6.886: Illil-

Graph Analytics

LECTURE 1
Introduction

Julian Shun
February 7, 2018

© 2018 Julian Shun

Edge

« Vertices model objects
- Edges model relationships between objects

ENSG00000237495

Carol =— David

Alice Bob — Eve

Fred ——— Greg

Julian \
https://commons.wikimedia.org/wiki/File:Protein_Interaction_Net

Hannah work_for TMEMB8A.png

© 2018 Julian Shun 2

<
3
Y\
<
3
3
J
%
~
S
N
©

|u‘0i'~

wEYL TETNT
TANTY Emnsram Semnarrbi >
sSYRAVS = — ROSUIN.
Re38ATS . 1]
G (T CaLAl E o) (COVRAN
GRUNS P MWL L
‘ orvas 2400 Laaen £ Hicasar
’ @_ VAP, Nokney LD
= ~ 1 SLOAN. G Thonh Von NEVMANI
H &N, VEnrr A
l Dot T - T A FACVILCIAR
TAVORER
! MLALnE il IT]
() Gased L P 4041 - = S
Wowrix . LEimagpeared) (TAe
p-o TALKi Y, (7] TAT
(T (13 N b 0 oo e Taax
’a, x pornsnii - = DL, SNAFAL
KaATS X R . i FLarscpne
" . wAS3
o o \ XD % LEnaRED . warer) (Bevikey
— AN RCTITIT) 4 P IN0ELL) (rurra
P Pl - ordc (LA
! S0 Lennas - Y s PRINS
e e
(G Toanes e ddew GRARAM ERDOS THVA TAL CARINErE) e
{ ars — Foixns) venoy Ll e
,')7’ (inna) 304 . [LLT1] Boionsg §
imaal = L ! [
| > PN s d - PEwINET, o
| Giatom Teris W Griens 2 Turre WARALY Teawing - WATRIN b
| £t - = 8eese " o CHvATAL
| NS e (L0100 Ties RasA ’ e CNARTRLVG hess el =
) ra TakTA 4 a Resk T 104 "
L LY
| Goed) 7 (TELLn ((1110 PANER NEQrNian, H
7
ANSEL Lok WASH WLl -
viAm Déirmh Yar ALSPACH T 80w, (AL feiiee g
ATy GFeaip fGane :
iTe FoaTA SLarAY, @ G o) CrArce Zunie 9
L1l
irEvE PoLtAk FRANECW] — TAVERTa T~ [~
T cagurd Mess weveiz) (ievinaon, . icwi v
(L Kaes, T m i ! AeLrs.)3
o & -
yau sl sgens Pord T 4 MNICALT” ors Rard 12N/,
| o7 8401y Rwedt

JvrnicK
Quinray) (Maseard :
aiL

, (Caresiancd)
. (LI)
|

GiasGaveiy)

ero appear in Topics in Grsph

© 2018 Julian Shun

ARIXS
(T SEMINIZL C

Figure 1

TheotY (¥, Harary, ed.) New York Academy of Sclences (1979).

ransportation networks

© 2018 Julian Shun

Computer networks

The Internet

- Vertices are neurons, edges are synapses

« Roughly 10'" neurons and 10'> synapses
in human brain

© 2018 Julian Shun 7

* Financial transaction networks

« Economic trade networks

 Food web

« Various types of biological networks

* Image segmentation in computer vision
« Scientific simulations

« Many more...

© 2018 Julian Shun 8

- Edges can be directed
o Relationship can go one way or both ways

http://www3.nd.edu/~dwang5/courses/spring15/assignments/A1/ http://farrall.org/papers/webgraph_as_content.html
Assignment1_SocialSensing.html

© 2018 Julian Shun 9

- Edges can be weighted
» Denotes “strength”, distance, etc.

Distance between cities Flight costs

Santa Barbara

Barstow

New York

Los Angeles

San Diego

https://msdn.microsoft.com/en-us/library/aa289152(v=vs.71).aspx

© 2018 Julian Shun 10

What is a graph?

« Vertices and edges can have types and
metadata

Google Knowledge Graph

. Mona Lisa

© 2018 Julian Shun

117

Social network queries

...
o]
o

| SRSl VAV

® - k ® * . R 3 -t
0% \ 7
o { [
Linke b
I]
O ——w
S /\ . 77 &
4) XS \ o/ !
* ",‘.‘.\a.\ le) ° Al
\

o X
R AL

| 5 el , \

Far e O M\ , S : -

http://www.facebookfever.com/introducing-facebook-new-graph- http://allthingsgraphed.com/2014/10/16/your-linkedin-network/
api-explorer-features/

« Examples:

e Finding all your friends who went to the same
high school as you

e Finding common friends with someone

e Social networks recommending people whom
you might know

© 2018 Julian Shun]2

« Some applications

e Finding people with
similar interests

o Detecting fraudulent
websites

 Document clustering
o Unsupervised learning

« Finding groups of vertices that are “well-
connected” internally and “poorly-
connected” externally

© 2018 Julian Shun]3

Some applications
§>D e Functions in biological
networks

» Node importance in

._I i_@ @_i z—@ social networks

« Finding or counting specific subgraphs
inside a graph
« Finding recurrent subgraphs

© 2018 Julian Shun 74

Properties of real-world graphs

* They can be big
6’ .Common Crawl

: YaHoO!
Social network Web graph Web graph
41 million vertices 1.4 billion vertices 3.5 billion vertices
1.5 billion edges 6.6 billion edges 128 billion edges
(6.3 GB) (38 GB) (540 GB)

Sparse (m = cn for a small constant ¢)
- Degrees can be highly skewed

= Studies have shown that
S o Most people
= =8 many real-world graphs have
9 § o a power law degree
g = S distribution
Z g .
Degree B #vertices with deg. d = axd>
Source: https://en.wikipedia.org/wiki/Power_law (2 <p< 3)
© 2018 Julian Shun

15

Small world phenomenon

« Also known as “six degrees of separation”

« Experiment by Stanley Milgram (1967)
e Forward letter to a “target”

e Could only mail letter to acquaintance you know
on a first-name basis

o 1/3 of letters eventually arrived, in a median of
6 steps

- 2l
0 w"’f’."' e ®
- 0/0‘.’ O ;.'\\..‘ O
O C - S - ® O O - ..

© 2018 Julian Shun

- High-status nodes linked in a dense “core”
« Low-status nodes are on sparse “periphery”

© 2018 Julian Shun 17

COURSE INFORMATION

© 2018 Julian Shun

18

Course Information

Graduate-level class

e Undergraduates who have taken 6.046 and
6.172 are welcome

Lectures: Wednesday and Friday 2:30-4pm
Instructor: Julian Shun

TA: Sherry (Mengjiao) Yang

Units: 3-0-9

We will use Piazza for communication

© 2018 Julian Shun

19

https://people.csail.mit.edu/jshun/6886-s18/

Schedule (tentative)

-

Date [Topic
Lhmu-yzn m.ml Gucton and

Chapter 1-2 of Networks, Crowds, and Markets

© 2018 Julian Shun

1] 1 P hn
SChe 8 hre:
w L hn h gran
Friday 2/9 |Parallel Algorithms
ICLRS Chapter 27 Pro Cihcient Sch 2Ng h Fine-Grained Par; m
Pred 1 ng in
Four Degr 0
A Work-Efficient Par; ith-| hn
3 determinism H org
plem » P
mation of =1
IDirection-Optimizing B #th-First S .
proximating B« Graph
Friday 2/16 |Paraliel Graph Traversal A Faster Algorithm for Betweenness Centrality h macher Aver,
The More the Merrier: Efficient Multi-Source Graph DA D;
Traversal® proximation
S tweenn m
1 N O 2 NCY nn s

20

Grading Breakdown N

Paper Questions and Reviews 20%
Paper Presentations 25%
Research Project 50%
Class Participation 5%

© 2018 Julian Shun 21

Paper Presentations

 This is a research-oriented course

« Cover content from 2-3 research papers
each lecture

« 20-minute student presentation per paper
o Discuss motivation for the problem solved
» Key technical ideas
o Theoretical/experimental results
o Related work
o Strengths/weaknesses
e Directions for future work
e Include several questions for discussion

« Sign up for presentation slots this week in
Google doc

 Would be helpful to sign up even if listening

© 2018 Julian Shun 22

« There will be a question per paper posted
on Learning Modules

e Submit answers on Learning Modules by 12pm
on the day of the lecture

© 2018 Julian Shun 23

Paper Reviews

« Submit one paper review each week on a
paper that will be covered that week

o Cover motivation, key ideas, results, novelty,
strengths/weaknesses, your ideas for improving
the techniques or evaluation, any open
problems or directions for further work

e Submit on Learning Modules by Tuesday
11:59pm each week (before we cover the
papers)

» Reviews will be made viewable to class
(anonymously)

» Read them before the lecture to help prepare for
the discussions

© 2018 Julian Shun 24

Research Project

 Open-ended research project related to
graphs to be done in groups of 2-3

e Some ideas

Implementation of non-trivial algorithm
Analyzing/optimizing performance of existing algorithm

Designing new theoretically and/or practically efficient
algorithms

Applying graph algorithms in larger applications
Coming up with new graph problems

Improving or designing new graph frameworks
Survey of an area

Any topic may involve parallelism, cache-efficiency, 1/0-
efficiency, and memory-efficiency

« Can be related to any research you are doing

« Can possibly be a starting point for a
publication

© 2018 Julian Shun

25

Project Timeline

Pre-proposal meeting 3/14
Proposal 3/16
Mid-term report 4/13
Poster Session 5/140r5/16
Final Report 5/17

« Pre-proposal meeting
e 15-minute meeting to run idea by instructors

- Talk to instructors if you need computing
resources for the project

» We may have some AWS credits

© 2018 Julian Shun

26

GRAPH REPRESENTATIONS

© 2018 Julian Shun

Graph Representations

* Vertices labeled from 0 to n-1

QOOGO® ©,1)

@ (1,0)
@ 1 olo|1]1 8 :2;

ololo]1]o0 (2,3)
% 0|1]1]0]o0 (3,1)
@ o|l1]l0]0]0O Eif;

Adjacency matrix

(“17 if edge exists, Edge list
“0” otherwise)

« O(n?) space for adjacency matrix
* O(m) space for edge list

© 2018 Julian Shun

Graph Representations
- Adjacency list

o Array of pointers (one per vertex)

o Each vertex has an unordered list of its edges

=

< o a2 W N » O

_—

* Space require

&llol v O] NIV IV

1 1

2]

1

-~

6

7]

3

Ol s Is] O] OO

2

lM

ment is O(n+m)

0 1

4

« Can substitute linked lists with arrays for

better cache performance

o Tradeoff: more expensive to update graph

© 2018 Julian Shun

29

Graph Representations

« Compressed sparse row (CSR)

o Two arrays: Offsets and Edges

o Offsets[i] stores the offset of where vertex i’s
edges start in Edges

Vertex IDs
Offsets

0

1

2

3

0

4

5

11

Vv

2

7/

9

16

0

1

6

9

12

« How do we know the degree of a vertex?

« Space usage is O(n+m)

« Can also store values on the edges with an
additional array or interleaved with Edges

© 2018 Julian Shun

30

Tradeoffs in Graph Representations

 What is the cost of different operations?
Adjacency Edge list Adjacency list Compressed

matrix (linked list) sparse row
Storage cost / O(n?) O(m) O(m+n) O(m+n)
scanning
whole graph
Add edge O(1) O(1) O(1) O(m-+n)
Delete edge O(1) O(m) O(deg(v)) O(m+n)
from vertex v
Finding all O(n) O(m) O(deg(v)) O(deg(v))
neighbors of a
vertex v
Finding if w is O(1) O(m) O(deg(v)) O(deg(v))
a neighbor of v

 There are variants/combinations of
these representations

© 2018 Julian Shun 37

BREADTH-FIRST SEARCH

© 2018 Julian Shun

Breadth-First Search (BFS)

« Given a source vertex s, visit the
vertices in order of distance from s

« Possible outputs: Betweenness
o Vertices in the order they were visited centrallty
Eccentricity
= D,B,C, E A estimation
o The distance from each vertex to s Maximum flow
A B C D E Web crawlers
2 1 1 0 1 Network
o A BFS tree, where each vertex has a broadcasting
parent to a neighbor in the previous Cycle detection
level

© 2018 Julian Shun BFS tree 33

Breadth-First-Search(Graph, root):

for each node n in Graph:
n.distance = INFINITY
n.parent = NIL

Source: https://en.wikipedia.org/wiki/Breadth-first_search

« BFS requires O(n+m) work on n vertices
and m edges

© 2018 Julian Shun 34

Sequential BFS Algorithm

Assume graph is given in compressed
sparse row format

o Two arrays: Offsets and Edges

» n vertices and m edges (assume Offsets[n] = m)

int* parent =

(int*) malloc(sizeof(int)*n);

int* queue =

(int*) malloc(sizeof(int)*n);

for(int i=0; i<n; i++) {

parent[i] = -1;
}
queue[0] = source;
parent|[source] = source;

int g front = 0, g back = 1;

What is the mos

//while queue not empty
while(qg front != g back) {
int current = queue[q front++]; //dequeue
int degree =
Offsets[current+l]-Offsets[current];
for(int i=0;i<degree; i++) {
int ngh = Edges[Offsets[current]+i];
//check if neighbor has been visited

if (parent[ngh] == -1) {
parent[ngh] = current;
//enqueue neighbor
queue[q back++] = ngh;
) ' Total of m

random accesses

t expensive part of the code?

e Random accesses cost more than sequential accesses

© 2018 Julian Shun

35

DEPTH-FIRST SEARCH

© 2018 Julian Shun

Depth-First Search (DFS)

« Explores edges out of the most
recently discovered vertex

« Possible outputs: Topological sort
° Depth—first forest Solving mazes
o Vertices in the order they were first fécnj“gﬁztrfti
visited (preordering) .
]] Strongly connected
o Vertices in the order they were last components
visited (postordering) Cycle detection

» Reverse postordering

4/5 8/9 Preorder: D, B, A, C, E
Postorder: C, A, B, E, D
Reverse postorder: D, E, B, A, C

source = D DFS requires O(n+m) work on n
vertices and m edges

© 2018 Julian Shun 37

TOPOLOGICAL SORT

© 2018 Julian Shun

Topological Sort

- Given a directed acyclic graph, output the
vertices in an order such that all
predecessors of a vertex appear before it

o Application: scheduling tasks with dependencies
(e.g. parallel computing, Makefile)

« Solution: output vertices in reverse
postorder in DFS

Reverse postorder: D, E, B, A, C

source = D

© 2018 Julian Shun

40

SHORTEST PATHS

© 2018 Julian Shun

41

Single-Source Shortest Paths

« Given a weighted graph and a source vertex,
output the distance from the source vertex to
every vertex

 Non-negative weights
e Dijkstra’s algorithm
e O(m + n log n) work using Fibonnaci heap

« General weights

e Bellman-Ford algorithm
e O(mn) work

© 2018 Julian Shun 42

Dijkstra’s Algorithm

function Dijkstra(Graph, source):
dist[source] « 0 // Initialization

U W -

create vertex set Q

O((m+n)log n) work using normal heap
O

(m + nlog n) work using Fibonacci heap

o Extract-min takes O(log n) work but decreasing
priority only takes O(1) work (amortized)

© 2018 Julian Shun

43

« At most n rounds, each doing O(n+m) work
 Total work = O(mn)

© 2018 Julian Shun

PARALLELISM

© 2018 Julian Shun

45

Parallelism
Graphs are becoming very large!

!! 4 _Common Crawl
YAHOO!
41 million vertices 1.4 billion vertices 3.5 billion vertices
1.5 billion edges 6.6 billion edges 128 billion edges
(6.3 GB) (38 GB) (540 GB)

Parallel machines are everywhere!

Can rent machines on AWS with 72 cores
(144 hyper-threads) and 478 of RAM

© 2018 Julian Shun 46

Parallelism Models

Computation graph

© 2018 Julian Shun

Work = number of vertices in
graph (number of operations)

Depth = longest directed path in
graph (dependence length)

Parallelism = Work / Depth

Goal 1: work-efficient and low
(polylogarithmic) depth algorithms

Goal 2: simple, practical, and
cache-friendly

Core 1 Core 1 Core 1 Core 1 1
1

e Core Core
Cache L1 Cache L1 Cache

1 Core 1 Core 1
L1 Cache L1 Cache L1 Cache L1 L1 Cache L1 Cache
I_"
|

Main Memory 47

L3 Cache

CACHING AND NON-
UNIFORM MEMORY ACCESS

© 2018 Julian Shun

48

Memory: upto 1 TB

4 of these
24 MB L3 24 MB
. e
8 of these 8 of these

128 KB 128 KB | L2 | 128 KB 128 KB

32 KB 32KB | L1 |32KB 32 KB

Memory level Approx latency

L1 Cache 1-2ns

L2 Cache 3-5ns

L3 cache 12-40ns
DRAM 60-100ns

© 2018 Julian Shun 49

Non-uniform Memory Access (NUMA)

IOHJB\

te

Design NUMA-aware
graph algorithms to
improve locality

--—

« Accessing remote memory is more expensive
than accessing local memory of a socket

e Latency depends on the number of hops

Memory

- Intel’ Scalable
. Memory Buffer

© 2018 Julian Shun 50

| /O EFFICIENCY

© 2018 Julian Shun

57

/O Efficiency

 Need to read input from disk at least once

« Need to read many more times if graph
doesn’t fit in memory

Throughpu

DRAM 60-100 ns Tens of GB/s
SSD Tens of uys 500 MB-2 GB/s (seq), 50-200 MB/s (rand)
HDD Tens of ms 200 MB/s (seq), 1 MB/s (rand)

© 2018 Julian Shun Source: https://www.pcgamer.com/hard-drive-vs-ssd-performance/2/

52

/O Efficiency

« For graphs larger than main memory, disk-
based computing can be competitive with
distributed clusters

« GraphChi: Large-Scale Graph Computation
on Just a PC (OSDI 2012)

| Application & Graph | Iter.| Comparative result | GraphChi (Mac Mini) | Ref |

Pagerank & domain 3 GraphLab[30] on AMD server (8 CPUs) 87s 132s -
Pagerank & twitter-2010 5 Spark [45] with 50 nodes (100 CPUs): 486.6 s 79s [38]
Pagerank & V=105M, E=3.7B | 100 | Stanford GPS, 30 EC2 nodes (60 virt. cores), 144 min | approx. 581 min [37]
Pagerank & V=1.0B, E=18.5B | 1 Piccolo, 100 EC2 instances (200 cores) 70 s approx. 26 min [36]
Webgraph-BP & yahoo-web 1 Pegasus (Hadoop) on 100 machines: 22 min 27 min [22]
ALS & netflix-mm, D=20 10 | GraphLab on AMD server: 4.7 min 9.8 min (in-mem)

40 min (edge-repl.) [30]
Triangle-count & twitter-2010 | - Hadoop, 1636 nodes: 423 min 60 min [39]
Pagerank & twitter-2010 1 PowerGraph, 64 x 8 cores: 3.6 s 158s [20]
Triange-count & twitter- 2010 | - PowerGraph, 64 x 8 cores: 1.5 min 60 min [20]

 Lots of follow-up work on disk-based

computing that we will study
« External-memory algorithms to minimize I/O’s

© 2018 Julian Shun 53

ALGORITHMS

© 2018 Julian Shun

54

Graph Algorithms

« We will study algorithms for particular

problems

o Parallelism, cache-efficiency, I/ O-efficiency,

streaming

Breadth-first search

Betweenness centrality

SSSP

PageRank

Triangle Computations

Graphlet counting

Frequent subgraph finding

Dense subgraph discovery

Graph coloring

Connected components

Clustering

Partitioning

K-core decomposition

Truss decomposition

Nuclei decomposition

Minimum spanning forest

Spanning forest

Eccentricity estimation

Maximal matching

Set cover

Collaborative filtering

Strongly connected
components

Biconnected components

Maximum flow

Local clustering

Belief propagation

Maximal independent set

© 2018 Julian Shun

55

Efficient Graph Processing

« Use parallelism

« Design efficient algorithms

Breadth-first search Single-source shortest paths
Betweenness centrality Eccentricity estimation
Connected components PageRank

o Write/optimize code for each application
e Build a general framework

© 2018 Julian Shun 56

GRAPH PROCESSING
FRAMEWORKS

© 2018 Julian Shun

57

Graph Processing Frameworks

« Reduce programming effort of writing
efficient parallel graph programs

Graph processing frameworks/libraries

Pregel, Giraph, GPS, GraphLab, PowerGraph, PRISM, Pegasus, Knowledge
Discovery Toolbox, CombBLAS, GraphChi, GraphX, Galois, X-Stream,
Gunrock, GraphMat, Ringo, TurboGraph, FlashGraph, Grace, PathGraph,
Polymer, GoFFish, Blogel, LightGraph, MapGraph, PowerLyra, PowerSwitch,
Imitator, XDGP, Signal/Collect, PrefEdge, EmptyHeaded, Gemini, Wukong,
Parallel BGL, KLA, Grappa, Chronos, Green-Marl, GraphHP, P++, LLAMA,
Venus, Cyclops, Medusa, NScale, Neo4J, Trinity, GBase, HyperGraphDB,
Horton, GSPARQL, Titan, ZipG, Cagra, Milk, Ligra, Ligra+, Julienne,
GraphPad, Mosaic, BigSparse, Graphene, Mizan, Green-Marl, PGX, PGX.D,
Wukong+S, Stinger, Graphin, Tornado, Bagel, KickStarter, Naiad, Kineograph,
GraphMap, Presto, Cube, Giraph++, Photon, TuX2, GRAPE, GraM, Congra,
MTGL, GridGraph, NXgraph, Chaos, Mmap, Clip, Floe, GraphGrind, DualSim,
ScaleMine, Arabesque, GraMi, SAHAD, Facebook TAO, Weaver, G-SQL, G-
SPARQL, gStore, Horton+, S2RDF, Quegel, EAGRE, Shape, RDF-3X, CuSha,
Garaph, Totem, GTS, Frog, GBTL-CUDA, Graphulo, Zorro, Coral, GraphTau,

Wonderland, GraphP, and many others...
© 2018 Julian Shun

DYNAMIC GRAPHS

© 2018 Julian Shun

59

Dynamic Graphs

00000000

o Adding/deleting connections on social networks
o Traffic conditions changing

o Communication networks (email, IMs)

o World Wide Web

o Content sharing (Youtube, Flickr, Pinterest)

 Need graph data structures that allow for
efficient updates (in parallel)

* Need (parallel) algorithms that respond to
changes without re-computing from scratch

© 2018 Julian Shun 60

COMPRESSION AND
REORDERING

© 2018 Julian Shun

67

Large Graphs

Running Time

« What if you cannot fit a graph on your machine?
« Cost of machines increases with memory size

Graph Compression

© 2018 Julian Shun 62

Graph Compression on CSR

Sort edges and encode

N\ N\
Vertex IDs ! 0 1 Y2, 3 :
\ . \ . differences
Offsets 0 4 5 11
\z \\
* >\ o™ *>\
Edges '\34' '\Z:' 9 16 0 0\14. 6 9 12
2-0=27-2=5 1-2=-
Compressed 2 5 > 7 1 1 5 3 3
Edges

For each vertex v:

« First edge: difference is Edges[Offsets[v]]-v

« i'th edge (i>1): difference is Edges[Offsets[v]+i]-
Edges[Offsets[v]+i-1]

« Want to use fewer than 32 or 64 bits per value

« Compression can improve parallel running time
© 2018 Julian Shun

63

Graph Reordering

« Reassign IDs to vertices to improve locality

o Goal: Make vertex IDs close to their neighbors’ IDs
and neighbors’ IDs close to each other

Sum of differences = 21 Sum of differences = 19

« Can improve compression rate due to smaller
“differences”

« Can improve performance due to higher cache
hit rate

- Various methods: BFS, DFS, METIS, degree, etc.

© 2018 Julian Shun 64

PARTITIONING / CLUSTERING

© 2018 Julian Shun

65

Graph Partitioning/Clustering

« Partition graph so that parts have similar size
and there are few crossing edges

« Conductance = (# crossing edges)/(size of
smaller partition)

* Minimizing conductance is NP-hard
« Many approximation methods
» Apply bisection recursively to get more

partitions

Parallel computing

Community detection

VLSI circuit design

Image segmentation

Source: https://cacm.acm.org/magazines/2008/10/515-geometry-flows-and-graph-partitioning-algorithms/fulltext
© 2018 Julian Shun 66

« Will study different algorithms
o Global vs. local algorithms

« Variants on optimization metric

« Apply algorithms to find communities in
real networks

© 2018 Julian Shun 67

Finding Graph Structure

* Triangles, 4-cliqu
e # incident subgrap

* Frequent subgrap
o Extract all subgrap

threshold
) DecompOSing gra
structures
O——Q2)
l —— l)
(a) i

Example subgraphs

© 2018 Julian Shun

es, cycles, wedges, etc.

NS is @ measure of importance
N mining

ns whose counts are above

phs into cores and other

M4

Core decomposition
Source: https://chaoslikehome.wordpress.com/tag/topology/
68

GRAPH STORES

© 2018 Julian Shun

69

Graph Stores

« A database that allows for efficient
semantic queries on graphs

« Useful for queries on graphs with lots of
metadata

» Example: On Facebook, find all people who are

currently students, study at MIT, and have at
least 100 friends who study elsewhere

« Allows efficient updates

o Woul‘d usuall

S

© 2018 Julian Shun

GPUs

© 2018 Julian Shun

GPUs

* Pros: More cores, more memory
bandwidth

« Cons: Less memory, harder to program,
each core is slower, data transfer time

« GPU (and GPU+CPU) graph processing an
active area of research

{
L'
o
¢
0
0
€
[}
[}
g

© 2018 Julian Shun

72

LINEAR ALGEBRA AND
GRAPH

© 2018 Julian Shun

73

Matrix-Graph Duality

G =(V.,E) A

Source: Graph Algorithms in the Language of Linear Algebra (SIAM)
« Graph algorithms as matrix-vector multiply
o Traditionally use (+,*) semiring
e (or, and) for breadth-first search
e (+, min) for single-source shortest paths

* One step of a breadth-first search
« CSR, reordering, compression, partitioning

© 2018 Julian Shun 74

Summary

Library of Congres: Country
|sudies

(Hass SEalf iorks)
Acromym Finder)
n e Casoga Barlebycoms Siank's

. , s e g
o
e T T R
. fesnc e
B (n\ conpFdnloraton PRBES LR

Vg pory (MSNOC

(The Ol i Al depedis
s Tadsy ‘Gosgle Tmage Seareh)
_— ¥ahos NewsNev 5 nglis Timss
atarmler GO-com]

TexiZhinls39's Homepage
Oh o Local Guids, 0. Hallo Welcome.
o Gl O noale e el

Wielcome to Baze21)
- Frse Sofuare Bkt
o N iRkl Hoiel, Obio n:‘imﬂ:s’_/ o
4 GFOL - GNU Project- e Lo LCom lvgger: 304 .
Telegraphcom (el Search Home Page VP e
Why There Are Not GIF Filestent™ Free| — jute]Crav grslescan
(Why ThereRe e oSN com Clicage Tobne) Eaperton
- esh) (—ﬂn .ul Creative Commons Deed

e
"RbovtmediHomepage

ieMir ket
APt oy-Fres Vs

are Foundation (V) vy page -Wikipsdia) _

wabts:
Tely Paper Honsy INDEX)

[Sngmore Tl sl
Gt fopasal
eather - Te el History 1 50
Encyclopedia : onling, ofoportall 7 vl
Sty Jomie / i valdtor s SaralhecEe Msors
. e Besher > | vk |.m.,.a:m.;kh;; e T
e Ao b gt o
= TIafoporeal ‘"““"'—"—‘——":ff'—/ A o
gz au.ul.orgless v ald LT validavion
st Vi Encydapeds ator. L3S
s Wesiar o Vies e W A R canceri,
i st | o R D ot acessor
Halan - Bhopadls pe jedia) [GNU
1 g (GPL) ist Apart
e s \ (C AT ame pigd = A
g Tofoportl ikipedi Free Softuare (SourceForge)
Tofopertsl afop et = \.

o

(lofaportal —(GNU Frat (2
Infoportal /./m.. Page nd.,nasmmu.}s.u....,..s.m N
ipedinary] P e e e
N S -GN Proj

Togortal gl
- (;&mm.,m...ng.m Openpifcs

p— g/
(Tnfoportalintoportal)
“*Kontaktlinsen 1T oper

Informationen K "'”%"

(tnfoportal " welcamwe v SUSE LINGX,
- (Python Langusge Wiebsite
Klingeltifae Fveso6 (The GIHD.

« Lots of exciting research going on in graph

analytics!
Take this course to learn about latest results
and try out research in graph analytics

© 2018 Julian Shun 75

