
6.886:
Graph Analytics

© 2018 Julian Shun 1

LECTURE 1
Introduction

Julian Shun
February 7, 2018

© 2018 Julian Shun 2

What is a graph?

• Vertices model objects
• Edges model relationships between objects

EdgeVertex Vertex

Alice Bob

Carol David

Eve

Fred Greg

Hannah
https://commons.wikimedia.org/wiki/File:Protein_Interaction_Net
work_for_TMEM8A.png

Julian

© 2018 Julian Shun 3

Social networks

© 2018 Julian Shun 4

Collaboration networks

© 2018 Julian Shun 5

Transportation networks

© 2018 Julian Shun 6

Computer networks

Source: rawbytes.com

© 2018 Julian Shun 7

Connectomics

• Vertices are neurons, edges are synapses
• Roughly 1011 neurons and 1015 synapses

in human brain

© 2018 Julian Shun 8

Other Applications

• Financial transaction networks
• Economic trade networks
• Food web
• Various types of biological networks
• Image segmentation in computer vision
• Scientific simulations
• Many more…

© 2018 Julian Shun 9

What is a graph?

• Edges can be directed
∙ Relationship can go one way or both ways

http://farrall.org/papers/webgraph_as_content.htmlhttp://www3.nd.edu/~dwang5/courses/spring15/assignments/A1/
Assignment1_SocialSensing.html

© 2018 Julian Shun 10

What is a graph?

• Edges can be weighted
∙ Denotes “strength”, distance, etc.

https://msdn.microsoft.com/en-us/library/aa289152(v=vs.71).aspx

Distance between cities Flight costs

© 2018 Julian Shun 11

What is a graph?

• Vertices and edges can have types and
metadata

Google Knowledge Graph

http://searchengineland.com/laymans-visual-guide-googles-knowledge-graph-search-api-241935

© 2018 Julian Shun 12

Social network queries

• Examples:
∙ Finding all your friends who went to the same

high school as you
∙ Finding common friends with someone
∙ Social networks recommending people whom

you might know

http://www.facebookfever.com/introducing-facebook-new-graph-
api-explorer-features/

http://allthingsgraphed.com/2014/10/16/your-linkedin-network/

© 2018 Julian Shun 13

Finding good clusters

• Finding groups of vertices that are “well-
connected” internally and “poorly-
connected” externally

• Some applications
∙ Finding people with

similar interests
∙ Detecting fraudulent

websites
∙ Document clustering
∙ Unsupervised learning

© 2018 Julian Shun 14

Subgraph finding/motif discovery

• Finding or counting specific subgraphs
inside a graph

• Finding recurrent subgraphs

• Some applications
∙ Functions in biological

networks
∙ Node importance in

social networks

© 2018 Julian Shun 15

Properties of real-world graphs
• They can be big

Web graph
1.4 billion vertices
6.6 billion edges

(38 GB)

Web graph
3.5 billion vertices
128 billion edges

(540 GB)

Social network
41 million vertices
1.5 billion edges

(6.3 GB)
• Sparse (m = cn for a small constant c)
• Degrees can be highly skewed

N
um

be
r

of

ve
rt

ic
es

 w
ith

de

gr
ee

Degree

Most people

Lady Gaga, Obama

Studies have shown that
many real-world graphs have

a power law degree
distribution

#vertices with deg. d ≈ a×d-p

(2 < p < 3)Source: https://en.wikipedia.org/wiki/Power_law

© 2018 Julian Shun 16

Small world phenomenon
• Also known as “six degrees of separation”
• Experiment by Stanley Milgram (1967)
∙ Forward letter to a “target”
∙ Could only mail letter to acquaintance you know

on a first-name basis
∙ 1/3 of letters eventually arrived, in a median of

6 steps

© 2018 Julian Shun 17

Core-periphery structure

• High-status nodes linked in a dense “core”
• Low-status nodes are on sparse “periphery”

© 2018 Julian Shun 18

COURSE INFORMATION

© 2018 Julian Shun 19

Course Information

• Graduate-level class
∙ Undergraduates who have taken 6.046 and

6.172 are welcome
• Lectures: Wednesday and Friday 2:30-4pm
• Instructor: Julian Shun
• TA: Sherry (Mengjiao) Yang
• Units: 3-0-9
• We will use Piazza for communication

© 2018 Julian Shun 20

Course Website
https://people.csail.mit.edu/jshun/6886-s18/

© 2018 Julian Shun 21

Grading

Grading Breakdown

Paper Questions and Reviews 20%

Paper Presentations 25%

Research Project 50%

Class Participation 5%

© 2018 Julian Shun 22

Paper Presentations
• This is a research-oriented course
• Cover content from 2-3 research papers

each lecture
• 20-minute student presentation per paper
∙ Discuss motivation for the problem solved
∙ Key technical ideas
∙ Theoretical/experimental results
∙ Related work
∙ Strengths/weaknesses
∙ Directions for future work
∙ Include several questions for discussion

• Sign up for presentation slots this week in
Google doc

• Would be helpful to sign up even if listening

© 2018 Julian Shun 23

Paper Questions

• There will be a question per paper posted
on Learning Modules
∙ Submit answers on Learning Modules by 12pm

on the day of the lecture

© 2018 Julian Shun 24

Paper Reviews

• Submit one paper review each week on a
paper that will be covered that week
∙ Cover motivation, key ideas, results, novelty,

strengths/weaknesses, your ideas for improving
the techniques or evaluation, any open
problems or directions for further work

∙ Submit on Learning Modules by Tuesday
11:59pm each week (before we cover the
papers)

∙ Reviews will be made viewable to class
(anonymously)

∙ Read them before the lecture to help prepare for
the discussions

© 2018 Julian Shun 25

Research Project
• Open-ended research project related to

graphs to be done in groups of 2-3
• Some ideas
∙ Implementation of non-trivial algorithm
∙ Analyzing/optimizing performance of existing algorithm
∙ Designing new theoretically and/or practically efficient

algorithms
∙ Applying graph algorithms in larger applications
∙ Coming up with new graph problems
∙ Improving or designing new graph frameworks
∙ Survey of an area
∙ Any topic may involve parallelism, cache-efficiency, I/O-

efficiency, and memory-efficiency
• Can be related to any research you are doing
• Can possibly be a starting point for a

publication

© 2018 Julian Shun 26

Project Timeline
Assignment Due Date

Pre-proposal meeting 3/14

Proposal 3/16

Mid-term report 4/13

Poster Session 5/14 or 5/16

Final Report 5/17

• Pre-proposal meeting
∙ 15-minute meeting to run idea by instructors

• Talk to instructors if you need computing
resources for the project
∙ We may have some AWS credits

© 2018 Julian Shun 27

GRAPH REPRESENTATIONS

© 2018 Julian Shun 28

Graph Representations

• Vertices labeled from 0 to n-1

0 1 0 0 0

1 0 0 1 1

0 0 0 1 0

0 1 1 0 0

0 1 0 0 0

Adjacency matrix
(“1” if edge exists,

“0” otherwise)

0 1 2 3 4

0

1

3

2

4

Edge list

(0,1)
(1,0)
(1,3)
(1,4)
(2,3)
(3,1)
(3,2)
(4,1)

• O(n2) space for adjacency matrix
• O(m) space for edge list

© 2018 Julian Shun 29

Graph Representations
• Adjacency list
∙ Array of pointers (one per vertex)
∙ Each vertex has an unordered list of its edges

• Space requirement is O(n+m)
• Can substitute linked lists with arrays for

better cache performance
∙ Tradeoff: more expensive to update graph

© 2018 Julian Shun 30

Graph Representations
• Compressed sparse row (CSR)
∙ Two arrays: Offsets and Edges
∙ Offsets[i] stores the offset of where vertex i’s

edges start in Edges

0 4 5 11

2 7 9 16 0 1 6 9 12

...

...

Offsets

Edges

Vertex IDs 0 1 2 3

• How do we know the degree of a vertex?
• Space usage is O(n+m)
• Can also store values on the edges with an

additional array or interleaved with Edges

© 2018 Julian Shun 31

Tradeoffs in Graph Representations
• What is the cost of different operations?

Adjacency
matrix

Edge list Adjacency list
(linked list)

Compressed
sparse row

Storage cost /
scanning

whole graph

O(n2) O(m) O(m+n) O(m+n)

Add edge O(1) O(1) O(1) O(m+n)
Delete edge

from vertex v
O(1) O(m) O(deg(v)) O(m+n)

Finding all
neighbors of a

vertex v

O(n) O(m) O(deg(v)) O(deg(v))

Finding if w is
a neighbor of v

O(1) O(m) O(deg(v)) O(deg(v))

• There are variants/combinations of
these representations

© 2018 Julian Shun 32

BREADTH-FIRST SEARCH

© 2018 Julian Shun 33

Breadth-First Search (BFS)
• Given a source vertex s, visit the

vertices in order of distance from s
• Possible outputs:
∙ Vertices in the order they were visited

■ D, B, C, E, A
∙ The distance from each vertex to s

∙ A BFS tree, where each vertex has a
parent to a neighbor in the previous
level

A

B

C

D

E

2 1 1 0 1
A B C D E

A

B

C

D

E

BFS tree

source = D

Applications

Betweenness
centrality

Eccentricity
estimation

Maximum flow

Web crawlers

Network
broadcasting

Cycle detection

…

© 2018 Julian Shun 34

Sequential BFS Algorithm

Source: https://en.wikipedia.org/wiki/Breadth-first_search

• BFS requires O(n+m) work on n vertices
and m edges

© 2018 Julian Shun 35

Sequential BFS Algorithm
• Assume graph is given in compressed

sparse row format
∙ Two arrays: Offsets and Edges
∙ n vertices and m edges (assume Offsets[n] = m)

int* parent =
(int*) malloc(sizeof(int)*n);
int* queue =
(int*) malloc(sizeof(int)*n);

for(int i=0; i<n; i++) {
parent[i] = -1;

}

queue[0] = source;
parent[source] = source;

int q_front = 0, q_back = 1;

//while queue not empty
while(q_front != q_back) {

int current = queue[q_front++]; //dequeue
int degree =

Offsets[current+1]-Offsets[current];
for(int i=0;i<degree; i++) {

int ngh = Edges[Offsets[current]+i];
//check if neighbor has been visited
if(parent[ngh] == -1) {

parent[ngh] = current;
//enqueue neighbor
queue[q_back++] = ngh;

}
}

}
• What is the most expensive part of the code?
∙ Random accesses cost more than sequential accesses

Total of m
random accesses

© 2018 Julian Shun 36

DEPTH-FIRST SEARCH

© 2018 Julian Shun 37

Depth-First Search (DFS)
• Explores edges out of the most

recently discovered vertex
• Possible outputs:
∙ Depth-first forest
∙ Vertices in the order they were first

visited (preordering)
∙ Vertices in the order they were last

visited (postordering)
∙ Reverse postordering

source = D

Applications

Topological sort

Solving mazes

Biconnected
components

Strongly connected
components

Cycle detection

…

1

2

3
4 8 Preorder: D, B, A, C, E

Postorder: C, A, B, E, D
Reverse postorder: D, E, B, A, C

A

B

C

D

E

/10

/7

/6
/5 /9

DFS requires O(n+m) work on n
vertices and m edges

© 2018 Julian Shun 39

TOPOLOGICAL SORT

© 2018 Julian Shun 40

Topological Sort

• Given a directed acyclic graph, output the
vertices in an order such that all
predecessors of a vertex appear before it
∙ Application: scheduling tasks with dependencies

(e.g. parallel computing, Makefile)
• Solution: output vertices in reverse

postorder in DFS

A

B

C

D

E

source = D

1/10

2/7

3/6
4/5 8/9

Reverse postorder: D, E, B, A, C

© 2018 Julian Shun 41

SHORTEST PATHS

© 2018 Julian Shun 42

Single-Source Shortest Paths
• Given a weighted graph and a source vertex,

output the distance from the source vertex to
every vertex

• Non-negative weights
∙ Dijkstra’s algorithm
∙ O(m + n log n) work using Fibonnaci heap

• General weights
∙ Bellman-Ford algorithm
∙ O(mn) work

© 2018 Julian Shun 43

Dijkstra’s Algorithm

• O((m+n)log n) work using normal heap
• O(m + nlog n) work using Fibonacci heap
∙ Extract-min takes O(log n) work but decreasing

priority only takes O(1) work (amortized)

© 2018 Julian Shun 44

Bellman-Ford Algorithm
Bellman-Ford(G, source):

ShortestPaths = {∞, ∞, …, ∞} //size n; stores shortest path distances
ShortestPaths[source] = 0
for i=1 to n-1:

for each vertex v in G:
for each w in neighbors(v):

if(ShortestPaths[v] + weight(v,w) < ShortestPaths[w]):
ShortestPaths[w] = ShortestPaths[v] + weight(v,w)

if no shortest paths changed:
return ShortestPaths

report “negative cycle”

• At most n rounds, each doing O(n+m) work
• Total work = O(mn)

© 2018 Julian Shun 45

PARALLELISM

© 2018 Julian Shun 46

Parallelism

Parallel machines are everywhere!

Graphs are becoming very large!

1.4 billion vertices
6.6 billion edges

(38 GB)

3.5 billion vertices
128 billion edges

(540 GB)

41 million vertices
1.5 billion edges

(6.3 GB)

Can rent machines on AWS with 72 cores
(144 hyper-threads) and 4TB of RAM

© 2018 Julian Shun 47

Parallelism Models

• Work = number of vertices in
graph (number of operations)

• Depth = longest directed path in
graph (dependence length)

• Parallelism = Work / Depth

Computation graph

Goal 1: work-efficient and low
(polylogarithmic) depth algorithms

Goal 2: simple, practical, and
cache-friendly

© 2018 Julian Shun 48

CACHING AND NON-
UNIFORM MEMORY ACCESS

© 2018 Julian Shun 49

Cache Hierarchies

Memory level Approx latency
L1 Cache 1-2ns
L2 Cache 3-5ns
L3 cache 12-40ns
DRAM 60-100ns

Design cache-
efficient and cache-

oblivious graph
algorithms to

improve locality

© 2018 Julian Shun 50

Non-uniform Memory Access (NUMA)

• Accessing remote memory is more expensive
than accessing local memory of a socket
∙ Latency depends on the number of hops

Design NUMA-aware
graph algorithms to

improve locality

© 2018 Julian Shun 51

I/O EFFICIENCY

© 2018 Julian Shun 52

I/O Efficiency

• Need to read input from disk at least once
• Need to read many more times if graph

doesn’t fit in memory
Memory Latency Throughput
DRAM 60-100 ns Tens of GB/s
SSD Tens of µs 500 MB-2 GB/s (seq), 50-200 MB/s (rand)
HDD Tens of ms 200 MB/s (seq), 1 MB/s (rand)

Source: https://www.pcgamer.com/hard-drive-vs-ssd-performance/2/

© 2018 Julian Shun 53

I/O Efficiency
• For graphs larger than main memory, disk-

based computing can be competitive with
distributed clusters

• GraphChi: Large-Scale Graph Computation
on Just a PC (OSDI 2012)

• Lots of follow-up work on disk-based
computing that we will study

• External-memory algorithms to minimize I/O’s

© 2018 Julian Shun 54

ALGORITHMS

© 2018 Julian Shun 55

Graph Algorithms
• We will study algorithms for particular

problems
∙ Parallelism, cache-efficiency, I/O-efficiency,

streaming
Breadth-first search Betweenness centrality SSSP

PageRank Triangle Computations Graphlet counting

Frequent subgraph finding Dense subgraph discovery Graph coloring

Connected components Clustering Partitioning

K-core decomposition Truss decomposition Nuclei decomposition

Minimum spanning forest Spanning forest Eccentricity estimation

Maximal matching Set cover Collaborative filtering

Strongly connected
components

Biconnected components Maximum flow

Local clustering Belief propagation Maximal independent set

© 2018 Julian Shun 56

Efficient Graph Processing

• Use parallelism

• Design efficient algorithms

∙ Write/optimize code for each application
∙ Build a general framework

Breadth-first search
Betweenness centrality
Connected components
…

Single-source shortest paths
Eccentricity estimation
PageRank
…

© 2018 Julian Shun 57

GRAPH PROCESSING
FRAMEWORKS

© 2018 Julian Shun 58

Graph Processing Frameworks

Graph processing frameworks/libraries
Pregel, Giraph, GPS, GraphLab, PowerGraph, PRISM, Pegasus, Knowledge
Discovery Toolbox, CombBLAS, GraphChi, GraphX, Galois, X-Stream,
Gunrock, GraphMat, Ringo, TurboGraph, FlashGraph, Grace, PathGraph,
Polymer, GoFFish, Blogel, LightGraph, MapGraph, PowerLyra, PowerSwitch,
Imitator, XDGP, Signal/Collect, PrefEdge, EmptyHeaded, Gemini, Wukong,
Parallel BGL, KLA, Grappa, Chronos, Green-Marl, GraphHP, P++, LLAMA,
Venus, Cyclops, Medusa, NScale, Neo4J, Trinity, GBase, HyperGraphDB,
Horton, GSPARQL, Titan, ZipG, Cagra, Milk, Ligra, Ligra+, Julienne,
GraphPad, Mosaic, BigSparse, Graphene, Mizan, Green-Marl, PGX, PGX.D,
Wukong+S, Stinger, GraphIn, Tornado, Bagel, KickStarter, Naiad, Kineograph,
GraphMap, Presto, Cube, Giraph++, Photon, TuX2, GRAPE, GraM, Congra,
MTGL, GridGraph, NXgraph, Chaos, Mmap, Clip, Floe, GraphGrind, DualSim,
ScaleMine, Arabesque, GraMi, SAHAD, Facebook TAO, Weaver, G-SQL, G-
SPARQL, gStore, Horton+, S2RDF, Quegel, EAGRE, Shape, RDF-3X, CuSha,
Garaph, Totem, GTS, Frog, GBTL-CUDA, Graphulo, Zorro, Coral, GraphTau,
Wonderland, GraphP, and many others…

• Reduce programming effort of writing
efficient parallel graph programs

© 2018 Julian Shun 59

DYNAMIC GRAPHS

© 2018 Julian Shun 60

Dynamic Graphs

• Many graphs are changing over time
∙ Adding/deleting connections on social networks
∙ Traffic conditions changing
∙ Communication networks (email, IMs)
∙ World Wide Web
∙ Content sharing (Youtube, Flickr, Pinterest)

• Need graph data structures that allow for
efficient updates (in parallel)

• Need (parallel) algorithms that respond to
changes without re-computing from scratch

© 2018 Julian Shun 61

COMPRESSION AND
REORDERING

© 2018 Julian Shun 62

Large Graphs

1.4 billion vertices
6.6 billion edges

(38 GB)

3.5 billion vertices
128 billion edges

(540 GB)

• What if you cannot fit a graph on your machine?
• Cost of machines increases with memory size

R
u
n
n
in

g
 T

im
e

Memory Required

Available RAM

Graph Compression

41 million vertices
1.5 billion edges

(6.3 GB)

© 2018 Julian Shun 63

Graph Compression on CSR

0 4 5 11

2 7 9 16 0 1 6 9 12

...

...

Offsets

Edges

2 5 2 7 -1 -1 5 3 3 ...
Compressed

Edges

Vertex IDs 0 1 2 3
Sort edges and encode

differences

2 - 0 = 2 7 - 2 = 5 1 - 2 = -1

• For each vertex v:
• First edge: difference is Edges[Offsets[v]]-v
• i’th edge (i>1): difference is Edges[Offsets[v]+i]-

Edges[Offsets[v]+i-1]
• Want to use fewer than 32 or 64 bits per value
• Compression can improve parallel running time

© 2018 Julian Shun 64

• Reassign IDs to vertices to improve locality
∙ Goal: Make vertex IDs close to their neighbors’ IDs

and neighbors’ IDs close to each other

Graph Reordering

• Can improve compression rate due to smaller
“differences”

• Can improve performance due to higher cache
hit rate

• Various methods: BFS, DFS, METIS, degree, etc.

4 1

0 2

3 0 3

1 2

4

Sum of differences = 21 Sum of differences = 19

55

© 2018 Julian Shun 65

PARTITIONING/CLUSTERING

© 2018 Julian Shun 66

• Partition graph so that parts have similar size
and there are few crossing edges

• Conductance = (# crossing edges)/(size of
smaller partition)

• Minimizing conductance is NP-hard
• Many approximation methods
• Apply bisection recursively to get more

partitions

Graph Partitioning/Clustering

Source: https://cacm.acm.org/magazines/2008/10/515-geometry-flows-and-graph-partitioning-algorithms/fulltext

Applications

Parallel computing

Community detection

VLSI circuit design

Image segmentation

…

© 2018 Julian Shun 67

• Will study different algorithms
∙ Global vs. local algorithms

• Variants on optimization metric
• Apply algorithms to find communities in

real networks

Graph Partitioning/Clustering

© 2018 Julian Shun 68

• Triangles, 4-cliques, cycles, wedges, etc.
∙ # incident subgraphs is a measure of importance

• Frequent subgraph mining
∙ Extract all subgraphs whose counts are above

threshold
• Decomposing graphs into cores and other

structures

Finding Graph Structure

Example subgraphs
Source: https://chaoslikehome.wordpress.com/tag/topology/

Core decomposition

© 2018 Julian Shun 69

GRAPH STORES

© 2018 Julian Shun 70

• A database that allows for efficient
semantic queries on graphs

• Useful for queries on graphs with lots of
metadata
∙ Example: On Facebook, find all people who are

currently students, study at MIT, and have at
least 100 friends who study elsewhere

• Allows efficient updates
• Would usually like ACID properties

Graph Stores

© 2018 Julian Shun 71

GPUS

© 2018 Julian Shun 72

GPUs
• Pros: More cores, more memory

bandwidth
• Cons: Less memory, harder to program,

each core is slower, data transfer time
• GPU (and GPU+CPU) graph processing an

active area of research

© 2018 Julian Shun 73

LINEAR ALGEBRA AND
GRAPH

© 2018 Julian Shun 74

Matrix-Graph Duality

• Graph algorithms as matrix-vector multiply
∙ Traditionally use (+,*) semiring
∙ (or, and) for breadth-first search
∙ (+, min) for single-source shortest paths

• One step of a breadth-first search
• CSR, reordering, compression, partitioning

Source: Graph Algorithms in the Language of Linear Algebra (SIAM)

© 2018 Julian Shun 75

Summary

• Lots of exciting research going on in graph
analytics!

• Take this course to learn about latest results
and try out research in graph analytics

