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What is a graph?

• Vertices model objects
• Edges model relationships between objects
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Social networks
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Collaboration networks
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Transportation networks
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Computer networks

Source: rawbytes.com
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Connectomics

• Vertices are neurons, edges are synapses
• Roughly 1011 neurons and 1015 synapses 

in human brain
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Other Applications

• Financial transaction networks
• Economic trade networks
• Food web
• Various types of biological networks
• Image segmentation in computer vision
• Scientific simulations
• Many more…
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What is a graph?

• Edges can be directed
∙ Relationship can go one way or both ways

http://farrall.org/papers/webgraph_as_content.htmlhttp://www3.nd.edu/~dwang5/courses/spring15/assignments/A1/
Assignment1_SocialSensing.html
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What is a graph?

• Edges can be weighted
∙ Denotes “strength”, distance, etc.

https://msdn.microsoft.com/en-us/library/aa289152(v=vs.71).aspx

Distance between cities Flight costs
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What is a graph?

• Vertices and edges can have types and 
metadata

Google Knowledge Graph

http://searchengineland.com/laymans-visual-guide-googles-knowledge-graph-search-api-241935
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Social network queries

• Examples:
∙ Finding all your friends who went to the same 

high school as you
∙ Finding common friends with someone
∙ Social networks recommending people whom 

you might know

http://www.facebookfever.com/introducing-facebook-new-graph-
api-explorer-features/

http://allthingsgraphed.com/2014/10/16/your-linkedin-network/
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Finding good clusters

• Finding groups of vertices that are “well-
connected” internally and “poorly-
connected” externally

• Some applications
∙ Finding people with 

similar interests
∙ Detecting fraudulent 

websites
∙ Document clustering
∙ Unsupervised learning
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Subgraph finding/motif discovery

• Finding or counting specific subgraphs 
inside a graph

• Finding recurrent subgraphs

• Some applications
∙ Functions in biological 

networks
∙ Node importance in 

social networks
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Properties of real-world graphs
• They can be big

Web graph
1.4 billion vertices
6.6 billion edges

(38 GB)

Web graph
3.5 billion vertices
128 billion edges

(540 GB)

Social network
41 million vertices
1.5 billion edges

(6.3 GB)
• Sparse (m = cn for a small constant c)
• Degrees can be highly skewed
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Studies have shown that 
many real-world graphs have 

a power law degree 
distribution

#vertices with deg. d ≈ a×d-p

(2 < p < 3)Source: https://en.wikipedia.org/wiki/Power_law
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Small world phenomenon
• Also known as “six degrees of separation”
• Experiment by Stanley Milgram (1967)
∙ Forward letter to a “target”
∙ Could only mail letter to acquaintance you know 

on a first-name basis
∙ 1/3 of letters eventually arrived, in a median of 

6 steps
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Core-periphery structure

• High-status nodes linked in a dense “core”
• Low-status nodes are on sparse “periphery”
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COURSE INFORMATION
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Course Information

• Graduate-level class
∙ Undergraduates who have taken 6.046 and 

6.172 are welcome
• Lectures: Wednesday and Friday 2:30-4pm
• Instructor: Julian Shun
• TA: Sherry (Mengjiao) Yang
• Units: 3-0-9
• We will use Piazza for communication
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Course Website
https://people.csail.mit.edu/jshun/6886-s18/
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Grading

Grading Breakdown

Paper Questions and Reviews 20%

Paper Presentations 25%

Research Project 50%

Class Participation 5%
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Paper Presentations
• This is a research-oriented course
• Cover content from 2-3 research papers 

each lecture
• 20-minute student presentation per paper
∙ Discuss motivation for the problem solved
∙ Key technical ideas
∙ Theoretical/experimental results
∙ Related work
∙ Strengths/weaknesses
∙ Directions for future work
∙ Include several questions for discussion

• Sign up for presentation slots this week in 
Google doc

• Would be helpful to sign up even if listening
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Paper Questions

• There will be a question per paper posted 
on Learning Modules
∙ Submit answers on Learning Modules by 12pm 

on the day of the lecture
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Paper Reviews

• Submit one paper review each week on a 
paper that will be covered that week
∙ Cover motivation, key ideas, results, novelty, 

strengths/weaknesses, your ideas for improving 
the techniques or evaluation, any open 
problems or directions for further work

∙ Submit on Learning Modules by Tuesday 
11:59pm each week (before we cover the 
papers)

∙ Reviews will be made viewable to class 
(anonymously)

∙ Read them before the lecture to help prepare for 
the discussions
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Research Project
• Open-ended research project related to 

graphs to be done in groups of 2-3
• Some ideas
∙ Implementation of non-trivial algorithm
∙ Analyzing/optimizing performance of existing algorithm
∙ Designing new theoretically and/or practically efficient 

algorithms
∙ Applying graph algorithms in larger applications
∙ Coming up with new graph problems
∙ Improving or designing new graph frameworks
∙ Survey of an area
∙ Any topic may involve parallelism, cache-efficiency, I/O-

efficiency, and memory-efficiency
• Can be related to any research you are doing
• Can possibly be a starting point for a 

publication
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Project Timeline
Assignment Due Date

Pre-proposal meeting 3/14

Proposal 3/16

Mid-term report 4/13

Poster Session 5/14 or 5/16

Final Report 5/17

• Pre-proposal meeting
∙ 15-minute meeting to run idea by instructors

• Talk to instructors if you need computing 
resources for the project
∙ We may have some AWS credits
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GRAPH REPRESENTATIONS
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Graph Representations

• Vertices labeled from 0 to n-1

0 1 0 0 0

1 0 0 1 1

0 0 0 1 0

0 1 1 0 0

0 1 0 0 0

Adjacency matrix
(“1” if edge exists, 

“0” otherwise)

0 1 2 3 4

0

1

3

2

4

Edge list

(0,1)
(1,0)
(1,3)
(1,4)
(2,3)
(3,1)
(3,2)
(4,1)

• O(n2) space for adjacency matrix
• O(m) space for edge list
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Graph Representations
• Adjacency list
∙ Array of pointers (one per vertex)
∙ Each vertex has an unordered list of its edges

• Space requirement is O(n+m)
• Can substitute linked lists with arrays for 

better cache performance
∙ Tradeoff: more expensive to update graph
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Graph Representations
• Compressed sparse row (CSR)
∙ Two arrays: Offsets and Edges
∙ Offsets[i] stores the offset of where vertex i’s 

edges start in Edges

0 4 5 11

2 7 9 16 0 1 6 9 12

... 

... 

Offsets

Edges

Vertex IDs        0          1          2         3

• How do we know the degree of a vertex?
• Space usage is O(n+m)
• Can also store values on the edges with an 

additional array or interleaved with Edges
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Tradeoffs in Graph Representations
• What is the cost of different operations?

Adjacency 
matrix

Edge list Adjacency list 
(linked list)

Compressed
sparse row

Storage cost / 
scanning 

whole graph

O(n2) O(m) O(m+n) O(m+n)

Add edge O(1) O(1) O(1) O(m+n)
Delete edge 

from vertex v
O(1) O(m) O(deg(v)) O(m+n)

Finding all 
neighbors of a 

vertex v

O(n) O(m) O(deg(v)) O(deg(v))

Finding if w is 
a neighbor of v

O(1) O(m) O(deg(v)) O(deg(v))

• There are variants/combinations of 
these representations
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BREADTH-FIRST SEARCH
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Breadth-First Search (BFS)
• Given a source vertex s, visit the 

vertices in order of distance from s
• Possible outputs:
∙ Vertices in the order they were visited

■ D, B, C, E, A
∙ The distance from each vertex to s

∙ A BFS tree, where each vertex has a 
parent to a neighbor in the previous 
level

A

B

C

D

E

2 1 1 0 1
A B C D E

A

B

C

D

E

BFS tree

source = D

Applications

Betweenness
centrality

Eccentricity 
estimation

Maximum flow

Web crawlers

Network 
broadcasting

Cycle detection

…
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Sequential BFS Algorithm

Source: https://en.wikipedia.org/wiki/Breadth-first_search

• BFS requires O(n+m) work on n vertices 
and m edges
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Sequential BFS Algorithm
• Assume graph is given in compressed 

sparse row format
∙ Two arrays: Offsets and Edges
∙ n vertices and m edges (assume Offsets[n] = m)

int* parent = 
(int*) malloc(sizeof(int)*n);
int* queue = 
(int*) malloc(sizeof(int)*n);

for(int i=0; i<n; i++) {
parent[i] = -1;

}

queue[0] = source;
parent[source] = source;

int q_front = 0, q_back = 1;

//while queue not empty
while(q_front != q_back) {

int current = queue[q_front++]; //dequeue
int degree = 

Offsets[current+1]-Offsets[current];
for(int i=0;i<degree; i++) {

int ngh = Edges[Offsets[current]+i];
//check if neighbor has been visited
if(parent[ngh] == -1) {

parent[ngh] = current;
//enqueue neighbor
queue[q_back++] = ngh;

}
}

}
• What is the most expensive part of the code?
∙ Random accesses cost more than sequential accesses

Total of m 
random accesses
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DEPTH-FIRST SEARCH
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Depth-First Search (DFS)
• Explores edges out of the most 

recently discovered vertex
• Possible outputs:
∙ Depth-first forest
∙ Vertices in the order they were first 

visited (preordering)
∙ Vertices in the order they were last 

visited (postordering)
∙ Reverse postordering

source = D

Applications

Topological sort

Solving mazes

Biconnected
components

Strongly connected 
components

Cycle detection

…

1

2

3
4 8 Preorder: D, B, A, C, E

Postorder: C, A, B, E, D
Reverse postorder: D, E, B, A, C

A

B

C

D

E

/10

/7

/6
/5 /9

DFS requires O(n+m) work on n 
vertices and m edges
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TOPOLOGICAL SORT
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Topological Sort

• Given a directed acyclic graph, output the 
vertices in an order such that all 
predecessors of a vertex appear before it
∙ Application: scheduling tasks with dependencies 

(e.g. parallel computing, Makefile)
• Solution: output vertices in reverse 

postorder in DFS

A

B

C

D

E

source = D

1/10

2/7

3/6
4/5 8/9

Reverse postorder: D, E, B, A, C
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SHORTEST PATHS
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Single-Source Shortest Paths
• Given a weighted graph and a source vertex, 

output the distance from the source vertex to 
every vertex

• Non-negative weights
∙ Dijkstra’s algorithm
∙ O(m + n log n) work using Fibonnaci heap

• General weights
∙ Bellman-Ford algorithm
∙ O(mn) work
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Dijkstra’s Algorithm

• O((m+n)log n) work using normal heap
• O(m + nlog n) work using Fibonacci heap
∙ Extract-min takes O(log n) work but decreasing 

priority only takes O(1) work (amortized)
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Bellman-Ford Algorithm
Bellman-Ford(G, source):

ShortestPaths = {∞, ∞, …, ∞} //size n; stores shortest path distances
ShortestPaths[source] = 0
for i=1 to n-1:

for each vertex v in G:
for each w in neighbors(v):

if(ShortestPaths[v] + weight(v,w) < ShortestPaths[w]):
ShortestPaths[w] = ShortestPaths[v] + weight(v,w)

if no shortest paths changed:
return ShortestPaths

report “negative cycle”

• At most n rounds, each doing O(n+m) work
• Total work = O(mn)
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PARALLELISM
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Parallelism

Parallel machines are everywhere!

Graphs are becoming very large!

1.4 billion vertices
6.6 billion edges

(38 GB)

3.5 billion vertices
128 billion edges

(540 GB)

41 million vertices
1.5 billion edges

(6.3 GB)

Can rent machines on AWS with 72 cores 
(144 hyper-threads) and 4TB of RAM
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Parallelism Models

• Work = number of vertices in 
graph (number of operations)

• Depth = longest directed path in 
graph (dependence length)

• Parallelism = Work / Depth

Computation graph

Goal 1: work-efficient and low 
(polylogarithmic) depth algorithms

Goal 2: simple, practical, and 
cache-friendly
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CACHING AND NON-
UNIFORM MEMORY ACCESS
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Cache Hierarchies

Memory level Approx latency
L1 Cache 1-2ns
L2 Cache 3-5ns
L3 cache 12-40ns
DRAM 60-100ns

Design cache-
efficient and cache-

oblivious graph 
algorithms to 

improve locality
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Non-uniform Memory Access (NUMA)

• Accessing remote memory is more expensive 
than accessing local memory of a socket
∙ Latency depends on the number of hops

Design NUMA-aware 
graph algorithms to 

improve locality
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I/O EFFICIENCY
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I/O Efficiency

• Need to read input from disk at least once
• Need to read many more times if graph 

doesn’t fit in memory
Memory Latency Throughput
DRAM 60-100 ns Tens of GB/s
SSD Tens of µs 500 MB-2 GB/s (seq), 50-200 MB/s (rand)
HDD Tens of ms 200 MB/s (seq), 1 MB/s (rand)

Source: https://www.pcgamer.com/hard-drive-vs-ssd-performance/2/



© 2018 Julian Shun 53

I/O Efficiency
• For graphs larger than main memory, disk-

based computing can be competitive with 
distributed clusters

• GraphChi: Large-Scale Graph Computation 
on Just a PC (OSDI 2012)

• Lots of follow-up work on disk-based 
computing that we will study

• External-memory algorithms to minimize I/O’s



© 2018 Julian Shun 54

ALGORITHMS
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Graph Algorithms
• We will study algorithms for particular 

problems
∙ Parallelism, cache-efficiency, I/O-efficiency, 

streaming
Breadth-first search Betweenness centrality SSSP

PageRank Triangle Computations Graphlet counting

Frequent subgraph finding Dense subgraph discovery Graph coloring

Connected components Clustering Partitioning

K-core decomposition Truss decomposition Nuclei decomposition

Minimum spanning forest Spanning forest Eccentricity estimation

Maximal matching Set cover Collaborative filtering

Strongly connected 
components

Biconnected components Maximum flow

Local clustering Belief propagation Maximal independent set
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Efficient Graph Processing

• Use parallelism

• Design efficient algorithms

∙ Write/optimize code for each application
∙ Build a general framework

Breadth-first search
Betweenness centrality
Connected components
…

Single-source shortest paths
Eccentricity estimation
PageRank
…
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GRAPH PROCESSING
FRAMEWORKS
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Graph Processing Frameworks

Graph processing frameworks/libraries
Pregel, Giraph, GPS, GraphLab, PowerGraph, PRISM, Pegasus, Knowledge 
Discovery Toolbox, CombBLAS, GraphChi, GraphX, Galois, X-Stream, 
Gunrock, GraphMat, Ringo, TurboGraph, FlashGraph, Grace, PathGraph, 
Polymer, GoFFish, Blogel, LightGraph, MapGraph, PowerLyra, PowerSwitch, 
Imitator, XDGP, Signal/Collect, PrefEdge, EmptyHeaded, Gemini, Wukong, 
Parallel BGL, KLA, Grappa, Chronos, Green-Marl, GraphHP, P++, LLAMA, 
Venus, Cyclops, Medusa, NScale, Neo4J, Trinity, GBase, HyperGraphDB, 
Horton, GSPARQL, Titan, ZipG, Cagra, Milk, Ligra, Ligra+, Julienne, 
GraphPad, Mosaic, BigSparse, Graphene, Mizan, Green-Marl, PGX, PGX.D, 
Wukong+S, Stinger, GraphIn, Tornado, Bagel, KickStarter, Naiad, Kineograph, 
GraphMap, Presto, Cube, Giraph++, Photon, TuX2, GRAPE, GraM, Congra, 
MTGL, GridGraph, NXgraph, Chaos, Mmap, Clip, Floe, GraphGrind, DualSim, 
ScaleMine, Arabesque, GraMi, SAHAD, Facebook TAO, Weaver, G-SQL, G-
SPARQL, gStore, Horton+, S2RDF, Quegel, EAGRE, Shape, RDF-3X, CuSha, 
Garaph, Totem, GTS, Frog, GBTL-CUDA, Graphulo, Zorro, Coral, GraphTau, 
Wonderland, GraphP, and many others…

• Reduce programming effort of writing 
efficient parallel graph programs
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DYNAMIC GRAPHS
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Dynamic Graphs

• Many graphs are changing over time
∙ Adding/deleting connections on social networks
∙ Traffic conditions changing
∙ Communication networks (email, IMs)
∙ World Wide Web
∙ Content sharing (Youtube, Flickr, Pinterest)

• Need graph data structures that allow for 
efficient updates (in parallel)

• Need (parallel) algorithms that respond to 
changes without re-computing from scratch



© 2018 Julian Shun 61

COMPRESSION AND
REORDERING
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Large Graphs

1.4 billion vertices
6.6 billion edges

(38 GB)

3.5 billion vertices
128 billion edges

(540 GB)

• What if you cannot fit a graph on your machine?
• Cost of machines increases with memory size

R
u
n
n
in

g
 T

im
e

Memory Required

Available RAM

Graph Compression

41 million vertices
1.5 billion edges

(6.3 GB)
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Graph Compression on CSR

0 4 5 11

2 7 9 16 0 1 6 9 12

... 

... 

Offsets

Edges

2 5 2 7 -1 -1 5 3 3 ... 
Compressed

Edges

Vertex IDs        0          1          2         3
Sort edges and encode 

differences

2 - 0 = 2 7 - 2 = 5 1 - 2 = -1 

• For each vertex v:
• First edge: difference is Edges[Offsets[v]]-v
• i’th edge (i>1): difference is Edges[Offsets[v]+i]-

Edges[Offsets[v]+i-1]
• Want to use fewer than 32 or 64 bits per value
• Compression can improve parallel running time
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• Reassign IDs to vertices to improve locality
∙ Goal: Make vertex IDs close to their neighbors’ IDs 

and neighbors’ IDs close to each other

Graph Reordering

• Can improve compression rate due to smaller 
“differences”

• Can improve performance due to higher cache 
hit rate

• Various methods: BFS, DFS, METIS, degree, etc.

4 1

0 2

3 0 3

1 2

4

Sum of differences = 21 Sum of differences = 19 

55
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PARTITIONING/CLUSTERING
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• Partition graph so that parts have similar size 
and there are few crossing edges

• Conductance = (# crossing edges)/(size of 
smaller partition)

• Minimizing conductance is NP-hard
• Many approximation methods
• Apply bisection recursively to get more 

partitions

Graph Partitioning/Clustering

Source: https://cacm.acm.org/magazines/2008/10/515-geometry-flows-and-graph-partitioning-algorithms/fulltext

Applications

Parallel computing

Community detection

VLSI circuit design

Image segmentation

…
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• Will study different algorithms
∙ Global vs. local algorithms

• Variants on optimization metric
• Apply algorithms to find communities in 

real networks

Graph Partitioning/Clustering
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• Triangles, 4-cliques, cycles, wedges, etc.
∙ # incident subgraphs is a measure of importance 

• Frequent subgraph mining
∙ Extract all subgraphs whose counts are above 

threshold
• Decomposing graphs into cores and other 

structures

Finding Graph Structure

Example subgraphs
Source: https://chaoslikehome.wordpress.com/tag/topology/

Core decomposition
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GRAPH STORES



© 2018 Julian Shun 70

• A database that allows for efficient 
semantic queries on graphs

• Useful for queries on graphs with lots of 
metadata
∙ Example: On Facebook, find all people who are 

currently students, study at MIT, and have at 
least 100 friends who study elsewhere

• Allows efficient updates
• Would usually like ACID properties

Graph Stores
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GPUS
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GPUs
• Pros: More cores, more memory 

bandwidth
• Cons: Less memory, harder to program, 

each core is slower, data transfer time
• GPU (and GPU+CPU) graph processing an 

active area of research
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LINEAR ALGEBRA AND
GRAPH
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Matrix-Graph Duality

• Graph algorithms as matrix-vector multiply
∙ Traditionally use (+,*) semiring
∙ (or, and) for breadth-first search
∙ (+, min) for single-source shortest paths

• One step of a breadth-first search
• CSR, reordering, compression, partitioning 

Source: Graph Algorithms in the Language of Linear Algebra (SIAM)
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Summary

• Lots of exciting research going on in graph 
analytics!

• Take this course to learn about latest results 
and try out research in graph analytics


