
Graph Analytics in Storage
Sang-Woo Jun

Guest lecture for 6.886 (Graph Analytics)
2018-03-02

1

Size of Graphs in Nature

Vertices Edges

Road Network 10 Millions 100 Millions

Social Networks Billions 10 Billions

Web Graphs 10 Billions 100 Billions

Brain Neural
Network

100 Billions Trillions

2

Just a general scale!

Example Open Dataset:
Web Data Commons Web Graph
q Hyperlink graph collected by Common Crawl
q “[…] largest hyperlink graph that is available to the

public outside companies such as Google, Yahoo, and
Microsoft.”

q 3.5 billion web pages and 128 billion hyperlinks
q 2 TB in text (0.5 TB encoded)

3

Compare against the Twitter dataset
40 Million vertices, 30 GB

Machines of Scale

q An $8,000 machine
o 32 Cores
o 128 GB DRAM

q Cost of Scale-Out
o 8+ Machines for 1TB DRAM
o DRAM also used by OS, FS, Disk cache, network buffer…
o $64,000 in machine cost + Network infrastructure + …

4

0

0.5

1

1.5

2

Single

Thread

Spark Giraph GraphX GraphLab

N
o

rm
a

li
ze

d
 P

e
rf

o
rm

a
n

ce

PageRank on Twitter Dataset

16-node cluster

Scale-Out Incurs Significant Overhead

5“Scalability! But at what COST?,” Frank McSherry, HotOS 2015

Cost of Scale-Up

q TBs of DRAM on a single machine incurs non-linear
cost increase
o Goes into HPC (High-Performance Computing) area
o Custom designed hardware/architecture
o Very expensive!

q Can we not use DRAM to handle capacity?
o (Cheap hard disks for example?)
o HDD 1 TB costs ~ $50 (SATA)
o SSD 1 TB costs ~ $500 (PCIe)
o DRAM 1 TB costs ~ $8,000

6

Contents

q Why storage is not a good fit for graph analytics
q How some systems overcome these limitations

o GraphChi
o FlashGraph
o Mosaic
o BigSparse

7

Characteristics of Large Graphs

q Large (of course)

o Multiple TBs

q Sparse

o Edge factor of 10s or 100s

q Irregular

o Not much locality

o Any vertex can be connected to any other vertex

8

Irregularity + Sparsity → Fine-grained random access!

Random Access Within
an Active Vertex

9

Random Access Across
Active Vertices

10

! !

Data size and irregularity limit cacheing effectiveness

DRAM vs Disk vs SSD

DRAM HDD SSD
Cost/TB $8,000 $50 $500
Bandwidth 200 GB/s 750 MB/s 4 GB/s

Latency 20 ns 10 ms 20 us
Power (W) 200 2 – 5 2 – 5

11

qHDD Bandwidth assumes SATA-III (6Gb/s)
qHDD Latency for random reads

o High mechanical seek time penalty
qSSD Bandwidth assumes PCIe Gen2 x8 (4GB/s)

Pay attention to the units! (e.g., GB vs MB)

For performance, storage reads must be in coarse granularities
(Megabytes for HDD, Kilobytes for SSD)

Issue of Access Granularity

q Minimum unit of storage access is a page (4 – 8KB)
o Reading 8 KB to use 8 bytes is a waste (1/1024 bandwidth)

q Minimum unit of DRAM is complicated
o 128 Byte cache line?
o 1 – 8KB row buffer?
o But DRAM has much lower latency

12

For performance, storage reads must be in coarse granularities
(Megabytes for HDD, Kilobytes for SSD)
AND we must organize data so that most data read is useful

Software Interface for Storage Access

q Typically using blocking read() operations
o Blocking random access kills performance
o Remember 10 ms vs 20 us vs 10 ns difference!
o Per thread SSD: 100MB/s HDD: < 1MB/s

q Asynchronous I/O using more threads
o Lots of threads doing blocking reads
o 40+ Threads to reach SSD bandwidth (RocksDB)

q Linux Kernel Asynchronous I/O
o Please let me know if you can get it to perform!

13

Contents

q Why storage is not a good fit for graph analytics
q How some systems overcome these limitations

o GraphChi
o FlashGraph
o Mosaic
o BigSparse

14

GraphChi: Large-Scale Graph
Computation on Just a PC
q The first graph analytics system in storage

o Based on observations from GraphLab
q Novelty: Parallel Sliding Window algorithm

o Can function on systems with very small memory (MBs)
o Optimized for reducing random memory access

15

q Hurdles of partitioning
o Process in-edges: random read across vertex partitions
o Process out-edges: random write across vertex partitions

q Parallel Sliding Window’s solution
o Collocate vertex data with edge data
o “Send source vertex’s values to neighbors”
o Some duplication of data

Parallel Sliding Window – Motivations

16

Parallel Sliding Window - Partitions

17

1 … A A+1 … B B+1 … C C+1 … N

Edges

Vertices

src dst val
2 1 …
3 2 …
5 1 …

N A …

…
src dst val
1 A+1 …
3 A+n …

…
N-2 B …

Interval 1 Interval 2 Interval 3 Interval 4
So

rt
ed

 b
y

sr
c

Shard 1: Shard 2 Shard 3 Shard 4
Edges with dst in

{1…A}
Interval sized so that

each shard fits in memory

Includes both edge weight
and value of N-2

Parallel Sliding Window - Execution

18

src dst val
2 1 …
3 2 …
5 1 …

N A …

…
src dst val
1 A+1 …
3 A+n …

…
N-2 B …

Shard 1 Shard 2 Shard 3 Shard 4

: Loaded in memory

q Algorithm iterates over intervals
q For interval 1, only load shard 1 and parts of shards

that have src in interval 1

Updated with value of
Vertex 3

memory
shard

sliding
shard

Parallel Sliding Window - Execution

19

src dst val
2 1 …
3 2 …
5 1 …

N A …

…
src dst val
1 A+1 …
3 A+n …

…
N-2 B …

Shard 1 Shard 2 Shard 3 Shard 4

: Loaded in memory

q Next shard is loaded in memory
q Sliding shards move forward to match next shard

Selective Scheduling in GraphChi

q For algorithms with sparse active set (e.g., Breadth-
First-Search), inefficient to process all edges

q GraphChi’s method: coarse-grained selection
o Divides each shard into sub-indices
o When neighbors are activated, a bit mask is set
o Loops through the bitmask to determine which sub-indices

to skip
o … I think that’s what it says it’s doing

20

Benefits of PSW

q Most reads are sequential chunks
q For P shards, only P2 random jumps in reads

o Across sliding shard reads
q Each edge is read up to two times
q Each edge is written up to two times

21

Shortcomings of PSW

q Initial preprocessing (sharding) overhead is high
o 10 mins to load twitter graph

q Vertex value is duplicated
q Selective scheduling is inefficient

o Coarse granularity?
o Loop through bit mask?
o Results with selective scheduling is not included in paper

22

GraphChi Performance Results

q Paper compares against inconsistent system
configurations

q Compared to Hadoop-based Pegasus
o Similar to Pegasus on 100 machines

q Compared to in-memory systems
o Half performance against single-node GraphLab
o Half performance against 50-node Spark

23

More consistent results will be presented later

Configuration Impact on Performance

q Linear performance scaling with more disks
q Multithreading does not buy much performance
q Significant performance improvements by larger

blocks

24

Contents

q Why storage is not a good fit for graph analytics
q How some systems overcome these limitations

o GraphChi P
o FlashGraph
o Mosaic
o BigSparse

25

FlashGraph: Processing Billion-Node
Graphs on an Array of Commodity SSDs

q Stores vertex data in memory
q Efficient access to edge data using special file system

26

Edge Data vs Vertex Data in Graphs

27

Edge Data Vertex Data

!(#×%&'()*+,-.) !(#)

In-edges to a vertex
are grouped together

Each vertex is
independant

Monotonically
Increasing Reads

Random
Read-Modify-Write

Size:

Locality:

Pattern:

Storing vertex data in memory removes a lot of random access

SAFS – Set-Associative File System

q Spawns I/O threads to provide application with
asynchronous file I/O

q Dynamically merges SSD access to better use
bandwidth

28

Graph Partitioning

q Partitions are striped for better balancing
q Both horizontal and vertical partitioning

o Horizontal – Partition across vertices
o Vertical – Partition across neighbors

q Inter-partition messages batched by threads
q Inter-thread work stealing

29Simple to do thanks to vertex data in memory

FlashGraph Performance vs In-Memory

q Performance on the Web Data Commons graph
q Comparable storage while loading from flash
q At high IOPS of flash, CPU runs out before flash

bandwidth

30

FlashGraph Performance vs External

q Performance on the twitter graph
q Much faster than GraphChi

31

Performance Impact of Merging Edge
Access
q Normalized to merging in FlashGraph
q Significant improvement!

32

Contents

q Why storage is not a good fit for graph analytics
q How some systems overcome these limitations

o GraphChi P
o FlashGraphP
o Mosaic
o BigSparse

33

Mosaic: Processing a Trillion-Edge
Graph on a Single Machine
q Like FlashGraph, stores only vertices in memory
q Hilbert order tiles organization to improve locality
q Xeon Phi coprocessor

o Parallelize SSD access
o Parallelize edge processing
o Parallelize vertex processing

34

Background – Graph Representation

35

Column Major
Locality for write
Repeated reads

Row Major
Locality for read
Repeated writes

Hilbert-Ordered Tiles

q Hilbert curve – Fractal space-filling curve
q Traverses tiles by Hilbert order

o Until reaching vertex count limit per tile

36

Hilbert Order Has Good Locality

q Both sources and targets have overlap

37

Xeon Phi Coprocessor

q Intel’s answer to GPU accelerators
q 64-72 x86 cores

o With Intel SIMD instructions
q Hundreds of GB of memory

38

Use of Xeon Phi in Mosaic

q Each Xeon Phi core sends read requests directly to
NVMe via DMA
o Many many requests in flight

q Each Hilbert order tile fits in Xeon Phi core’s LLC
o Pull and Intra-Tile Reduce performed on Xeon Phi core

q Inter-Tile Reduce performed in host server
o Intra-inter tile reduction separation made possible by

associative nature of Reduce

39

Pull-Reduce-Apply Model

q Vertex Program is divided into three parts
q Pull (Vertex src, Vertex dst)

o Gather per edge information
o Uses incoming neighbor value and current local vertex

q Reduce (Vertex v1, Vertex v2)
o Given two incoming edges, reduce into one
o Must be associative

q Apply (Vertex v)
o Calculate non-associative math

40

Pull-Reduce-Apply Example

41

Performance Benefits of Hilbert
Ordering
q Increased locality translates to performance

42

Mosaic Performance Against
Storage-Based Systems
q Much better compared to other storage-based

system
o Compared systems don’t use Xeon Phis

43

Comparisons Against More Systems

q Against In-Memory Systems
o Comparable performance against Polymer and Ligra
o 1.8x slower than Polymer
o 2x faster than Ligra

q Against GPU-accelerated systems
o Slower compared to TOTEM and GTS
o 3.3x slower than TOTEM
o 2.6x – 1.4x slower than GTS

44

Contents

q Why storage is not a good fit for graph analytics
q How some systems overcome these limitations

o GraphChi P
o FlashGraphP
o Mosaic P
o BigSparse

45

BigSparse: High-performance external
graph analytics
q Fully external analytics

o Even vertex data in storage
o Very little memory required

q Novelty: Sort-Reduce algorithm to sequentialize
storage updates

46

Random Access in Push-Style Vertex
Program

47

A

B

1

2

3

4

5

6

7

q Update operations in a Shortest Path Example

a

b

c

d

e

f

V1 = min(VA+a, V1)
V3 = min(VA+b, V3)
V6 = min(VA+c, V6)

V2 = min(VB+d, V2)
V3 = min(VB+e, V3)
V6 = min(VB+f, V6)

Fine-granularity random read/writes

Better Organization of Accesses:
Sort-Reduce

48

V1 = min(VA+a, V1)
V3 = min(VA+b, V3)
V6 = min(VA+c, V6)
V2 = min(VB+d, V2)
V3 = min(VB+e, V3)
V6 = min(VB+f, V6)

V1 = min(VA+a, V1)
V2 = min(VB+d, V2)
V3 = min(VA+b, V3)
V3 = min(VB+e, V3)
V6 = min(VA+c, V6)
V6 = min(VB+f, V6)

V1 = min(VA+a, V1)
V2 = min(VB+d, V2)
V3 = min(min(VA+b, VB+e), V3)
V6 = min(min(VA+c, VB+f), V6)

Sort
Pairwire
Reduce

Memory access
increasing order

Random access Fewer accesses
increasing order

Thanks to associative reductions

Putting it Together - Sort Reduce

49

Sorted
Data

Sorted
Data

Sorted
Data

Sorted
Data

Sorted Data Sorted Data

Merge Merge

Merge

Sort-Reduced
Results

+ update

Sorted
Data

Sorted
Data

Sorted
Data

Sorted
Data

Sort-Reduced
Data

Sort-Reduced
Data

Merge Merge

Merge

Sort-Reduced
Results

+ update

+ update + update

Reduced
Overhead

Updates are first logged and sorted using external merge sort
Reduction can be applied after every merge iteration

Big Benefits from
Interleaving Reduction

50

Ratio of data copied at each sort phase

0
0.2
0.4
0.6
0.8

1
1.2

0 1 2 3

No
rm

al
ize

d
siz

e
of

up

da
te

 st
re

am

Merge Iteration

Kron32

0
0.2
0.4
0.6
0.8

1
1.2

0 1 2 3

No
rm

al
ize

d
siz

e
of

up

da
te

 st
re

am

Merge Iteration

Kron32

WDC

90%
0

0.2
0.4
0.6
0.8

1
1.2

0 1 2 3

No
rm

al
ize

d
siz

e
of

up

da
te

 st
re

am

Merge Iteration

Kron32
WDC
Kron30
Twitter

BigSparse Performance Results

q PageRank on the Web Data Commons graph
q FlashGraph starts thrashing at 64 GB memory

capacity

51

BigSparse Performance Results

q Betweenness-Centrality on the Web Data Commons
graph

q FlashGraph starts thrashing at 96 GB memory
capacity

52

External Analytics Dramatically
Decreases Memory Usage

60 GB
80 GB

8 GB
0

50

100

GB

FlashGraph X-Stream BigSparse

53

Most of GraFSoft memory usage is flash prefetch buffers

Hardware Sorting Accelerator

q Hardware Sorting Accelerator using Field-
Programmable Gate Array (FPGA)
o Creates dedicated hardware in FPGA chip
o Low power, high performance

q Performs 4x compared to 8-thread software
o Can always instantiate more

54

0
0.5

1
1.5

2
2.5

PR BFS BC

No
rm

al
ize

d
Pe

rfo
rm

an
ce

X-Stream GraFBoost

Results with a Large Graph:
Synthetic Scale 32 Kronecker Graph

55

0.5 TB in text, 4 Billion vertices
GraphLab out of memory

GraphChi did not finish
FlashGraph out of memory

1.7x
2.8x 10x

GraFSoft

Summary

q GraphChi
o Optimized for sequential accesses

q FlashGraph
o Vertex data in memory to handle random access

q Mosaic
o Xeon Phi to parallelize I/O and computation

q BigSparse
o Sort-Reduce to remove random access

56

