
Smaller and Faster: Parallel
Processing of Compressed Graphs

with Ligra+

Julian Shun

Based on joint work with Guy Blelloch and Laxman Dhulipala

Ligra Graph Processing Framework
2

EdgeMap VertexMap

Breadth-first search
Betweenness centrality
Connected components
Triangle counting
K-core decomposition
Maximal independent set
Set cover

Single-source shortest paths
Eccentricity estimation
(Personalized) PageRank
Local graph clustering
Biconnected components
Collaborative filtering
…

Simplicity, Performance, Scalability

Steps for Graph Traversal
• Operate on a subset of vertices
• Map computation over subset of edges in parallel
• Return new subset of vertices
• Map computation over subset of vertices in parallel

3

}

Graph

VertexSubset

EdgeMap

VertexMap

Large Graphs
4

6.6 billion edges

128 billion edges

~1 trillion edges [VLDB 2015]

• Most can fit on commodity shared memory machine

Amazon EC2

Example
Dell PowerEdge R930:
Up to 96 cores and 6 TB of RAM

What if you don’t have or can’t afford that
much memory?

5
R

un
ni

ng
 T

im
e

Memory Required

Graph Compression

Ligra+: Adding Graph
Compression to Ligra

6

• Same interface as Ligra
• All changes hidden from the user!

7

Ligra+: Adding Graph Compression to Ligra

Graph

VertexSubset

EdgeMap

VertexMap

Interface

Use compressed representation

Decode edges on-the-fly

Same as before

Same as before

Graph representation
8

0 4 5 11

2 7 9 16 0 1 6 9 12

...

...

Offsets

Edges

2 5 2 7 -1 -1 5 3 3 ...
Compressed

Edges

Vertex IDs 0 1 2 3

Sort edges and encode differences

2 - 0 = 2 7 - 2 = 5 1 - 2 = -1

0 0 0 0 0 1 10 0 1 0 0 0 1

• k-bit codes
• Encode value in chunks of k bits
• Use k-1 bits for data, and 1 bit as the “continue” bit

• Example: encode “401” using 8-bit (byte) code
• In binary:

9

1 1 0 0 1 0 0 0 1

1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1

“continue” bit

7 bits for data

Variable-length codes

• Another idea: get rid of “continue” bits

10

0 1 0 1 1 0 0 1

Number of bytes
per integer

Size of group
(max 64)

Header

……
Integers in group

encoded in byte chunks

• Increases space, but makes decoding cheaper (no branch
misprediction from checking “continue” bit)

x1 x2 x3 x4 x5 x6 x7 x8 ……
Number of bytes
required to encode
each integer

1 2 2 2 2 2 2 2

Use run-length encoding

……

Encoding optimization

• Same interface as Ligra
• All changes hidden from the user!

11

Ligra+: Adding Graph Compression to Ligra

Graph

VertexSubset

EdgeMap

VertexMap

Interface

Use compressed representation

Decode edges on-the-fly

Same as before

Same as before

• Processes outgoing edges of a subset of vertices

12

Modifying EdgeMap

2 5 2 7 9 2 1 3 3VertexSubset

-4 6 3 1 3 5 6 2

5 10 2

30 5

-16 2 19 1 4 2 5 3

All vertices processed
in parallel

16

25

44

0

7

What about high-degree vertices?

13

Handling high-degree vertices

-1 2 4 3 16 2 1 5 8 19 4 1 23 14 12 1 9 10 3 5

High-degree
vertex

…

Chunks of size T

-1 2 4 3 16 2 27 5 8 19 4 1 87 14 12 1 9 10

…

…

Encode first entry relative to source vertex

All chunks can be
decoded in parallel!

• We chose T=1000
• Similar performance

and space usage for
a wide range of T

Ligra+ Space Savings
14

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

so
c-L
J

cit
-P
ate
nts

co
m-
LJ

co
m-
Or
ku
t

nlp
kk
t24
0

Tw
itte
r

uk
-un
ion

Ya
ho
o

Space relative to Ligra using
byte codes with run-length encoding

Ligra

Ligra+

• Space savings of about 1.3—3x
• Could use more sophisticated schemes to further

reduce space, but more expensive to decode
• Cost of decoding on-the-fly?

Ligra+ Performance
15

0.6
0.7
0.8
0.9
1

1.1
1.2
1.3
1.4

BF
S

Be
tw
ee
nn
es
s

Ec
ce
ntr
ici
ty

Co
mp
on
en
ts

Pa
ge
Ra
nk

Be
llm
an
-Fo
rd

40-core time relative to Ligra

• Cost of decoding on-the-fly?
• Memory subsystem is a scalability bottleneck in

parallel as these graph algorithms are memory-bound
• Ligra+ decoding gets better parallel speed up

0.6
0.7
0.8
0.9
1

1.1
1.2
1.3
1.4

BF
S

Be
tw
ee
nn
es
s…

Ec
ce
ntr
ici
ty

Co
mp
on
en
ts

Pa
ge
Ra
nk

Be
llm
an
-Fo
rd

Single-thread time relative to Ligra

Ligra

Ligra+

0
5
10
15
20
25
30
35
40

BF
S

Be
tw
ee
nn
es
s

Ec
ce
ntr
ici
ty

Co
mp
on
en
ts

Pa
ge
Ra
nk

Be
llm
an
-Fo
rd

Self-relative 40-core Speedup

Ligra

Ligra+

Ligra Summary
16

EdgeMapVertexMap

Breadth-first search
Betweenness centrality
Connected components
Triangle counting
K-core decomposition
Maximal independent set
…

Single-source shortest paths
Eccentricity estimation
(Personalized) PageRank
Local graph clustering
Biconnected components
Collaborative filtering
…

Simplicity, Performance, Scalability

VertexSubset

Optimizations: Hybrid traversal
and graph compression

17

Thank you!

Code: https://github.com/jshun/ligra/

J. Shun and G. E. Blelloch. Ligra: A Lightweight Graph Processing Framework for
Shared Memory, Principles and Practice of Parallel Programming, 2013.

J. Shun, L. Dhulipala and G. E. Blelloch. Smaller and Faster: Parallel Processing of
Compressed Graphs with Ligra+, Data Compression Conference, 2015.

https://github.com/jshun/ligra/

