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Goals

• How to optimize in-memory graph applications 


• How to go about performance engineering just about 
anything



In-memory Graph 
Processing

• Compare to Disk / DRAM boundary (GraphChi, 
BigSparse, LLAMA..), Cache / DRAM boundary has


• Much smaller latency gap (L3 cache 10-30 ns, 
DRAM 80-100 ns, Flash 100,000 ns (100 ms))


• Much larger memory bandwidth (DRAM >100GB/s, 
Flash 6GB/s)


• Much smaller granularity (64 bytes cache lines vs 4k 
or 2 MB pages) 



Outline

• Performance Analysis for Graph Applications


• Milk / Propagation Blocking 


• Frequency based Clustering


• CSR Segmenting


• Summary



Locality Exists in Graph Processing: 
Workload Characterization on an 

Ivy Bridge Server  
Scott Beamer, Krste Asanović, David Patterson

Mostly borrowed from the authors’ IISWC 
presentation



Motivation

• What is the performance bottleneck for graph 
applications running in memory?


• How much performance can we gain? 


• How can we achieve the performance gains? 
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Current Graph Architecture Wisdom?

No caches

Heavy 
multithreading

Current Wisdom

Cray XMT Design



Are graph applications really memory 
bandwidth bounded?  

• Is cache really completely useless in 
graph computations? 

9
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No single representative workload

• need suite

Out-of-order core not limited by memory 
bandwidth for most graph workloads

• can improve by changing only processor

Many graph workloads have good locality

• caches help! try to avoid thrashing

10

Results from Characterization



Breadth-First Search (BFS)  

Single-Source Shortest Paths (SSSP)  

PageRank (PR)  

Connected Components (CC)  

Betweenness Centrality (BC) 

11

Target Graph Algorithms

Most popular based on 45-paper literature survey:
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Galois (custom parallel runtime) - UT Austin 

• specialized for irregular fine-grain tasks

Ligra (Cilk) - CMU 

• applies algorithm in push or pull directions

GAP Benchmark Suite (OpenMP) - UCB 

• written directly in most natural way for 
algorithm, not constrained by framework

12

Target Graph Frameworks



UC Berkeley
Target Input Graphs

13

Graph # Vertices # Edges Degree Diameter Degree 
Dist.

Roads of USA 23.9M 58.3M 2.4 High const

Twitter Follow Links 61.6M 1468.4M 23.8 Low power

Web Crawl of .sk Domain 50.6M 1949.4M 38.5 Medium power

Kronecker Synthetic Graph 128.0M 2048.0M 16.0 Low power

Uniform Random Graph 128.0M 2048.0M 16.0 Low normal

Graphs can have very different degree distributions, diameters and 
other structural characteristics. 
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Executing a load that access DRAM 
requires:

 Execution reaches load instruction (fetch)

 Space in the instruction window
 Register operands are available (dataflow)

 Memory bandwidth is available

Bandwidth ~ # outstanding requests

14

How does the memory system work?

1

2

3

4

Memory bandwidth (#4) matters 
only if (#1-3) satisfied
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UC Berkeley
Single-Core Memory Bandwidth

161 core Pointer Chasing Microbenchmark with varying 
number of parallel pointer chases



UC Berkeley
Outline

Methodology 

Platform Memory Bandwidth Availability 

Single-core Results 
Parallel Results 

GAP Benchmark Suite 

Conclusion
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MLPmax

window size
IPM + 1

1 core w/ 1 thread

Instruction window size limits 
memory bandwidth if misses rare
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UC Berkeley
Biggest Influence on Single-Core?

19

Need suite, no single 
representative workload

Only few workloads near 
memory bandwidth limit

1 core w/ 1 thread
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UC Berkeley
Instruction Window Limits BW

1 core w/ 1 thread

Instruction window limits 
memory bandwidth

20
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UC Berkeley
Memory Bandwidth ~ Performance

22
32 threads 
vs. 1 thread

Increasing memory bandwidth 
utilization increases performance
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UC Berkeley
Parallel Utilization

2316 cores w/ 32 threads

At system level, memory 
bandwidth under-utilized



UC Berkeley
Multithreading Opportunity

24



UC Berkeley
Multithreading Opportunity

24

3 dataflow

4 bandwidth

2 window

1 fetch



UC Berkeley
Multithreading Opportunity

24

3 dataflow

4 bandwidth

2 window same hardware (shared)

1 fetch



UC Berkeley
Multithreading Opportunity

24

3 dataflow

4 bandwidth

2 window same hardware (shared)

same hardware (shared)

1 fetch



UC Berkeley
Multithreading Opportunity

24

3 dataflow

4 bandwidth

2 window same hardware (shared)

same hardware (shared)

+ fewer instructions in flight1 fetch



UC Berkeley
Multithreading Opportunity

24

3 dataflow

4 bandwidth

2 window same hardware (shared)

same hardware (shared)

+ fewer instructions in flight

++ more application MLP

1 fetch
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UC Berkeley
Multithreading Increases Bandwidth

25
1 core w/ 

1-2 threads

Speedups imply workloads 
probably bottlenecked by dataflow
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UC Berkeley
Conclusions

Most graph workloads do not utilize a large 
fraction of memory bandwidth

• Many graph workloads have decent locality

• Cache misses too infrequent to fit in window

• Changing processor alone could help

Sub-linear parallel speedups cast doubt on 
gains from multithreading on OoO core

26



Outline

• Performance Analysis for Graph Applications


• Milk / Propagation Blocking 


• Frequency based Clustering


• CSR Segmenting


• Summary



Milk / Propagation Blocking

• Is changing the architecture really the only way to improve 
the performance of graph applications running in 
memory? 


• Boosting MLP 


• Other approaches


• Reducing the amount of communication 
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Optimizing Indirect 
Memory References  

with milk
Vladimir Kiriansky, Yunming Zhang, Saman Amarasinghe 

MIT

PACT ’16 
September 13, 2016, Haifa, Israel
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Indirect Accesses  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No Locality?
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• Cache miss 

• TLB miss 

• DRAM row miss 

• No prefetching

Time
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Milk Clustering

39

• Cache hit 

• TLB hit 

• DRAM row hit 

• Effective prefetching

Time

• No need for atomics! 



Outline

• Milk programming model 

• milk syntax  

• MILK compiler and runtime
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Foundations

• Milk programming model — extending BSP  

• milk syntax — OpenMP for C/C++  

• MILK compiler and runtime — LLVM/Clang

41



Big (sparse) Data

• Terabyte Working Sets 
- AWS 2TB VM 

• In-memory Databases, Key-value stores 

• Machine Learning 

• Graph Analytics

42



Infinite Cache Locality in  
Graph Applications
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Milk Execution Model

44

• Collection 

• Distribution 

• Delivery

Propagation Blocking:  
Binning  

(Collection + Distribution),  
Deliver  

(Accumulation) 
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milk syntax

• milk clause in parallel loop 

•   milk directive per indirect access 

            tag — address to group by 

               pack — additional state

48

0 f(1)



pack Combiners
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PageRank
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PageRank with OpenMP
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PageRank with milk 

53



MILK compiler and runtime
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• Collection — loop transformation 

• Distribution — runtime library 

• Delivery — continuation



PageRank with milk 
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PageRank: Collection
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Tag Distribution
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Distribution: Pail Overflow
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Milk Delivery
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Milk Delivery
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L2tubs

DRAM



Related Work

• Database JOIN optimizations 

• [Shatdal94] cache partitioning 

• [Manegold02, Kim09, Albutiu12, Balkesen15]  
TLB, SIMD, NUMA,  
non-temporal writes, software write buffers
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Overall Speedup with milk
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Stall Cycle Reduction
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Indirect Access Cache Hit% 
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Higher Degree  
→ Higher Locality
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Related Works

• How is Milk different from BigSparse and 
Propagation Blocking?

69



Related Work
• Big Sparse 

• Big Sparse can work on both graphs with good and bad locality (Milk 
and Propagation Blocking both work on low locality graphs)  

• Can afford to do global sort instead of bucketing 

• Propagation Blocking 

• Milk doesn’t have two separate phases for Binning and Accumulate 
(Collection, Distribution, Delivery are all fused together using coroutines)  

• PB reuses the tags to save memory bandwidth assuming the application 
is iterative  

• Milk has a more general programming model for various applications 

70



Outline

• Performance Analysis for Graph Applications


• Milk / Propagation Blocking 


• Frequency based Clustering


• CSR Segmenting


• Summary



Making Caches Work 
for Graph Analytics

Yunming Zhang, Vladimir Kiriansky, Charith Mendis, 
Matei Zaharia*, Saman Amarasinghe

72

MIT CSAIL and *Stanford InfoLab



Outline

• PageRank


• Frequency based Vertex Reordering


• Cache-aware Segmenting


• Evaluation 
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PageRank
while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	
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	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	
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while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	
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while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	



while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	
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while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	
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Cache  

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	



while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

PageRank

88

0

3

1

2

Cache  

#misses: 2
#hits: 0

0 1 2 3

0 1



2

PageRank

89

0 1 2 3

Cache  

#hits: 0

0

3

10 1

2 3

#misses: 2

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	
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while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	
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while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	
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while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	
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while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	
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while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	
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while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	
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while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	



0

PageRank

93

3

1

2

0 1 2 3

Cache  

#hits: 1

2 3

0 1

#misses: 5

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	



0

PageRank

93

3

1

2#misses: 6

0 1 2 3

Cache  

#hits: 1

0 1

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	
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while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	
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while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	
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while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	



Performance Bottleneck
• Working set much larger than cache size 

• Access pattern is random 

• Often uses part of the cache line  

• Can not benefit from hardware prefetching 

• TLB miss, DRAM row miss (hundreds of cycles )
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Performance Bottleneck
• Working set much larger than cache size 

• Access pattern is random 

• Often uses part of the cache line  

• Can not benefit from hardware prefetching 

• TLB miss, DRAM row miss (hundreds of cycles )
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Real-world graphs often have working 
set 10-200x larger than cache size



Performance Bottleneck
• Working set much larger than cache size 

• Access pattern is random 

• Often uses part of the cache line  

• Can not benefit from hardware prefetching 

• TLB miss, DRAM row miss (hundreds of cycles )
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Performance Bottleneck
• Working set much larger than cache size 

• Access pattern is random 

• Often uses part of the cache line  

• Can not benefit from hardware prefetching 

• TLB miss, DRAM row miss (hundreds of cycles )
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Often only use 1/16 - 1/8 of a cache line 
in modern hardware
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while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

on RMAT27 graph
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Up to 80% of the cycles are 
spent on slow random 

memory accesses

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

on RMAT27 graph



while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[0]/outDegree[0];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	
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2.8x speedup if we can eliminate 
random memory accesses

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[0]/outDegree[0];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

Removing  
Random Accesses 
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while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[0]/outDegree[0];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

on RMAT27 graph



Outline

• PageRank


• Frequency based Vertex Reordering


• Cache-aware Segmenting


• Evaluation 
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Frequency based Vertex 
Reordering
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• Key Observations 

• Cache lines are underutilized 

• Certain vertices are much more likely to be 
accessed than other vertices



Frequency based Vertex 
Reordering

• Key Observations 

• Cache lines are underutilized 

• Certain vertices are much more likely to be 
accessed than other vertices 

• Design 

• Group together the frequently accessed nodes  

• Keep the ordering of average degree nodes

108



Frequency based Vertex 
Reordering

109

0

3

1

2

109

0 1 2 3



Frequency based Vertex 
Reordering

110

0

3

1

2

110

0 1 2 3

outdegree: 3 outdegree: 0

outdegree: 3outdegree: 1



Frequency based Vertex 
Reordering

111

0

3

1

2

111

0 1 2 3

outdegree: 3 outdegree: 0

outdegree: 3outdegree: 1

Group together high 
outdegree nodes



Frequency based Vertex 
Reordering

112

0

3

1

2

112

0 1 2 3

outdegree: 3 outdegree: 0

outdegree: 3outdegree: 1

Group together high 
outdegree nodes

0

3

1

2



Frequency based Vertex 
Reordering

113

0

3

1

2

113

0 1 2 3

outdegree: 3 outdegree: 0

outdegree: 3outdegree: 1

Group together high 
outdegree nodes

0

3

1

2

Reorder nodes 1 and 2



Frequency based Vertex 
Reordering

114

0

3

1

2

114

0 1 2 3

outdegree: 3 outdegree: 0

outdegree: 3outdegree: 1

Group together high 
outdegree nodes

0

3

2

1

Reorder nodes 1 and 2



Frequency based Vertex 
Reordering

115

0

3

1

2

115

0 1 2 3

outdegree: 3 outdegree: 0

outdegree: 3outdegree: 1

Group together high 
outdegree nodes

0

3

2

1

Relabel corresponding 
edges



Frequency based Vertex 
Reordering

116

0

3

1

2

116

0 1 2 3

0

3

1

2

0 12 3

Reorganize 
nodes’ data



Frequency based Vertex 
Reordering

116

0

3

1

2

116

0 1 2 3

0

3

1

2

0 1 2 3

Reorganize 
nodes’ data

2

1



Frequency based Vertex 
Reordering

117

0

3

1

2

117

0

3

2

1

0 1 2 3

0 1 2 3

Groups together the 
data of frequently 
accessed nodes in 

one cache line

Reorganize 
nodes’ data



PageRank

118

0

3

2

1#misses: 0

0 1 2 3

Cache  

#hits: 0

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	
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while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

Focus on the random 
memory accesses on 

ranks array
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Cache  
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while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	
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while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	
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while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	
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while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	
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while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	
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while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	
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while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	
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while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	
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while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	
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while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	
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while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	
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while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	
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while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	
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while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
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Cache-aware Segmenting

• Design  

• Partition the graph into subgraphs where the 
random access are limited to LLC 

• Process each partition sequentially and 
accumulate rank contributions for each partition  

• Merge the rank contributions from all subgraphs
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Related Work
• Distributed Graph Systems  

• Shared memory efficiency is a key component of distributed 
graph processing systems (PowerGraph, GraphLab, Pregel..)   

• Shared-memory Graph Systems 

• Frameworks (Ligra, Galois, GraphMat ..) did not focus on 
cache optimizations 

• Milk [PACT16], Propagation Blocking[IPDPS17] 

• Out-of-core Systems (GraphChi, XStream)
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Outline

• Motivation


• Frequency based Vertex Reordering


• Cache-aware Segmenting


• Evaluation 
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on label propagation 
used in Connected 
Components and 
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Summary

• Performance Bottleneck of Graph Applications 

• Frequency based Vertex Reordering 

• Cache-aware Segmenting
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Outline

• Performance Analysis for Graph Applications


• Milk / Propagation Blocking 


• Frequency based Clustering


• CSR Segmenting


• Summary
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Improving Cache Performance 
for Graph Computations

• Reordering the Graph 


• Small preprocessing cost, modest performance improvement, 
dependent on graph structure 


• Partitioning the Graph for Locality


• Bigger preprocessing cost, small runtime overhead, bigger 
performance gains, suitable for applications with lots of random 
accesses. 


• Runtime Reordering the Memory Accesses


• No preprocessing cost, bigger runtime overhead



Outside of Graph 
Computing? 

• Sparse Linear Algebra


• Matrix Reordering, Preconditioning (Graph Reordering)


• Cache Blocking (CSR segmenting) 


• Inspector-Executor (Runtime Access Reordering)


• These are Fundamental Communication Reductions 
Techniques , used in many other domains (sparse linear 
algebra, join optimization in databases)



Performance Engineering

• Understand your applications’ performance 
characteristics 


• Many papers worked on different ways to abandon 
cache and improve MLP with a large number of threads


• Understand the tradeoff space of the optimizations


• Pick the technique that best suit your hardware, 
application and data


