) � int

Neighborhood
operators:

map : (edge � void) � void
reduce : (edge � E) � E monoid � E
scan : (edge � E) � E monoid � E
count : (edge � bool) � int
filter : (edge � bool) � E seq
pack : (edge � bool) � void
iterate : (edge � bool) � void
i-th : int � edge
degree : unit � int
getNeighbors : unit � nghlist

}
}
}

Work Depth

Provides functional primitives for commonly used vertex 
operations with good theoretical bounds on their cost
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Provides functional primitives 
for performing whole-graph 
operations, and for operations 
that consume and produce 
vertexSubsets

Graph Interface

VertexSubset
operators:

edgeMap      : vset ∗ (edge → bool) 
          ∗ (vtxid → bool) → vset
edgeMapVal  : vset ∗ (edge → O option) 
          ∗ (vtxid → bool) → O vset
srcReduce     : vset ∗ (edge → O) ∗ O monoid 
          ∗ (vtxid → bool) → O vset
srcCount      : vset ∗ (edge → bool) 
          ∗ (vtxid → bool) → int vset
srcPack        : vset ∗ (edge → bool) 
          ∗ (vtxid → bool) → int vset
nghReduce    : vset ∗ (edge → R) ∗ R monoid 
          ∗ (vtxid → bool) 
          ∗ (R → O option) → O vset
nghCount      : vset ∗ (edge → bool) 
          ∗ (vtxid → bool) 
          ∗ (int → O option) → O vset

Graph
operators:

numVertices    : unit → int
numEdges      : unit → int
getVertex       : int → vertex
filterGraph      : (edge → bool) → graph
packGraph      : (edge → bool) → unit
extractEdges   : (edge → bool) 
   → edge sequence
contractGraph : int sequence → graph

Work Depth

}

}

}
}
}
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Inputs

vertexSubset

Map function

Condition function
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edgeMap [SB’13]

U N(U)
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Output
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Inputs
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Map function
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edgeMap [SB’13]

U N(U)

Consider (u, v) ∈ E s.t. u ∈ U and C(v)
 If F(u, v) = 𝖳𝗋𝗎𝖾 return v in output, O

Output

vertexSubset

Operator specification doesn’t insist on 
a particular implementation. Thus, Ligra 
(and GBBS) can implement direction-

optimization “under the hood”

Inputs

vertexSubset

Map function

Condition function
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Generalizing edgeMap to Other Graph Operations

OutputInputs

vertexSubset

Map function

Combine function

F : 𝖾𝖽𝗀𝖾 → 𝖮

U

M : 𝖮 𝗆𝗈𝗇𝗈𝗂𝖽 (𝖮 → 𝖮 → 𝖮, 𝗂𝖽𝖾𝗇𝗍𝗂𝗍𝗒)

Condition function C : 𝗏𝗍𝗑𝗂𝖽 → 𝖻𝗈𝗈𝗅

𝖮 𝗏𝖾𝗋𝗍𝖾𝗑𝖲𝗎𝖻𝗌𝖾𝗍 R
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Generalizing edgeMap to Other Graph Operations

OutputInputs

vertexSubset

Map function

Combine function

F : 𝖾𝖽𝗀𝖾 → 𝖮

U

M : 𝖮 𝗆𝗈𝗇𝗈𝗂𝖽 (𝖮 → 𝖮 → 𝖮, 𝗂𝖽𝖾𝗇𝗍𝗂𝗍𝗒)

Condition function C : 𝗏𝗍𝗑𝗂𝖽 → 𝖻𝗈𝗈𝗅

𝖮 𝗏𝖾𝗋𝗍𝖾𝗑𝖲𝗎𝖻𝗌𝖾𝗍 R

U N(U)

Aggregating results at the source 
vertices yields a src- version

Aggregating results at the neighbor 
vertices yields a ngh- version)
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Example: Updating Induced Degrees in Parallel using nghCount

k = 1 k = 1

2 → 1

2 → 1

4 → 2
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Example: Updating Induced Degrees in Parallel using nghCount

2 2
2

1

nghCountInput vertexSubset

k = 1 k = 1

2 → 1

2 → 1

4 → 2

Our Implementation

O ( |U | + ∑
u∈U

d(u)) expected work O(log n) depth whp

❖ We provide a provably-efficient 
implementation of nghCount that takes



O(m)
O(m)†

O(𝖽𝗂𝖺𝗆(G) ⋅ m)

O(m)

O(m)†

O(m)†

O(m log n)†
O(m)†

O(m log n)

O(m)†
O(m)†

O(m3/2)

O(m)†
O(m)

† : * :

O(𝖽𝗂𝖺𝗆(G) ⋅ m)
O(m)

O(m)

O(m)†

in expectation whp

Problem  Work  Depth
Breadth-First Search (BFS)

Integral-Weight SSSP (weighted BFS)

General-Weight SSSP (Bellman-Ford)

Single-Source Widest Path (Bellman-Ford)

Single-Source Betweenness Centrality (BC)

O(k)-Spanner

Low-Diameter Decomposition (LDD)

Connectivity (CC)

Spanning Forest

Biconnectivity

Strongly Connected Components (SCC)

Minimum Spanning Forest (MSF)

Maximal Independent Set (MIS)

Maximal Matching (MM)

Graph Coloring

k-core 

Approximate Set Cover

Triangle Counting (TC)

Approximate Densest Subgraph

PageRank Iteration

Õ(𝖽𝗂𝖺𝗆(G))
Õ(𝖽𝗂𝖺𝗆(G))*
Õ(𝖽𝗂𝖺𝗆(G))
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O(m log n)†
O(m)†

O(m log n)

O(log2 n)*
O(log3 n)*

O(max(𝖢𝖢, 𝖡𝖥𝖲))
Õ(𝖽𝗂𝖺𝗆(G))*
O(log2 n)

O(m)†
O(m)†

O(m3/2)

O(m)†

O(log2 n)*

O(log3 n)*

O(log n + L log Δ)
O(ρ log n)*

O(log2 n)*

O(log n)

O(m)

O(𝖽𝗂𝖺𝗆(G) ⋅ m)
O(m)

O(m)

O(m)†

O(m)

Õ(𝖽𝗂𝖺𝗆(G))
Õ(k log n)*

O(log3 n)*

O(log2 n)
O(n + m) O(log n)

Connectivity Problems in GBBS

❖ Connectivity and related 
problems are probably the best 
studied problems in the parallel 
algorithms literature

❖ Practical work-efficient 
implementations of these 
problems are absent in the 
experimental literature
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Õ(𝖽𝗂𝖺𝗆(G))
Õ(k log n)*

O(log3 n)*

O(log2 n)
O(n + m) O(log n)

Connectivity Problems in GBBS

GBBS provides simple and high-
level implementations of 

connectivity problems based on 
low-diameter decomposition

❖ Connectivity and related 
problems are probably the best 
studied problems in the parallel 
algorithms literature

❖ Practical work-efficient 
implementations of these 
problems are absent in the 
experimental literature
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Connectivity Problems in GBBS using LDD

O(
log n

�
)

total cut edges � �m
max diameter is O(log n/�)

Low-Diameter Decomposition [MPX’13]

O(m + n)

O(log2 n)

work

depth whp
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O(𝖽𝗂𝖺𝗆(G) + log3 n)
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depth whp

Undirected Connectivity [SDB’14]

Spanning Forest [SDB’14]

O(m + n)

O(log3 n)

expected work

depth whp

graph

Cluster labels F : 𝗏𝗍𝗑𝗂𝖽 → 𝗂𝗇𝗍

G(V, E)
Output

graph G′ (V′ , E′ )
Input

Graph Contraction
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“Hard” Problems in GBBS

❖ Work-efficient, polylog depth 
algorithms not known for these 
problems

❖ Instead, focus on work-efficiency 
at the expense of parametrizing 
depth in terms of some other 
graph parameter (usually 
diameter)
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“Hard” Problems in GBBS

Transitive Closure Bottleneck: 
See book chapter by 

Karp and Ramachandran

❖ Work-efficient, polylog depth 
algorithms not known for these 
problems

❖ Instead, focus on work-efficiency 
at the expense of parametrizing 
depth in terms of some other 
graph parameter (usually 
diameter)
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Case Study: Connectivity on WebDataCommons Graph
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Outperform external memory results by orders 
of magnitude using comparable hardware.
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Outperform external memory results by orders 
of magnitude using comparable hardware.

Outperform distributed memory results using 
orders of magnitude less hardware.
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SAGE
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Graph Engine
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machines, and achieve state-of-the-art running 
times (VLDB’20)

with Charles McGuffey, Hongbo Kang, Yan Gu, Guy 
Blelloch, Phil Gibbons, and Julian Shun
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ArbClique

Implement state-of-the-art k-clique counting 
(exact+approximate), and k-clique densest-
subgraph algorithms in GBBS (ACDA’21)

with Jessica Shi and Julian Shun

Lots of other ongoing work!

Efficient parallel graph algorithms for 
motifs (cycles, cliques)

Shared-memory parallel graph 
embedding

Parallel Graph Clustering (SCAN, 
Hierarchical Agglomerative Clustering)

Parallel Batch-Dynamic k-Core 
Decomposition, Triangle Counting
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GBBS @ Graph Mining Team (Google Research)

Goal: accelerate parallel graph clustering algorithms by 10—100x using 
scalable (work-efficient) parallel graph algorithms

Parallel Density, Correlation, and Modularity 
Clustering (VLDB’21)

with Jessica Shi, David Eisenstat, Jakub Lacki, Vahab 
Mirrokni

ParHAC: Parallel Hierarchical Agglomerative 
Graph Clustering (in submission for VLDB’22)

Feel free to contact me (laxmand@google.com)

Simple, scalable, and compressed *mutable* 
dynamic graph representations

Scalable flat metric clustering (k-Means, etc)

Ongoing work:Recent work / in submission:

Hierarchical Agglomerative Graph Clustering 
in Nearly Linear Time (ICML’21)

mailto:laxmand@google.com

