Smaller and Faster: Parallel
Processing of Compressed Graphs
with Ligra+

Julian Shun

Based on joint work with Guy Blelloch and Laxman Dhulipala

Ligra Graph Processing Framework

EdgeMap VertexMap

Breadth-first search Single-source shortest paths
Betweenness centrality Eccentricity estimation
Connected components (Personalized) PageRank
Triangle counting Local graph clustering
K-core decomposition Biconnected components
Maximal independent set Collaborative filtering

Set cover

Simplicity, Performance, Scalability

Steps for Graph Traversal

- Operate on a subset of vertices

- Map computation over subset of edges in parallel }

- Return new subset of vertices
- Map computation over subset of vertices in parallel

Graph
VertexSubset

EdgeMap

VertexMap

. S
Large Graphs

Amazon EC2

x1exlarge
x1e.2xlarge
x1e.4xlarge
x1e.8xlarge
x1e.16xlarge

x1e.32xlarge

4)
vCPU ECU Memory (GiB)

4 12 122
8 23 244
16 47 488
32 91 976
64 179 1952
128 340 3904

— /

Instance Storage (GB) Linux/UNIX Usage
1x120SSD $0.834 per Hour
1x240SSD $1.668 per Hour
1x 480SSD $3.336 per Hour

1x 960 $6.672 per Hour
1x 1920 SSD $13.344 per Hour
2x 1920 SSD $26.688 per Hour

* Most can fit on commodity shared memory machine

i

I
I
I
I

N i o B fe

HHHHHH

Example
Dell PowerEdge R930:

Up to 96 cores and 6 TB of RAM

5
What if you don't have or can't afford that

much memory?

Running Time

Memory Required

Graph Compression

Ligra+: Adding Graph
Compression to Ligra

Ligra+: Adding Graph Compression to Ligra

[Interface \

VertexSubset <

- — -
Use compressed representa’tio_n,

— —

. Same as before

EdgeMap <

Decode edges on-the-fly

\ VertexMap

- Same interface as Ligra

Same as before

- All changes hidden from the user!

N
Graph representation

g]
Vertex IDs | 0 » 1 \24y 3
Offsets 0 4 5 11

O‘\ O‘\ o™
Edges | 12,7, 9 16 0 ‘1. 6 9 12
- - -
2-0=27-2=5 1-2=-1
Compressed
Edges 2 5 2 7 -1 -1 5 3 3

Sort edges and encode differences

. R
Variable-length codes

- k-bit codes

- Encode value in chunks of k bits
- Use k-1 bits for data, and 1 bit as the “continue” bit

- Example: encode “401” using 8-bit (byte) code

-In binary: ERERRIRIERCICIEDER
\—

Nﬂs for data

1010110001 0000011
P

“continue” bit

N N
Encoding optimization

- Another idea: get rid of “continue” bits

X4 X2 X3 X4 X5 Xe X7 Xg | "=""*"

Number of bytes
required to encode
each integer

1 2 2 2 2 2 2 2

Use run-length encoding

Header
ol1lol11]ofof1]] | .
T \ Integers in group
encoded in byte chunks
Number of bytes Size of group
per integer (max 64)

* Increases space, but makes decoding cheaper (no branch
misprediction from checking “continue” bit)

.
Ligra+: Adding Graph Compression to Ligra

[Interface \

=
'\

- Same interface as Ligra

(\ (iaph < Use compressed representa’tio_n,\
VertexSubset < - Same as before
—_—— — T~ -
C EigeMap < Decode edges on-thiﬂy’ D
_ VertexMap 4 — Same as before

- All changes hidden from the user!

-~

VertexSubset

~

@/

@
()

/

\

Modifying EdgeMap

- Processes outgoing edges of a subset of vertices

OANg

2 |5 | 2 7,9 2 1|3 3
4 | 6 3|1 |3 5|6 | 2
5 10 | 2

All vertices processed
30 | 5 in parallel
16| 2 19 | 1 | 4 | 2 | 5 | 3

What about high-degree vertices?

Handling high-degree vertices

High-degree
vertex
12 4 | 3 16 2 |1 5 8 |19 4 1 (|23 14 12| 1 9 10 ||3 5
Chunks of size T

o
-1} 2 | 4 | 3
-t

16

2

X

#27}5 8 |19 4 1 #87}14 12 1 1 9 |10
’ ’

-

Encode first entry relative to source vertex

All chunks can be
decoded in parallel!

We chose T=1000

- Similar performance

and space usage for
a wide range of T

Ligra+ Space Savings

Space relative to Ligra using
- byte codes with run-length encoding

mLigra

mLigra+

* Space savings of about 1.3—3x

* Could use more sophisticated schemes to further
reduce space, but more expensive to decode

» Cost of decoding on-the-fly?

Ligra+ Performance

Sin@eHhdativiend@ wdati Bptedigra 40-core time relative to Ligra

m Ligra

mLigra+

* Cost of decoding on-the-fly?

 Memory subsystem is a scalability bottleneck in
parallel as these graph algorithms are memory-bound

« Ligra+ decoding gets better parallel speed up

I N
Ligra Summary

VertexSubset VertexMap EdgeMap

Optimizations: Hybrid traversal
and graph compression

Breadth-first search Single-source shortest paths
Betweenness centrality Eccentricity estimation
Connected components (Personalized) PageRank
Triangle counting Local graph clustering
K-core decomposition Biconnected components

Maximal independent set Collaborative filtering

Simplicity, Performance, Scalability

J. Shun and G. E. Blelloch. Ligra: A Lightweight Graph Processing Framework for
Shared Memory, Principles and Practice of Parallel Programming, 2013.

J. Shun, L. Dhulipala and G. E. Blelloch. Smaller and Faster: Parallel Processing of
Compressed Graphs with Ligra+, Data Compression Conference, 2015.

Code: https://github.com/jshun/ligra/

https://github.com/jshun/ligra/

