
Optimizing Cache
Performance for Graph

Analytics

Yunming Zhang 6.886 Presentation

Goals

• How to optimize in-memory graph applications

• How to go about performance engineering just about
anything

In-memory Graph
Processing

• Compare to Disk / DRAM boundary (GraphChi,
BigSparse, LLAMA..), Cache / DRAM boundary has

• Much smaller latency gap (L3 cache 10-30 ns,
DRAM 80-100 ns, Flash 100,000 ns (100 ms))

• Much larger memory bandwidth (DRAM >100GB/s,
Flash 6GB/s)

• Much smaller granularity (64 bytes cache lines vs 4k
or 2 MB pages)

Outline

• Performance Analysis for Graph Applications

• Milk / Propagation Blocking

• Frequency based Clustering

• CSR Segmenting

• Summary

Locality Exists in Graph Processing:
Workload Characterization on an

Ivy Bridge Server
Scott Beamer, Krste Asanović, David Patterson

Mostly borrowed from the authors’ IISWC
presentation

Motivation

• What is the performance bottleneck for graph
applications running in memory?

• How much performance can we gain?

• How can we achieve the performance gains?

7

Graph Algorithms Are Random?

7

Graph Algorithms Are Random?

“Thus, the low speedup of OOO execution is
due solely to a lack of memory bandwidth
required to service the repeated last level
cache misses caused by the random access
memory pattern of the algorithm.”

PPoPP 2011

7

Graph Algorithms Are Random?

“Thus, the low speedup of OOO execution is
due solely to a lack of memory bandwidth
required to service the repeated last level
cache misses caused by the random access
memory pattern of the algorithm.”

PPoPP 2011

7

Graph Algorithms Are Random?

“Thus, the low speedup of OOO execution is
due solely to a lack of memory bandwidth
required to service the repeated last level
cache misses caused by the random access
memory pattern of the algorithm.”

PPoPP 2011

“First, the memory bandwidth of the system
seems to limit performance”

SPAA 2010

7

Graph Algorithms Are Random?

“Thus, the low speedup of OOO execution is
due solely to a lack of memory bandwidth
required to service the repeated last level
cache misses caused by the random access
memory pattern of the algorithm.”

PPoPP 2011

“First, the memory bandwidth of the system
seems to limit performance”

SPAA 2010

8

Current Graph Architecture Wisdom?

Current Wisdom

Random memory
access pattern

8

Current Graph Architecture Wisdom?

Current Wisdom

Random memory
access pattern

Limited by memory
bandwidth

8

Current Graph Architecture Wisdom?

Current Wisdom

Random memory
access pattern

Limited by memory
bandwidth

Will be plagued by
low core utilization

8

Current Graph Architecture Wisdom?

Current Wisdom

Random memory
access pattern

Limited by memory
bandwidth

Will be plagued by
low core utilization

8

Current Graph Architecture Wisdom?

Current Wisdom

Cray XMT Design

Random memory
access pattern

Limited by memory
bandwidth

Will be plagued by
low core utilization

8

Current Graph Architecture Wisdom?

No caches

Current Wisdom

Cray XMT Design

Random memory
access pattern

Limited by memory
bandwidth

Will be plagued by
low core utilization

8

Current Graph Architecture Wisdom?

No caches

Heavy
multithreading

Current Wisdom

Cray XMT Design

Are graph applications really memory
bandwidth bounded?

• Is cache really completely useless in
graph computations?

9

10

Results from Characterization

No single representative workload

10

Results from Characterization

No single representative workload

• need suite

10

Results from Characterization

No single representative workload

• need suite

Out-of-order core not limited by memory
bandwidth for most graph workloads

10

Results from Characterization

No single representative workload

• need suite

Out-of-order core not limited by memory
bandwidth for most graph workloads

• can improve by changing only processor

10

Results from Characterization

No single representative workload

• need suite

Out-of-order core not limited by memory
bandwidth for most graph workloads

• can improve by changing only processor

Many graph workloads have good locality

10

Results from Characterization

No single representative workload

• need suite

Out-of-order core not limited by memory
bandwidth for most graph workloads

• can improve by changing only processor

Many graph workloads have good locality

• caches help! try to avoid thrashing

10

Results from Characterization

Breadth-First Search (BFS)

Single-Source Shortest Paths (SSSP)

PageRank (PR)

Connected Components (CC)

Betweenness Centrality (BC)

11

Target Graph Algorithms

Most popular based on 45-paper literature survey:

12

Target Graph Frameworks

Galois (custom parallel runtime) - UT Austin

• specialized for irregular fine-grain tasks

12

Target Graph Frameworks

Galois (custom parallel runtime) - UT Austin

• specialized for irregular fine-grain tasks

Ligra (Cilk) - CMU

• applies algorithm in push or pull directions

12

Target Graph Frameworks

Galois (custom parallel runtime) - UT Austin

• specialized for irregular fine-grain tasks

Ligra (Cilk) - CMU

• applies algorithm in push or pull directions

GAP Benchmark Suite (OpenMP) - UCB

• written directly in most natural way for
algorithm, not constrained by framework

12

Target Graph Frameworks

UC Berkeley
Target Input Graphs

13

Graph # Vertices # Edges Degree Diameter Degree
Dist.

Roads of USA 23.9M 58.3M 2.4 High const

Twitter Follow Links 61.6M 1468.4M 23.8 Low power

Web Crawl of .sk Domain 50.6M 1949.4M 38.5 Medium power

Kronecker Synthetic Graph 128.0M 2048.0M 16.0 Low power

Uniform Random Graph 128.0M 2048.0M 16.0 Low normal

Graphs can have very different degree distributions, diameters and
other structural characteristics.

14

How does the memory system work?

Executing a load that access DRAM
requires:

14

How does the memory system work?

Executing a load that access DRAM
requires:

 Execution reaches load instruction (fetch)

14

How does the memory system work?

1

Executing a load that access DRAM
requires:

 Execution reaches load instruction (fetch)

 Space in the instruction window

14

How does the memory system work?

1

2

Executing a load that access DRAM
requires:

 Execution reaches load instruction (fetch)

 Space in the instruction window
 Register operands are available (dataflow)

14

How does the memory system work?

1

2

3

Executing a load that access DRAM
requires:

 Execution reaches load instruction (fetch)

 Space in the instruction window
 Register operands are available (dataflow)

 Memory bandwidth is available

14

How does the memory system work?

1

2

3

4

Executing a load that access DRAM
requires:

 Execution reaches load instruction (fetch)

 Space in the instruction window
 Register operands are available (dataflow)

 Memory bandwidth is available

Bandwidth ~ # outstanding requests

14

How does the memory system work?

1

2

3

4

Executing a load that access DRAM
requires:

 Execution reaches load instruction (fetch)

 Space in the instruction window
 Register operands are available (dataflow)

 Memory bandwidth is available

Bandwidth ~ # outstanding requests

14

How does the memory system work?

1

2

3

4

Memory bandwidth (#4) matters
only if (#1-3) satisfied

UC Berkeley

Little’s Law

15

UC Berkeley

Little’s Law

15

effective
MLP

(MLP = memory level parallelism)

UC Berkeley

Little’s Law

15

average
memory

bandwidth

average
memory
latency

= xeffective
MLP

(MLP = memory level parallelism)

UC Berkeley

Little’s Law

15

average
memory

bandwidth

average
memory
latency

= xeffective
MLP

(MLP = memory level parallelism)

application
MLP≤

UC Berkeley
Single-Core Memory Bandwidth

161 core Pointer Chasing Microbenchmark with varying
number of parallel pointer chases

UC Berkeley
Single-Core Memory Bandwidth

161 core Pointer Chasing Microbenchmark with varying
number of parallel pointer chases

UC Berkeley
Single-Core Memory Bandwidth

161 core

1 fetch

Pointer Chasing Microbenchmark with varying
number of parallel pointer chases

UC Berkeley
Single-Core Memory Bandwidth

161 core

1 fetch

Pointer Chasing Microbenchmark with varying
number of parallel pointer chases

UC Berkeley
Single-Core Memory Bandwidth

161 core

1 fetch
2 window

Pointer Chasing Microbenchmark with varying
number of parallel pointer chases

UC Berkeley
Single-Core Memory Bandwidth

161 core

1 fetch
2 window

Pointer Chasing Microbenchmark with varying
number of parallel pointer chases

UC Berkeley
Single-Core Memory Bandwidth

161 core

3
dataflow

1 fetch
2 window

Pointer Chasing Microbenchmark with varying
number of parallel pointer chases

UC Berkeley
Single-Core Memory Bandwidth

161 core

3
dataflow

4 bandwidth

1 fetch
2 window

Pointer Chasing Microbenchmark with varying
number of parallel pointer chases

UC Berkeley
Single-Core Memory Bandwidth

161 core Pointer Chasing Microbenchmark with varying
number of parallel pointer chases

UC Berkeley
Outline

Methodology

Platform Memory Bandwidth Availability

Single-core Results
Parallel Results

GAP Benchmark Suite

Conclusion

17

UC Berkeley
Importance of Window Size

181 core w/ 1 thread

UC Berkeley
Importance of Window Size

181 core w/ 1 thread

UC Berkeley
Importance of Window Size

181 core w/ 1 thread

1 fetch

UC Berkeley
Importance of Window Size

181 core w/ 1 thread

1 fetch

UC Berkeley
Importance of Window Size

181 core w/ 1 thread

2 window

1 fetch

UC Berkeley
Importance of Window Size

181 core w/ 1 thread

3
da

ta
flo

w

2 window

1 fetch

UC Berkeley
Importance of Window Size

181 core w/ 1 thread

3
da

ta
flo

w
4 bandwidth

2 window

1 fetch

UC Berkeley
Importance of Window Size

181 core w/ 1 thread

UC Berkeley
Importance of Window Size

18

MLPmax

window size
IPM + 1

1 core w/ 1 thread

UC Berkeley
Importance of Window Size

18

MLPmax

window size
IPM + 1

1 core w/ 1 thread

Instruction window size limits
memory bandwidth if misses rare

UC Berkeley
Biggest Influence on Single-Core?

191 core w/ 1 thread

UC Berkeley
Biggest Influence on Single-Core?

191 core w/ 1 thread

UC Berkeley
Biggest Influence on Single-Core?

191 core w/ 1 thread

UC Berkeley
Biggest Influence on Single-Core?

191 core w/ 1 thread

UC Berkeley
Biggest Influence on Single-Core?

19

Need suite, no single
representative workload

1 core w/ 1 thread

UC Berkeley
Biggest Influence on Single-Core?

19

Need suite, no single
representative workload

Only few workloads near
memory bandwidth limit

1 core w/ 1 thread

UC Berkeley
Instruction Window Limits BW

1 core w/ 1 thread 20

UC Berkeley
Instruction Window Limits BW

1 core w/ 1 thread 20

UC Berkeley
Instruction Window Limits BW

1 core w/ 1 thread 20

UC Berkeley
Instruction Window Limits BW

1 core w/ 1 thread

2 window

20

UC Berkeley
Instruction Window Limits BW

1 core w/ 1 thread

Instruction window limits
memory bandwidth

20

UC Berkeley
Outline

Methodology

Platform Memory Bandwidth Availability

Single-core Results

Parallel Results
GAP Benchmark Suite

Conclusion

21

UC Berkeley
Memory Bandwidth ~ Performance

22
32 threads
vs. 1 thread

UC Berkeley
Memory Bandwidth ~ Performance

22
32 threads
vs. 1 thread

Increasing memory bandwidth
utilization increases performance

UC Berkeley
Parallel Utilization

2316 cores w/ 32 threads

UC Berkeley
Parallel Utilization

2316 cores w/ 32 threads

At system level, memory
bandwidth under-utilized

UC Berkeley
Multithreading Opportunity

24

UC Berkeley
Multithreading Opportunity

24

3 dataflow

4 bandwidth

2 window

1 fetch

UC Berkeley
Multithreading Opportunity

24

3 dataflow

4 bandwidth

2 window same hardware (shared)

1 fetch

UC Berkeley
Multithreading Opportunity

24

3 dataflow

4 bandwidth

2 window same hardware (shared)

same hardware (shared)

1 fetch

UC Berkeley
Multithreading Opportunity

24

3 dataflow

4 bandwidth

2 window same hardware (shared)

same hardware (shared)

+ fewer instructions in flight1 fetch

UC Berkeley
Multithreading Opportunity

24

3 dataflow

4 bandwidth

2 window same hardware (shared)

same hardware (shared)

+ fewer instructions in flight

++ more application MLP

1 fetch

UC Berkeley
Multithreading Increases Bandwidth

25
1 core w/

1-2 threads

UC Berkeley
Multithreading Increases Bandwidth

25
1 core w/

1-2 threads

Speedups imply workloads
probably bottlenecked by dataflow

UC Berkeley
Conclusions

26

UC Berkeley
Conclusions

Most graph workloads do not utilize a large
fraction of memory bandwidth

26

UC Berkeley
Conclusions

Most graph workloads do not utilize a large
fraction of memory bandwidth

• Many graph workloads have decent locality

26

UC Berkeley
Conclusions

Most graph workloads do not utilize a large
fraction of memory bandwidth

• Many graph workloads have decent locality

• Cache misses too infrequent to fit in window

26

UC Berkeley
Conclusions

Most graph workloads do not utilize a large
fraction of memory bandwidth

• Many graph workloads have decent locality

• Cache misses too infrequent to fit in window

• Changing processor alone could help

26

UC Berkeley
Conclusions

Most graph workloads do not utilize a large
fraction of memory bandwidth

• Many graph workloads have decent locality

• Cache misses too infrequent to fit in window

• Changing processor alone could help

Sub-linear parallel speedups cast doubt on
gains from multithreading on OoO core

26

Outline

• Performance Analysis for Graph Applications

• Milk / Propagation Blocking

• Frequency based Clustering

• CSR Segmenting

• Summary

Milk / Propagation Blocking

• Is changing the architecture really the only way to improve
the performance of graph applications running in
memory?

• Boosting MLP

• Other approaches

• Reducing the amount of communication

29

Optimizing Indirect
Memory References  

with milk
Vladimir Kiriansky, Yunming Zhang, Saman Amarasinghe 

MIT

PACT ’16 
September 13, 2016, Haifa, Israel

Indirect Accesses

30

Indirect Accesses  
with OpenMP

31

Indirect Accesses  
with OpenMP

31

Sp
ee

du
p

0

1

2

3

4

5

OpenMP
+Milk

uniform [0..100M)

8 threads, 8MB L3

Indirect Accesses  
with milk

32

Sp
ee

du
p

0

1

2

3

4

5

OpenMP
+Milk

milk

if(!milk)

uniform [0..100M)

8 threads, 8MB L3

No Locality?

33

• Cache miss

• TLB miss

• DRAM row miss

• No prefetching

Time

No Locality?

34Time

No Locality?

35Time

No Locality?

36Time

Milk Clustering

37Time

Milk Clustering

38

• Cache hit

• TLB hit

• DRAM row hit

• Effective prefetching

Time

Milk Clustering

39

• Cache hit

• TLB hit

• DRAM row hit

• Effective prefetching

Time

• No need for atomics!

Outline

• Milk programming model 

• milk syntax  

• MILK compiler and runtime

40

Foundations

• Milk programming model — extending BSP  

• milk syntax — OpenMP for C/C++  

• MILK compiler and runtime — LLVM/Clang

41

Big (sparse) Data

• Terabyte Working Sets 
- AWS 2TB VM

• In-memory Databases, Key-value stores

• Machine Learning

• Graph Analytics

42

Infinite Cache Locality in  
Graph Applications

43

BC SSSPPRBFS

0.00

0.20

0.40

0.60

0.80

1.00

r t w
0.00

0.20

0.40

0.60

0.80

1.00

r t w
0

20

40

60

80

100

r t w

Temporal Locality Spatial Locality

0.00

0.20

0.40

0.60

0.80

1.00

r t w
0.00

0.20

0.40

0.60

0.80

1.00

r t w

CC

Id
ea

l C
ac

he
 H

it
%

Betweenness  
 Centrality

Breadth-First  
Search

Connected  
Components

PageRank Single-Source
Shortest Paths

[GAPBS]

Road (d=2.4)

Twitter (d=24)

Web (d=39)

Milk Execution Model

44

• Collection

• Distribution

• Delivery

Propagation Blocking:  
Binning  

(Collection + Distribution),  
Deliver  

(Accumulation)

	+=	f(i);

7 0 14 5 18 7 0 7d
0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

count

Collection

	+=	f(i);

7 0 14 5 18 7 0 7d
0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

count

7 0 14 5 18 7 0 7f(0) f(1) f(2) f(3) f(4) f(5) f(6) f(7)

Collection

	+=	f(i);

7 0 14 5 18 7 0 7d
0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

count

7 0 14 5 18 7 0 7f(0) f(1) f(2) f(3) f(4) f(5) f(6) f(7)

Distribution

	+=	f(i);

7 0 14 5 18 7 0 7d
0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

count

70 145 1870 7f(0)f(1) f(2)f(3) f(4)f(5)f(6) f(7)

Distribution

	+=	f(i);

7 0 14 5 18 7 0 7d
0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

count

Delivery

0 0 5 7 7 7 14 18f(1) f(6) f(3) f(0) f(5) f(7) f(2) f(4)

	+=	f(i);

7 0 14 5 18 7 0 7d
0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

count

Delivery

milk syntax

• milk clause in parallel loop

• milk directive per indirect access

 tag — address to group by

 pack — additional state

48

0 f(1)

pack Combiners

49

PageRank

50

7
0.5

PageRank with OpenMP

51

PageRank with milk

52

PageRank with milk

53

MILK compiler and runtime

54

• Collection — loop transformation

• Distribution — runtime library

• Delivery — continuation

PageRank with milk

55

7
0.5

PageRank: Collection

56

7
0.5

Tag Distribution

57

9-bit radix
partition

pails

L2

…

0.5

7

Tag Distribution

58

pails

L2

17 0.1

…

17

0.5

7

Tag Distribution

59

pails

L2

17 0.1 7 0.5

…

17 7

0.2

17

Distribution: Pail Overflow

60

pails tubs

DRAML2

…

17 0.1 7 0.5 0.217 7 17

Milk Delivery

61

L2tubs

DRAM

17 0.2 27 0.1 7 0.1
17 0.1 7 0.5 17 0.2

Milk Delivery

62

L2tubs

DRAM

Related Work

• Database JOIN optimizations

• [Shatdal94] cache partitioning

• [Manegold02, Kim09, Albutiu12, Balkesen15]  
TLB, SIMD, NUMA,  
non-temporal writes, software write buffers

63

Overall Speedup with milk

64

Sp
ee

du
p

0x

0.5x

1x

1.5x

2x

2.5x

3x

BC BFS CC PR SSSP

V=32M

8 MB L3

Betweenness  
 Centrality

Breadth-First  
Search

Connected  
Components

PageRank Single-Source
Shortest Paths

Overall Speedup with milk

65

Sp
ee

du
p

0x

0.5x

1x

1.5x

2x

2.5x

3x

BC BFSd BFSp CC PR SSSP

2M 8M 32M

8 MB L3

Stall Cycle Reduction

66

%
 o

f T
ot

al
 C

yc
le

s

0%

20%

40%

60%

80%

100%

L2 miss stalls  
256 KB L2

L3 miss stalls  
8 MB L3

baseline milk

PageRank, 
V=32M, d=16 (uniform)

Indirect Access Cache Hit%

67

C
ac

he
 H

it
%

0

20

40

60

80

100

BC BFS CC PR SSSP

baseline milk

V=32M

8 MB L3

256KB L2

Higher Degree
→ Higher Locality

68

Sp
ee

du
p

0x

1x

2x

3x

4x

5x

1 2 4 8 16 32 64

V=16M
V=32M

Average Degree16M edges 2B edges

Related Works

• How is Milk different from BigSparse and
Propagation Blocking?

69

Related Work
• Big Sparse

• Big Sparse can work on both graphs with good and bad locality (Milk
and Propagation Blocking both work on low locality graphs)

• Can afford to do global sort instead of bucketing

• Propagation Blocking

• Milk doesn’t have two separate phases for Binning and Accumulate
(Collection, Distribution, Delivery are all fused together using coroutines)

• PB reuses the tags to save memory bandwidth assuming the application
is iterative

• Milk has a more general programming model for various applications

70

Outline

• Performance Analysis for Graph Applications

• Milk / Propagation Blocking

• Frequency based Clustering

• CSR Segmenting

• Summary

Making Caches Work
for Graph Analytics

Yunming Zhang, Vladimir Kiriansky, Charith Mendis,
Matei Zaharia*, Saman Amarasinghe

72

MIT CSAIL and *Stanford InfoLab

Outline

• PageRank

• Frequency based Vertex Reordering

• Cache-aware Segmenting

• Evaluation

73

PageRank
while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

74

PageRank

75

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

PageRank

76

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

PageRank
while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

PageRank

78

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

PageRank

79

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

PageRank

80

0

3

1

2

Cache

#misses: 0
#hits: 0

0 1 2 3

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

PageRank

81

0

3

1

2

Cache

#misses: 0
#hits: 0

0 1 2 3

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

Focus on the random
memory accesses on

ranks array

PageRank

82

0

3

1

2

Cache

#misses: 0
#hits: 0

0 1 2 3

holds one
cache line

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

Focus on the random
memory accesses on

ranks array

PageRank

83

0

3

1

2

Cache

#misses: 0
#hits: 0

0 1 2 3 stored in two
cache lines

holds one
cache line

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

Focus on the random
memory accesses on

ranks array

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

PageRank

84

0

3

1

2

Cache

#misses: 0
#hits: 0

0 1 2 3

2 3

PageRank

85

0

3

1

2#misses: 0

0 1 2 3

Cache

#hits: 0

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

2 3

PageRank

85

0

3

1

2

0 1

2 3

Cache

#hits: 0
#misses: 1

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

PageRank

86

0

3

1

2

Cache

#misses: 1
#hits: 0

0 1 2 3

2 3

0

0 1

PageRank

87

3

1

2

0 1 2 3

#hits: 0

Cache

2 3

#misses: 1

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

0

0 1

PageRank

87

3

1

2#misses: 2

0 1

2 3

#hits: 0

Cache

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

PageRank

88

0

3

1

2

Cache

#misses: 2
#hits: 0

0 1 2 3

0 1

2

PageRank

89

0 1 2 3

Cache

#hits: 0

0

3

10 1

2 3

#misses: 2

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

2

PageRank

89

#misses: 3

0 1 2 3

Cache

#hits: 0

0

3

12 3

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

0

PageRank

90

3

1

2

0 1 2 3

Cache

#hits: 0

2 3

0 1

#misses: 3

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

0

PageRank

90

3

1

2#misses: 4

0 1 2 3

Cache

#hits: 0

0 1

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

3

PageRank

91

0 1

2

0 1 2 3

Cache

#hits: 0

0 1

2 3

#misses: 4

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

3

PageRank

91

0 1

2#misses: 5

0 1 2 3

Cache

#hits: 0

2 3

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

2

PageRank

92

0

3

1

#misses: 5

0 1 2 3

2 3

Cache

#hits: 0

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

2

PageRank

92

0

3

1

#misses: 5

0 1 2 3

2 3

Cache

#hits: 1

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

0

PageRank

93

3

1

2

0 1 2 3

Cache

#hits: 1

2 3

0 1

#misses: 5

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

0

PageRank

93

3

1

2#misses: 6

0 1 2 3

Cache

#hits: 1

0 1

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

PageRank

94

0

3

1

2#misses: 6

0 1 2 3

Cache

#hits: 1

0 1

A very high
miss rate

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

PageRank

95

0

3

1

2#misses: 6

0 1 2 3

Cache

#hits: 1

0 1

Working set
larger than

cache

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

PageRank

96

0

3

1

2#misses: 6

0 1 2 3

Cache

#hits: 1

Often only use
part of the
cache line

0 1

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

Performance Bottleneck
• Working set much larger than cache size

• Access pattern is random

• Often uses part of the cache line

• Can not benefit from hardware prefetching

• TLB miss, DRAM row miss (hundreds of cycles)

97

Performance Bottleneck
• Working set much larger than cache size

• Access pattern is random

• Often uses part of the cache line

• Can not benefit from hardware prefetching

• TLB miss, DRAM row miss (hundreds of cycles)

98

Real-world graphs often have working
set 10-200x larger than cache size

Performance Bottleneck
• Working set much larger than cache size

• Access pattern is random

• Often uses part of the cache line

• Can not benefit from hardware prefetching

• TLB miss, DRAM row miss (hundreds of cycles)

99

Performance Bottleneck
• Working set much larger than cache size

• Access pattern is random

• Often uses part of the cache line

• Can not benefit from hardware prefetching

• TLB miss, DRAM row miss (hundreds of cycles)

100

Often only use 1/16 - 1/8 of a cache line
in modern hardware

PageRank

101

N
or

m
al

ize
d

To
ta

l
C

yc
le

s

0%

25%

50%

75%

100%

BaseLine

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

on RMAT27 graph

PageRank

102

N
or

m
al

ize
d

To
ta

l
C

yc
le

s

0%

25%

50%

75%

100%

BaseLine

Up to 80% of the cycles are
spent on slow random

memory accesses

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

on RMAT27 graph

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[0]/outDegree[0];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

PageRank

103

N
or

m
al

ize
d

To
ta

l
C

yc
le

s

0%

25%

50%

75%

100%

BaseLine No Random

Removing
Random Accesses

(Incorrect)

on RMAT27 graph

PageRank

104

N
or

m
al

ize
d

To
ta

l
C

yc
le

s

0%

25%

50%

75%

100%

BaseLine No Random

2.8x speedup if we can eliminate
random memory accesses

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[0]/outDegree[0];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

Removing
Random Accesses

(Incorrect)

on RMAT27 graph

PageRank

105

N
or

m
al

ize
d

To
ta

l
C

yc
le

s

0%

25%

50%

75%

100%

BaseLine Cache Optimized No Random

Within 2x of no random accesses

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[0]/outDegree[0];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

on RMAT27 graph

Outline

• PageRank

• Frequency based Vertex Reordering

• Cache-aware Segmenting

• Evaluation

106

Frequency based Vertex
Reordering

107

• Key Observations

• Cache lines are underutilized

• Certain vertices are much more likely to be
accessed than other vertices

Frequency based Vertex
Reordering

• Key Observations

• Cache lines are underutilized

• Certain vertices are much more likely to be
accessed than other vertices

• Design

• Group together the frequently accessed nodes

• Keep the ordering of average degree nodes

108

Frequency based Vertex
Reordering

109

0

3

1

2

109

0 1 2 3

Frequency based Vertex
Reordering

110

0

3

1

2

110

0 1 2 3

outdegree: 3 outdegree: 0

outdegree: 3outdegree: 1

Frequency based Vertex
Reordering

111

0

3

1

2

111

0 1 2 3

outdegree: 3 outdegree: 0

outdegree: 3outdegree: 1

Group together high
outdegree nodes

Frequency based Vertex
Reordering

112

0

3

1

2

112

0 1 2 3

outdegree: 3 outdegree: 0

outdegree: 3outdegree: 1

Group together high
outdegree nodes

0

3

1

2

Frequency based Vertex
Reordering

113

0

3

1

2

113

0 1 2 3

outdegree: 3 outdegree: 0

outdegree: 3outdegree: 1

Group together high
outdegree nodes

0

3

1

2

Reorder nodes 1 and 2

Frequency based Vertex
Reordering

114

0

3

1

2

114

0 1 2 3

outdegree: 3 outdegree: 0

outdegree: 3outdegree: 1

Group together high
outdegree nodes

0

3

2

1

Reorder nodes 1 and 2

Frequency based Vertex
Reordering

115

0

3

1

2

115

0 1 2 3

outdegree: 3 outdegree: 0

outdegree: 3outdegree: 1

Group together high
outdegree nodes

0

3

2

1

Relabel corresponding
edges

Frequency based Vertex
Reordering

116

0

3

1

2

116

0 1 2 3

0

3

1

2

0 12 3

Reorganize
nodes’ data

Frequency based Vertex
Reordering

116

0

3

1

2

116

0 1 2 3

0

3

1

2

0 1 2 3

Reorganize
nodes’ data

2

1

Frequency based Vertex
Reordering

117

0

3

1

2

117

0

3

2

1

0 1 2 3

0 1 2 3

Groups together the
data of frequently
accessed nodes in

one cache line

Reorganize
nodes’ data

PageRank

118

0

3

2

1#misses: 0

0 1 2 3

Cache

#hits: 0

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

PageRank

119

0

3

2

1#misses: 0

0 1 2 3

Cache

#hits: 0

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

Focus on the random
memory accesses on

ranks array

PageRank

120

0

3

2

1#misses: 0

0 1 2 3

Cache

#hits: 0

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

PageRank

121

0 1 2 3

Cache

#hits: 0

0

3

2

1

0 1

#misses: 0

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

PageRank

121

#misses: 1

0 1 2 3

Cache

#hits: 0

0

3

2

1

0 1

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

PageRank

122

0

3

2

1#misses: 1

0 1 2 3

0 1

Cache

#hits: 0

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

PageRank

122

0

3

2

1#misses: 1

0 1 2 3

0 1

Cache

#hits: 1

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

PageRank

123

0

3

2

1#misses: 1

0 1 2 3

0 1

Cache

#hits: 1

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

PageRank

123

0

3

2

1#misses: 1

0 1 2 3

0 1

Cache

#hits: 2

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

PageRank

124

0

3

2

1#misses: 1

0 1 2 3

0 1

Cache

#hits: 2

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

PageRank

124

0

3

2

1#misses: 1

0 1 2 3

0 1

Cache

#hits: 3

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

2 3

PageRank

125

0

3

2

1#misses: 1

0 1 2 3

Cache

#hits: 3

0 1

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

2 3

PageRank

125

0

3

2

1

0 1

2 3

Cache

#hits: 3
#misses: 2

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

2 3

2 3

PageRank

126

0

3

2

1#misses: 2

0 1 2 3

Cache

#hits: 3

0 1

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

3

2 3

PageRank

126

0

3

2

1

0 1 2 3

Cache

#hits: 3

0 1

#misses: 3

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

PageRank

127

0

3

2

1#misses: 3

0 1 2 3

Cache

#hits: 3

0 1

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

PageRank

127

0

3

2

1#misses: 3

0 1 2 3

Cache

0 1

#hits: 4

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

PageRank

128

0

3

2

1#misses: 3

0 1 2 3

Cache

#hits: 4

0 1

#misses: 6
#hits: 1

Much
better than

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

PageRank

129

0

3

2

1#misses: 3

0 1 2 3

Cache

#hits: 4

0 1

#misses: 6
#hits: 1

Better
cache line
utilization

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

Outline

• PageRank

• Frequency based Vertex Reordering

• Cache-aware Segmenting

• Evaluation

130

Cache-aware Segmenting

• Design

• Partition the graph into subgraphs where the
random access are limited to LLC

• Process each partition sequentially and
accumulate rank contributions for each partition

• Merge the rank contributions from all subgraphs

131

Graph Partitioning

132

0

3

1

2

Graph Partitioning

133

0

3

1

2

Partitions the original graph
into subgraphs that only

access a subset of nodes’ data

Graph Partitioning

134

0

3

1

2

Partitions the original graph
into subgraphs that only

access a subset of nodes’ data

Graph Partitioning

134

0

3

1

2

0

3

1

2

Partitions the original graph
into subgraphs that only

access a subset of nodes’ data

Graph Partitioning

135

0

3

1

2

0

3

1

2

Partitions the original graph
into subgraphs that only

access a subset of nodes’ data

Graph Partitioning

135

0

3

1

2

0

3

1

2

0

3

1

2

Partitions the original graph
into subgraphs that only

access a subset of nodes’ data

Graph Partitioning

136

0

3

1

2

0

3

1

2

0

3

1

2

0 1 2 3

Partitions the original graph
into subgraphs that only

access a subset of nodes’ data

Graph Processing

137

0

3

1

2

0

3

1

2

0 1

#misses: 0

Cache

#hits: 0

2 3

Graph Processing

138

0

3

1

2

0

3

1

2

0 1

#misses: 0

Cache

#hits: 0

2 3

Graph Processing

139

0

3

1

2

0

3

1

2

0 1

#misses: 1

Cache

#hits: 0

2 30 1

Graph Processing

139

0

3

1

2

0

3

1

2

0 1

#misses: 1

Cache

#hits: 0

2 3

0 1

Graph Processing

140

0

3

1

2

0

3

1

2

0 1

#misses: 1

Cache

#hits: 1

0 1

2 3

Graph Processing

141

0

3

1

2

0

3

1

2

0 1

#misses: 1

Cache

#hits: 2

0 1

2 3

Graph Processing

142

0

3

1

2

0

3

1

2

0 1 2 3

#misses: 1

Cache

#hits: 2

0 1

Graph Processing

142

0

3

1

2

0

3

1

2

0 1 2 3

#misses: 1

Cache

#hits: 2

0 1

#misses: 1

0 1

Graph Processing

143

0

3

1

2

0

3

1

2

0 1

Cache

#hits: 2

2 32 3

0 1

Graph Processing

144

0

3

1

2

0

3

1

2

0 1

#misses: 1

Cache

#hits: 2

2 32 3

Graph Processing

144

0

3

1

2

0

3

1

2

0 1

Cache

#hits: 2

2 3

2 3

#misses: 2

Graph Processing

145

0

3

1

2

0

3

1

2

0 1

#misses: 2

Cache

#hits: 3

2 3

2 3

Graph Processing

146

0

3

1

2

0

3

1

2

0 1

#misses: 2

Cache

#hits: 4

2 3

2 3

Graph Processing

147

0

3

1

2

0

3

1

2

0 1

#misses: 2

Cache

#hits: 5

2 3

2 3

Graph Processing

148

0

3

1

2

0

3

1

2

0 1

#misses: 2

Cache

#hits: 5

2 3

2 3

Only have 2
misses

Graph Processing

149

0

3

1

2

0 1

#misses: 2

Cache

#hits: 5

2 3

2 3
Better than

Frequency based
Reordering

#misses: 3
#hits: 4

0

3

1

2

Cache-aware Merge

150

0

3

1

2

0

3

1

2

Cache-aware Merge

151

0

3

1

2

0

3

1

2

1 2 3

Cache-aware Merge

152

0

3

1

2

0

3

1

2

1 2 3 0 2 31

Cache-aware Merge

153

0

3

1

2

0

3

1

2

1 2 3 0 2 31

Cache-aware Merge

153

0

3

1

2

0

3

1

2

1

2 3 0 2 31

Cache-aware Merge

153

0

3

1

2

0

3

1

2

1 2

3 0 2 31

Cache-aware Merge

153

0

3

1

2

0

3

1

2

1 2 3

0 2 31

Cache-aware Merge

153

0

3

1

2

0

3

1

2

1 2 30

2 31

Cache-aware Merge

153

0

3

1

2

0

3

1

2

1 2 30

2 3

1

Cache-aware Merge

153

0

3

1

2

0

3

1

2

1 2 30 2

3

1

Cache-aware Merge

153

0

3

1

2

0

3

1

2

1 2 30 2 31

Cache-aware Merge

154

0

3

1

2

0

3

1

2

1 2 30
The naive approach incurs
random DRAM accesses

Cache-aware Merge

155

0

3

1

2

0

3

1

2

1 2 3 0 2 31

Cache-aware Merge

155

0

3

1

2

0

3

1

2

1

2 3 0 2 31

Cache-aware Merge

155

0

3

1

2

0

3

1

2

1

2 3

0

2 31

Cache-aware Merge

155

0

3

1

2

0

3

1

2

1

2 3

0

2 3

1

Cache-aware Merge

156

0

3

1

2

0

3

1

2

2 3 2 3

1

0 1
Break down into
chunks that fit

in cache

+

Cache-aware Merge

157

0

3

1

2

0

3

1

2

2 3 2 3

1

0 1
Sum up the

intermediate updates
from the two subgraphs 0 1

+

Cache-aware Merge

158

0

3

1

2

0

3

1

2

2 3 2 3

1

0 1
Sum up the

intermediate updates
from the two subgraphs 0 1

+

Cache-aware Merge

158

0

3

1

2

0

3

1

2

2

3 2 3

1

0 1
Sum up the

intermediate updates
from the two subgraphs 0 1

+

Cache-aware Merge

158

0

3

1

2

0

3

1

2

2 3

2 3

1

0 1
Sum up the

intermediate updates
from the two subgraphs 0 1

+

Cache-aware Merge

158

0

3

1

2

0

3

1

2

2 3

2

3

1

0 1
Sum up the

intermediate updates
from the two subgraphs 0 1

+

Cache-aware Merge

158

0

3

1

2

0

3

1

2

2 3

2 3

1

0 1
Sum up the

intermediate updates
from the two subgraphs 0 1

+

Cache-aware Merge

159

0

3

1

2

0

3

1

2

1

0 1
Sum up the

intermediate updates
from the two subgraphs 0 1

2 3

2 3

2 3

+ + +

PageRank

160

N
or

m
al

ize
d

To
ta

l
C

yc
le

s

0%

25%

50%

75%

100%

BaseLine Reordering Segmenting Reordering

+ Segmenting

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

on RMAT27 graph

PageRank

161

N
or

m
al

ize
d

To
ta

l
C

yc
le

s

0%

25%

50%

75%

100%

BaseLine Reordering Segmenting Reordering

+ Segmenting

35% cycle reduction

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

on RMAT27 graph

PageRank

162

N
or

m
al

ize
d

To
ta

l
C

yc
le

s

0%

25%

50%

75%

100%

BaseLine Reordering Segmenting Reordering

+ Segmenting

50% cycle reduction

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

on RMAT27 graph

PageRank

163

N
or

m
al

ize
d

To
ta

l
C

yc
le

s

0%

25%

50%

75%

100%

BaseLine Reordering Segmenting Reordering

+ Segmenting

60% cycle reduction

while	…	
	 	for	node	:	graph.ver,ces	
	 	 for	ngh	:	graph.getInNeighbors(node)	
	 	 	 newRanks[node]	+=	ranks[ngh]/outDegree[ngh];	
	 for	node	:	graph.ver,ces	
	 	 newRanks[node]	=	baseScore	+	damping*newRanks[node];	
	 swap	ranks	and	newRanks	

on RMAT27 graph

Related Work
• Distributed Graph Systems

• Shared memory efficiency is a key component of distributed
graph processing systems (PowerGraph, GraphLab, Pregel..)

• Shared-memory Graph Systems

• Frameworks (Ligra, Galois, GraphMat ..) did not focus on
cache optimizations

• Milk [PACT16], Propagation Blocking[IPDPS17]

• Out-of-core Systems (GraphChi, XStream)

164

Outline

• Motivation

• Frequency based Vertex Reordering

• Cache-aware Segmenting

• Evaluation

165

Evaluation

166

Absolute Running Times on 24 core Intel Xeon E5 servers

PageRank
(20 iter)

Label
Propagation

(per iter)

Betweenness
Centrality (per

start node)

Twitter 5.8s 0.27s 1.21s

RMAT27 11.6s 0.52s 1.825s

Web
Graph 8.6s 0.34s 0.0875s

Evaluation

167

Absolute Running Times on 24 core Intel Xeon E5 servers

In a single machine,
we can complete 20

iterations of
PageRank on 40

million nodes Twitter
graph within 6s

PageRank
(20 iter)

Label
Propagation

(per iter)

Betweenness
Centrality (per

start node)

Twitter 5.8s 0.27s 1.21s

RMAT27 11.6s 0.52s 1.825s

Web
Graph 8.6s 0.34s 0.0875s

Evaluation

168

Absolute Running Times on 24 core Intel Xeon E5 servers

In a single machine,
we can complete 20

iterations of
PageRank on 40

million nodes Twitter
graph within 6s

PageRank
(20 iter)

Label
Propagation

(per iter)

Betweenness
Centrality (per

start node)

Twitter 5.8s 0.27s 1.21s

RMAT27 11.6s 0.52s 1.825s

Web
Graph 8.6s 0.34s 0.0875s

The best published
results so far is 12.7s
(Gemini OSDI 2017)

Evaluation
PageRank

(20 iter)

Label
Propagation

(per iter)

Betweenness
Centrality (per

start node)

Twitter 5.8s 0.27s 1.21s

RMAT27 11.6s 0.52s 1.825s

Web
Graph 8.6s 0.34s 0.0875s

169

Absolute Running Times on 24 core Intel Xeon E5 servers

Very fast execution
on label propagation
used in Connected
Components and

SSSP (Bellman-Ford)

PageRank

170

0

3

6

9

12

Twitter RMAT25 RMAT27 SD

Ours HandOptC++ GraphMat Ligra GridGraph

Sl
ow

do
w

n
to

 O
ur

s

PageRank

0

3

6

9

12

Twitter RMAT25 RMAT27 SD

Ours HandOptC++ GraphMat Ligra GridGraph

Sl
ow

do
w

n
to

 O
ur

s

171

Intel expert hand optimized
version and state-of-the art

graph frameworks are 2.2-11x
slower than our version

Label Propagation

172

0

1.75

3.5

5.25

7

Twitter RMAT25 RMAT27 SD

Ours HandOptC++ Ligra

Sl
ow

do
w

n
to

 O
ur

s

Label Propagation

173

0

1.75

3.5

5.25

7

Twitter RMAT25 RMAT27 SD

Ours HandOptC++ Ligra

Sl
ow

do
w

n
to

 O
ur

s

Intel expert hand optimized
version and state-of-the art

graph frameworks are 1.7-6.7x
slower than our version

Evaluation

0

25

50

75

100

LiveJournal RMAT25 Twitter SD RMAT27

Hand Optimized C++ Ours

C
yc

le
s

st
al

le
d

on
 m

em
or

y
/ E

dg
e

174

Evaluation

175

Cycles stalled on memory per edge increases as the
size of the graph increases

0

25

50

75

100

LiveJournal RMAT25 Twitter SD RMAT27

Hand Optimized C++ Ours

C
yc

le
s

st
al

le
d

on
 m

em
or

y
/ E

dg
e

Evaluation

176

Cycles stalled on memory per edge stays constant as
the size of the graph increases

0

25

50

75

100

LiveJournal RMAT25 Twitter SD RMAT27

Hand Optimized C++ Ours

C
yc

le
s

st
al

le
d

on
 m

em
or

y
/ E

dg
e

Summary

• Performance Bottleneck of Graph Applications

• Frequency based Vertex Reordering

• Cache-aware Segmenting

177

Outline

• Performance Analysis for Graph Applications

• Milk / Propagation Blocking

• Frequency based Clustering

• CSR Segmenting

• Summary

Improving Cache Performance
for Graph Computations

• Reordering the Graph

• Partitioning the Graph for Locality

• Runtime Reordering the Memory Accesses

Improving Cache Performance
for Graph Computations

• Reordering the Graph

• Partitioning the Graph for Locality

• Runtime Reordering the Memory Accesses

What are the
tradeoffs ?

Improving Cache Performance
for Graph Computations

• Reordering the Graph

• Small preprocessing cost, modest performance improvement,
dependent on graph structure

• Partitioning the Graph for Locality

• Bigger preprocessing cost, small runtime overhead, bigger
performance gains, suitable for applications with lots of random
accesses.

• Runtime Reordering the Memory Accesses

• No preprocessing cost, bigger runtime overhead

Outside of Graph
Computing?

• Sparse Linear Algebra

• Matrix Reordering, Preconditioning (Graph Reordering)

• Cache Blocking (CSR segmenting)

• Inspector-Executor (Runtime Access Reordering)

• These are Fundamental Communication Reductions
Techniques , used in many other domains (sparse linear
algebra, join optimization in databases)

Performance Engineering

• Understand your applications’ performance
characteristics

• Many papers worked on different ways to abandon
cache and improve MLP with a large number of threads

• Understand the tradeoff space of the optimizations

• Pick the technique that best suit your hardware,
application and data

