Optimizing Cache Performance for Graph Analytics

Yunming Zhang 6.886 Presentation

Goals

- How to optimize in-memory graph applications
- How to go about performance engineering just about anything

In-memory Graph Processing

- Compare to Disk / DRAM boundary (GraphChi, BigSparse, LLAMA..), Cache / DRAM boundary has
 - Much smaller latency gap (L3 cache 10-30 ns, DRAM 80-100 ns, Flash 100,000 ns (100 ms))
 - Much larger memory bandwidth (DRAM >100GB/s, Flash 6GB/s)
 - Much smaller granularity (64 bytes cache lines vs 4k or 2 MB pages)

Outline

- Performance Analysis for Graph Applications
- Milk / Propagation Blocking
- Frequency based Clustering
- CSR Segmenting
- Summary

Locality Exists in Graph Processing: Workload Characterization on an Ivy Bridge Server

Scott Beamer, Krste Asanović, David Patterson

Mostly borrowed from the authors' IISWC presentation

Motivation

- What is the performance bottleneck for graph applications running in memory?
- How much performance can we gain?
- How can we achieve the performance gains?

"Thus, the low speedup of OOO execution is due solely to a lack of memory bandwidth required to service the repeated last level cache misses caused by the random access memory pattern of the algorithm."

PPoPP 2011

"Thus, the low speedup of OOO execution is due solely to a lack of memory bandwidth required to service the repeated last level cache misses caused by the random access memory pattern of the algorithm."

PPoPP 2011

"Thus, the low speedup of OOO execution is due solely to a lack of memory bandwidth required to service the repeated last level cache misses caused by the random access memory pattern of the algorithm."

PPoPP 2011

"First, the memory bandwidth of the system seems to limit performance"

SPAA 2010

"Thus, the low speedup of OOO execution is due solely to a lack of memory bandwidth required to service the repeated last level cache misses caused by the random access memory pattern of the algorithm."

PPoPP 2011

"First, the memory bandwidth of the system seems to limit performance"

SPAA 2010

Current Wisdom

Current Wisdom

 Random memory access pattern

Current Wisdom

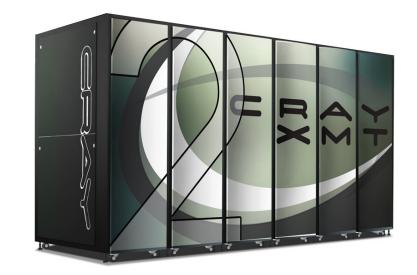
- Random memory access pattern
- Limited by memory bandwidth

Current Wisdom

- Random memory access pattern
- Limited by memory bandwidth
- Will be plagued by low core utilization

Current Wisdom

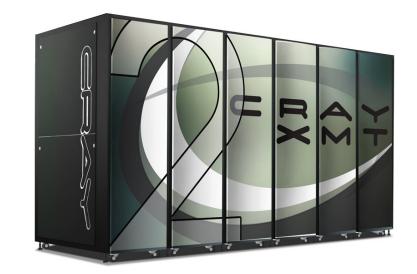
- Random memory access pattern
- Limited by memory bandwidth
- Will be plagued by low core utilization



Cray XMT Design

Current Wisdom

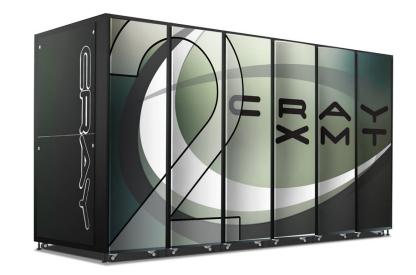
- Random memory access pattern
- Limited by memory bandwidth
- Will be plagued by low core utilization



Cray XMT DesignNo caches

Current Wisdom

- Random memory access pattern
- Limited by memory bandwidth
- Will be plagued by low core utilization



- Cray XMT Design
 - No caches
 - Heavy multithreading

- Are graph applications really memory bandwidth bounded?
 - Is cache really completely useless in graph computations?

No single representative workload

- No single representative workload
 - need suite

No single representative workload

- need suite
- Out-of-order core not limited by memory bandwidth for most graph workloads

- No single representative workload
 - need suite
- Out-of-order core not limited by memory bandwidth for most graph workloads
 - can improve by changing only processor

- No single representative workload
 - need suite
- Out-of-order core not limited by memory bandwidth for most graph workloads
 - can improve by changing only processor
- Many graph workloads have good locality

- No single representative workload
 - need suite
- Out-of-order core not limited by memory bandwidth for most graph workloads
 - can improve by changing only processor
- Many graph workloads have good locality
 - caches help! try to avoid thrashing

Target Graph Algorithms

Most popular based on 45-paper literature survey:

- Breadth-First Search (BFS)
- Single-Source Shortest Paths (SSSP)
- PageRank (PR)
- Connected Components (CC)
- Betweenness Centrality (BC)

- Galois (custom parallel runtime) UT Austin
 - specialized for irregular fine-grain tasks

- Galois (custom parallel runtime) UT Austin
 - specialized for irregular fine-grain tasks
- Ligra (Cilk) CMU
 - applies algorithm in push or pull directions

- Galois (custom parallel runtime) UT Austin
 - specialized for irregular fine-grain tasks
- Ligra (Cilk) CMU
 - applies algorithm in push or pull directions
- GAP Benchmark Suite (OpenMP) UCB
 - written directly in most natural way for algorithm, not constrained by framework

Target Input Graphs

Graph	# Vertices	# Edges	Degree	Diameter	Degree Dist.
Roads of USA	23.9M	58.3M	2.4	High	const
Twitter Follow Links	61.6M	1468.4M	23.8	Low	power
Web Crawl of .sk Domain	50.6M	1949.4M	38.5	Medium	power
Kronecker Synthetic Graph	128.0M	2048.0M	16.0	Low	power
Uniform Random Graph	128.0M	2048.0M	16.0	Low	normal

Graphs can have very different degree distributions, diameters and other structural characteristics.

Executing a load that access DRAM requires:

- Executing a load that access DRAM requires:
- ① Execution reaches load instruction (fetch)

- Executing a load that access DRAM requires:
- ① Execution reaches load instruction (**fetch**)
- ② Space in the instruction **window**

- Executing a load that access DRAM requires:
- ① Execution reaches load instruction (**fetch**)
- ② Space in the instruction **window**
- ③ Register operands are available (dataflow)

- Executing a load that access DRAM requires:
- ① Execution reaches load instruction (**fetch**)
- ② Space in the instruction **window**
- ③ Register operands are available (dataflow)
- 4 Memory **bandwidth** is available

- Executing a load that access DRAM requires:
- ① Execution reaches load instruction (**fetch**)
- ② Space in the instruction **window**
- ③ Register operands are available (dataflow)
- 4 Memory **bandwidth** is available
- Bandwidth ~ # outstanding requests

Executing a load that access DRAM requires:

Bandwidth ~ # outstanding requests

effective MLP

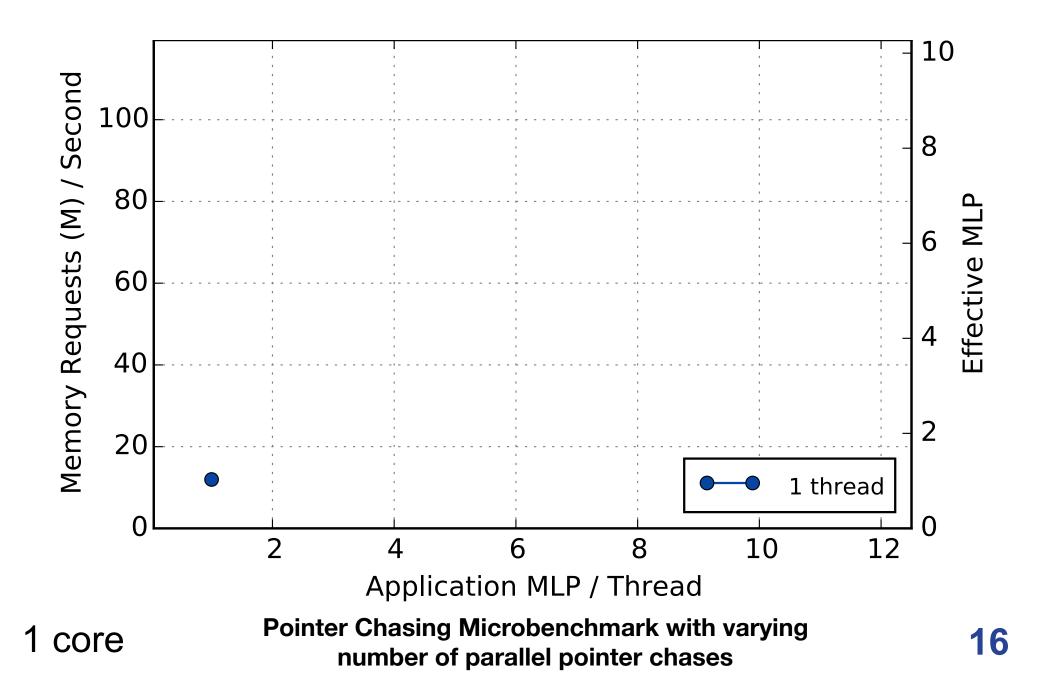
(MLP = memory level parallelism)

effective MLP = average average bandwidth latency

(MLP = memory level parallelism)

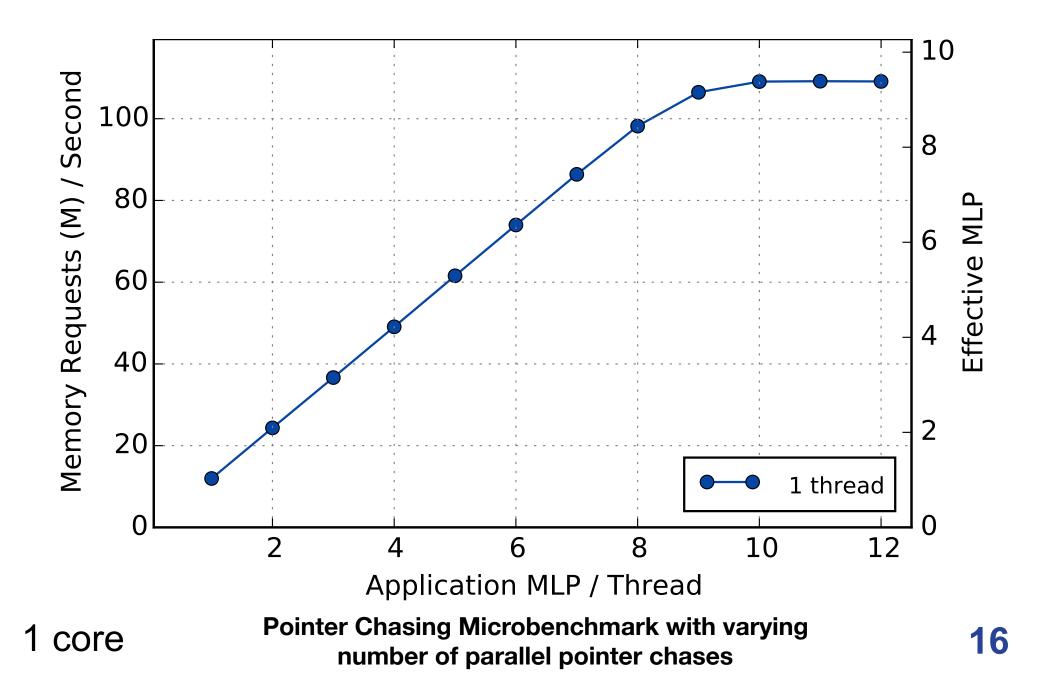
effective = average average average application MLP ≤ Application MLP

(MLP = memory level parallelism)



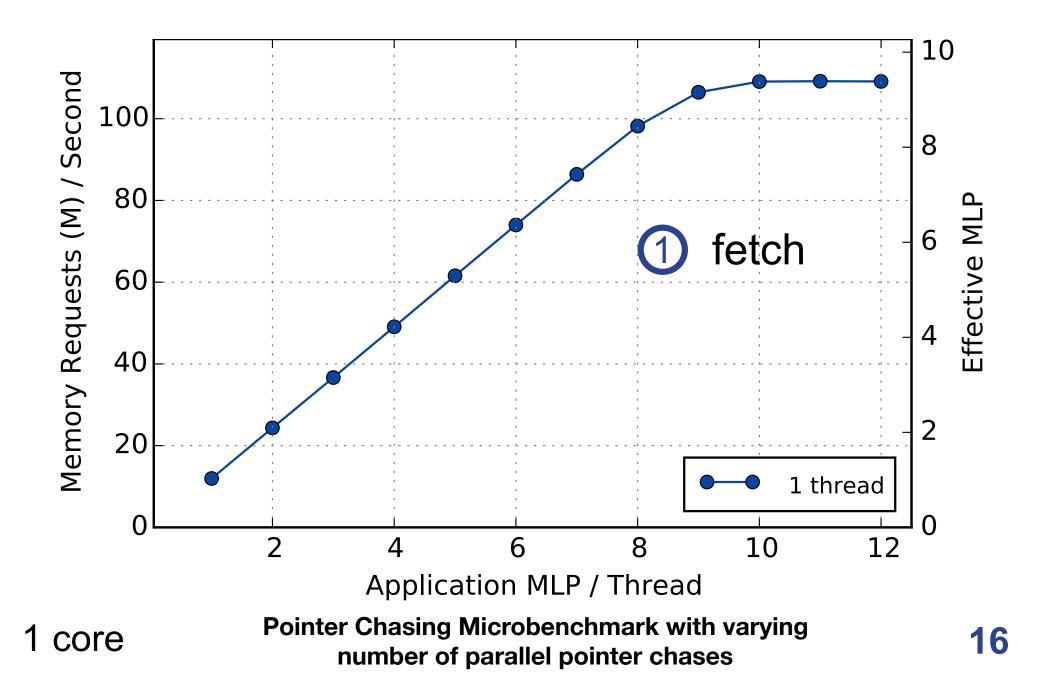
////SP

RE



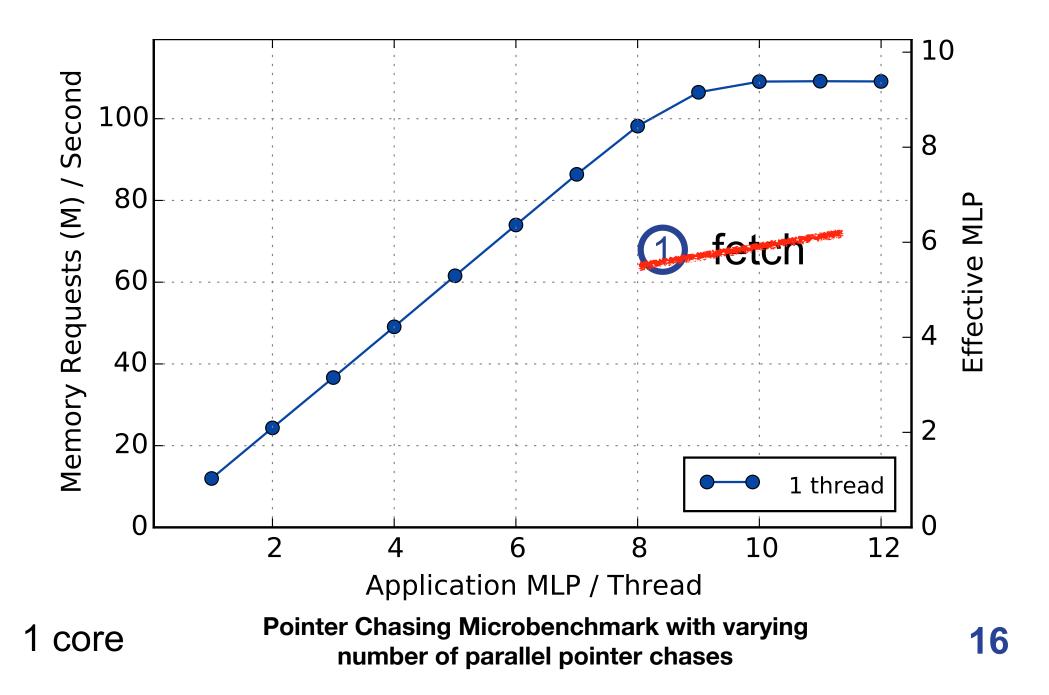
RE

UC Berkeley



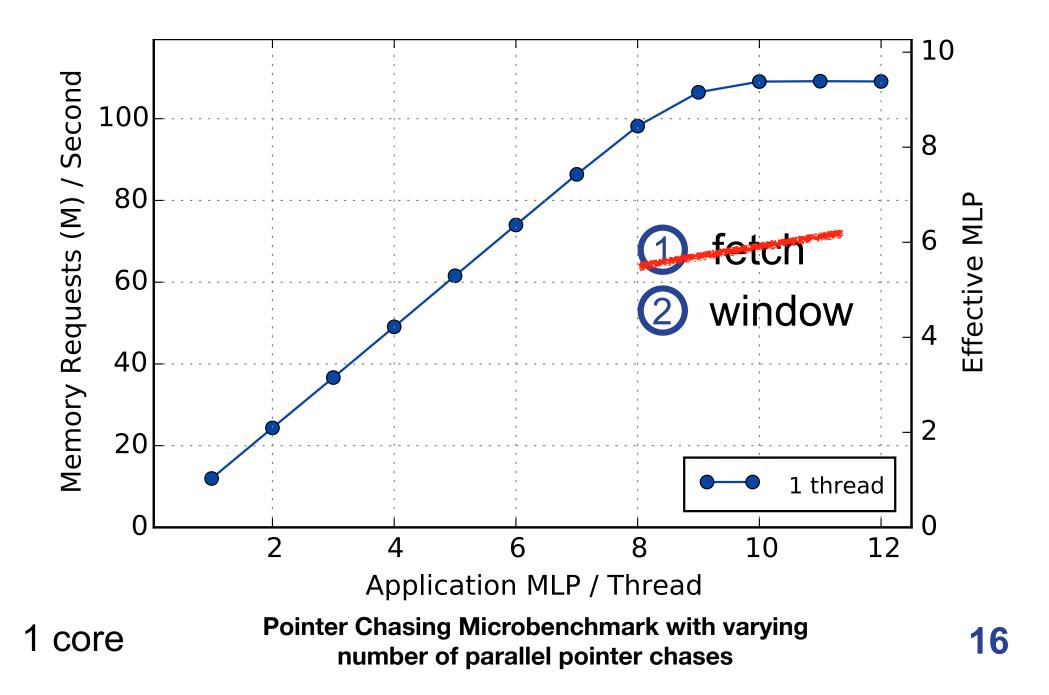
RE

UC Berkeley

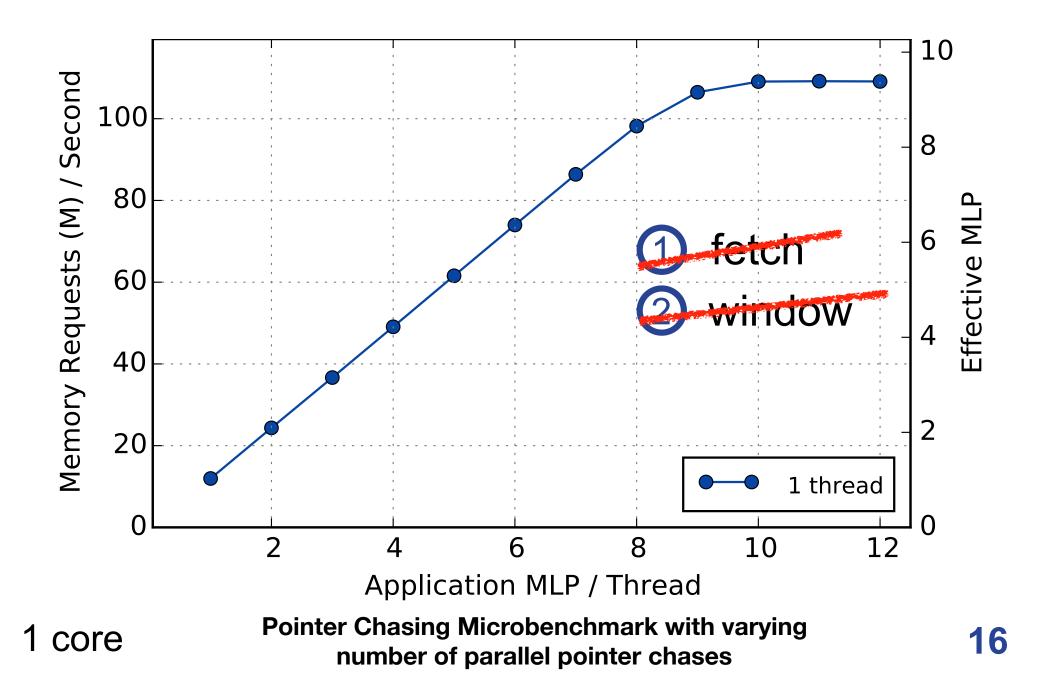


RE

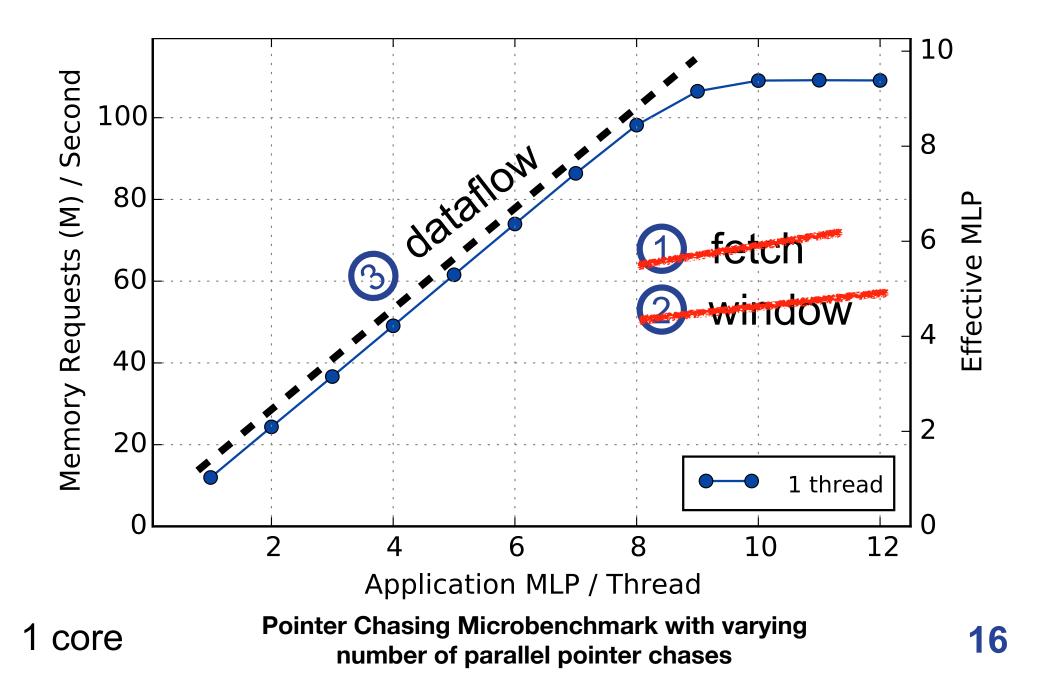
UC Berkeley



RE

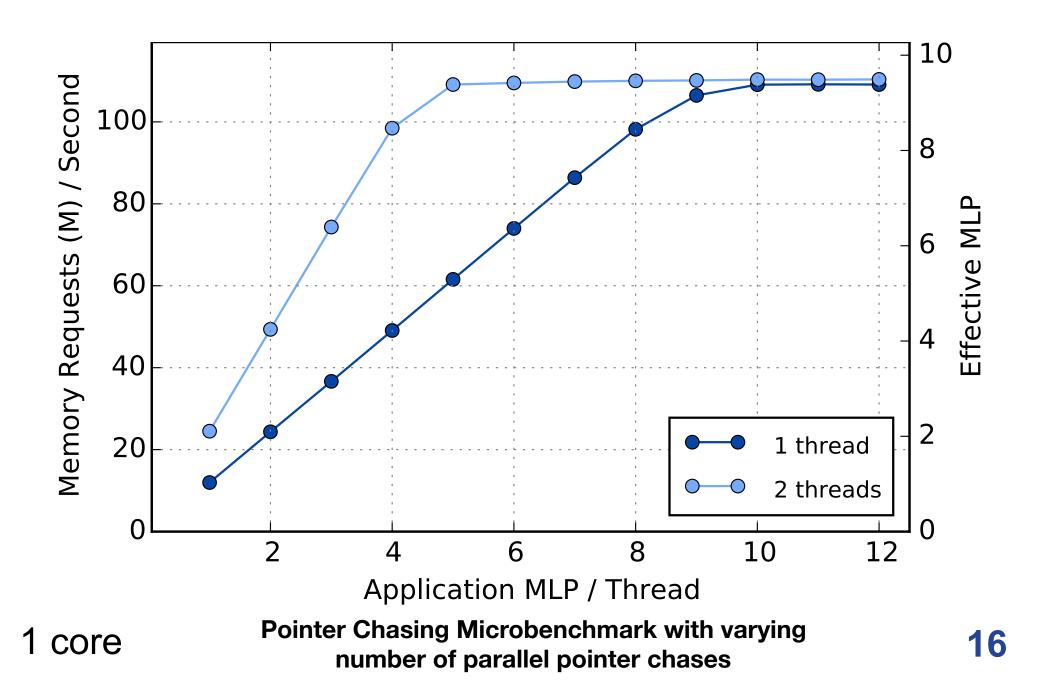


RE



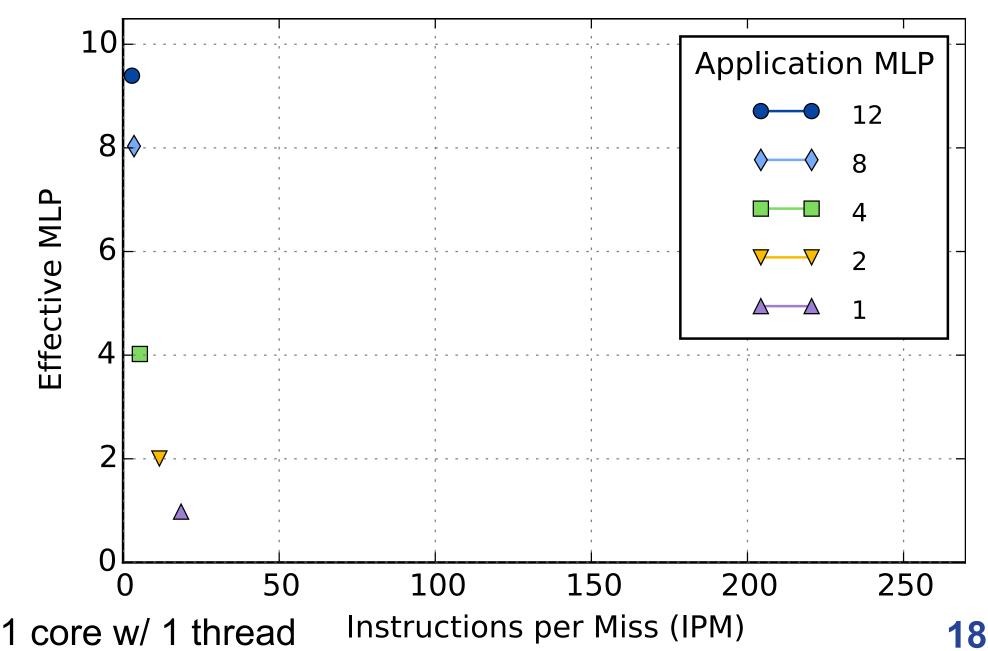
RE

RE **Single-Core Memory Bandwidth UC Berkeley** bandwidth 10 Memory Requests (M) / Second 100 dataflow 8 80 Effective MLP 6 60 WODTH 4 40 2 20 1 thread 0 2 10 12 8 4 6 **Application MLP / Thread Pointer Chasing Microbenchmark with varying** core 16 number of parallel pointer chases

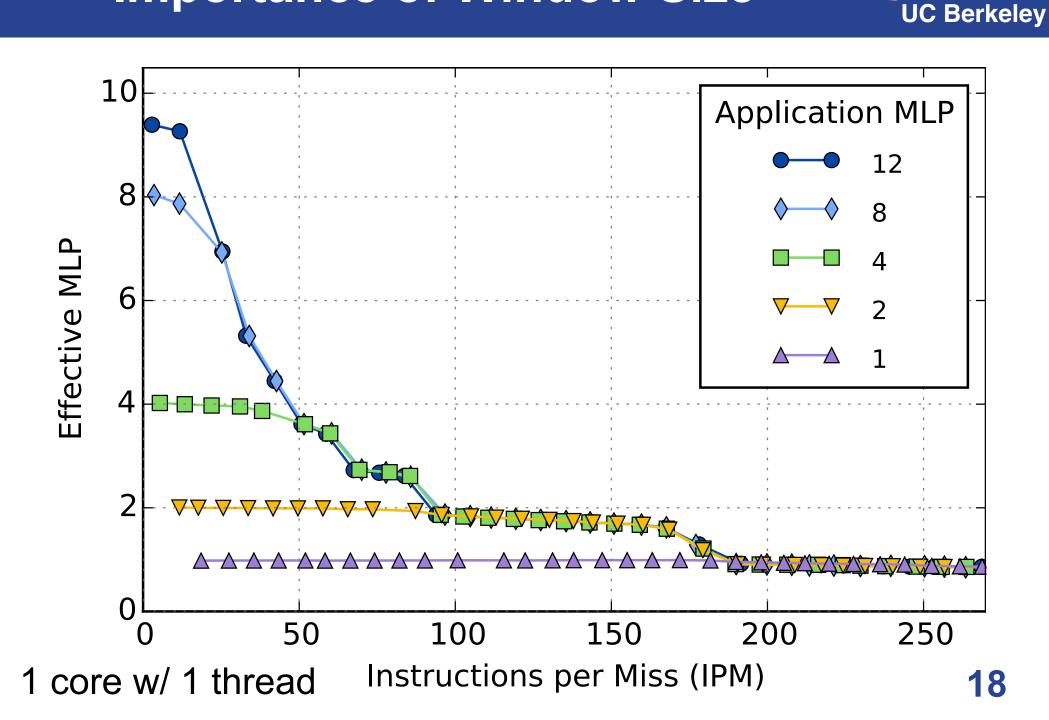


RE

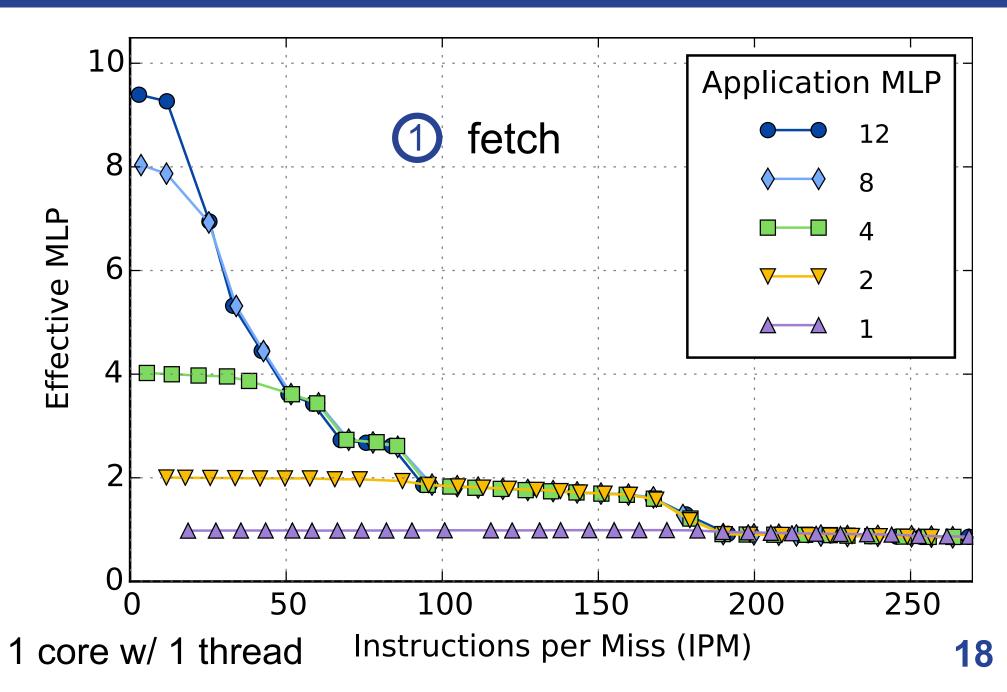
- Methodology
- Platform Memory Bandwidth Availability
- Single-core Results
- Parallel Results
- GAP Benchmark Suite
- Conclusion

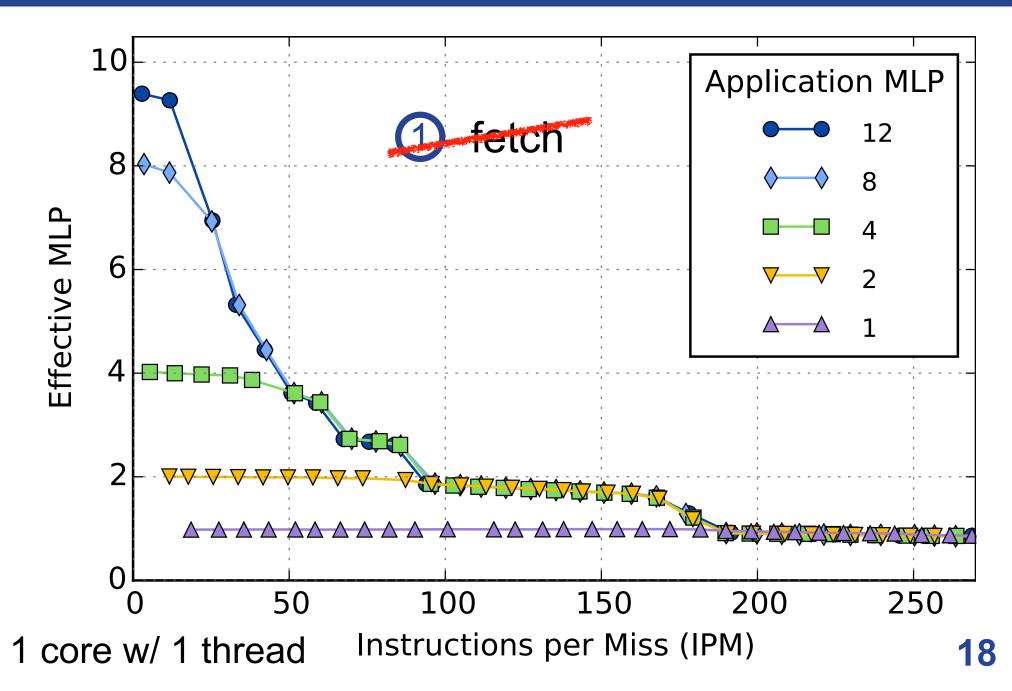


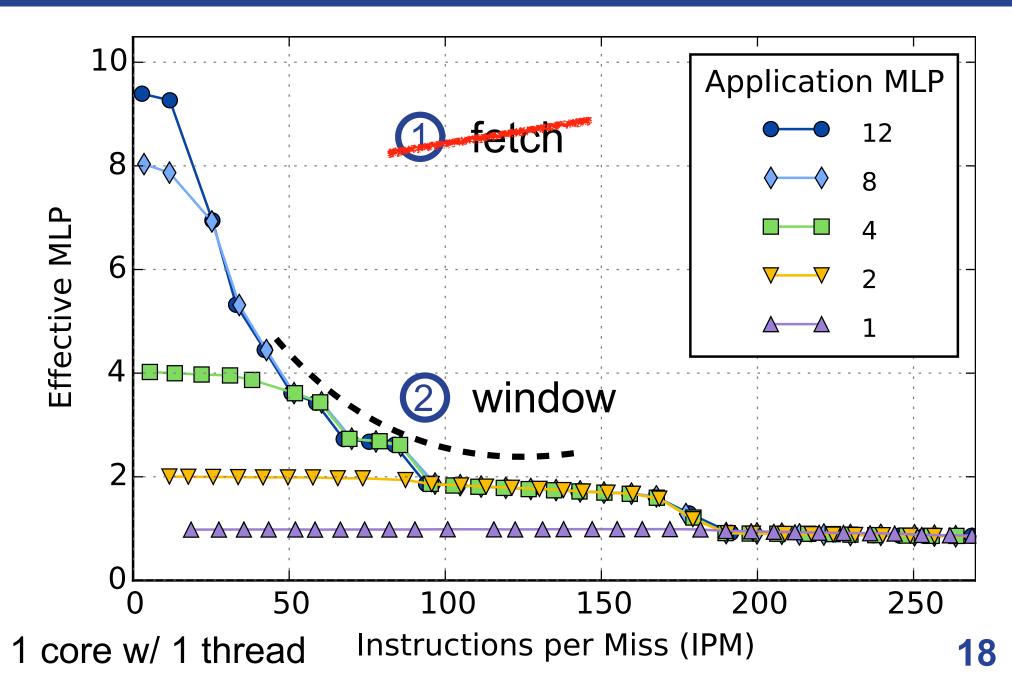
RE

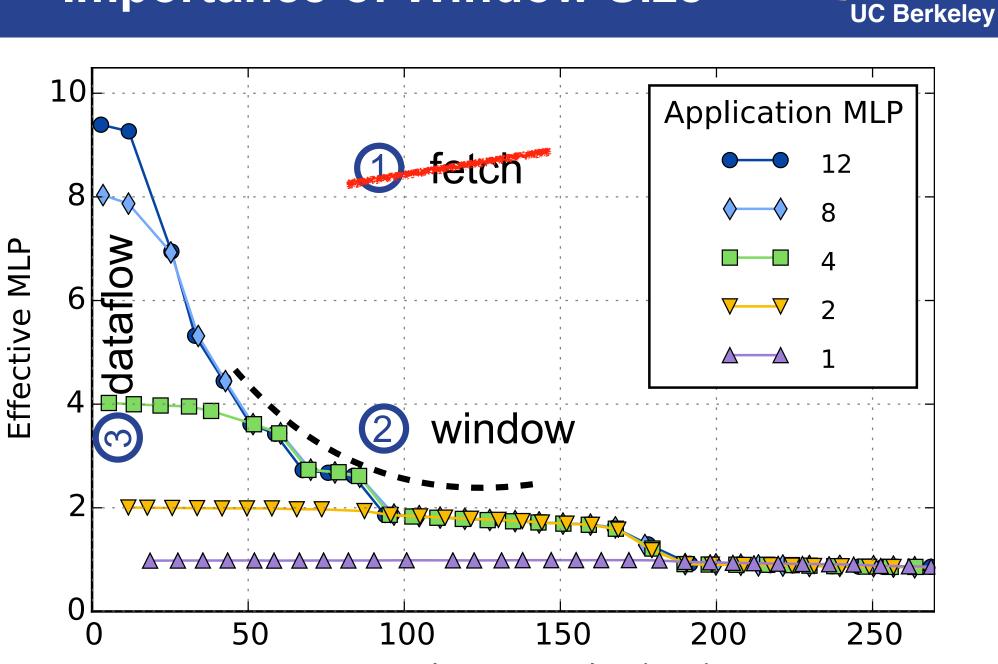


RE





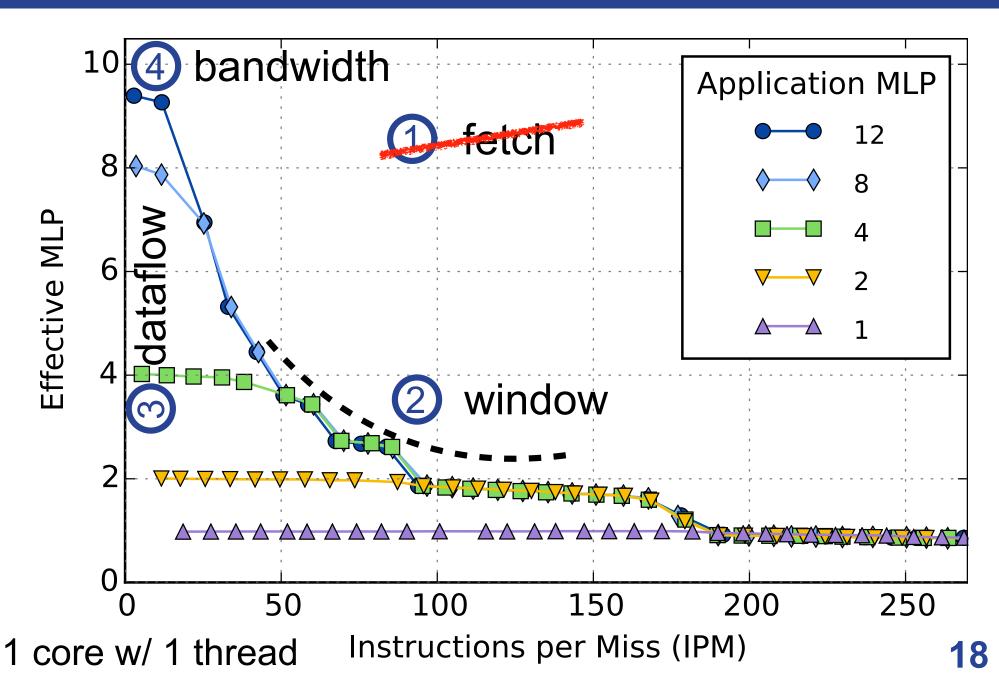


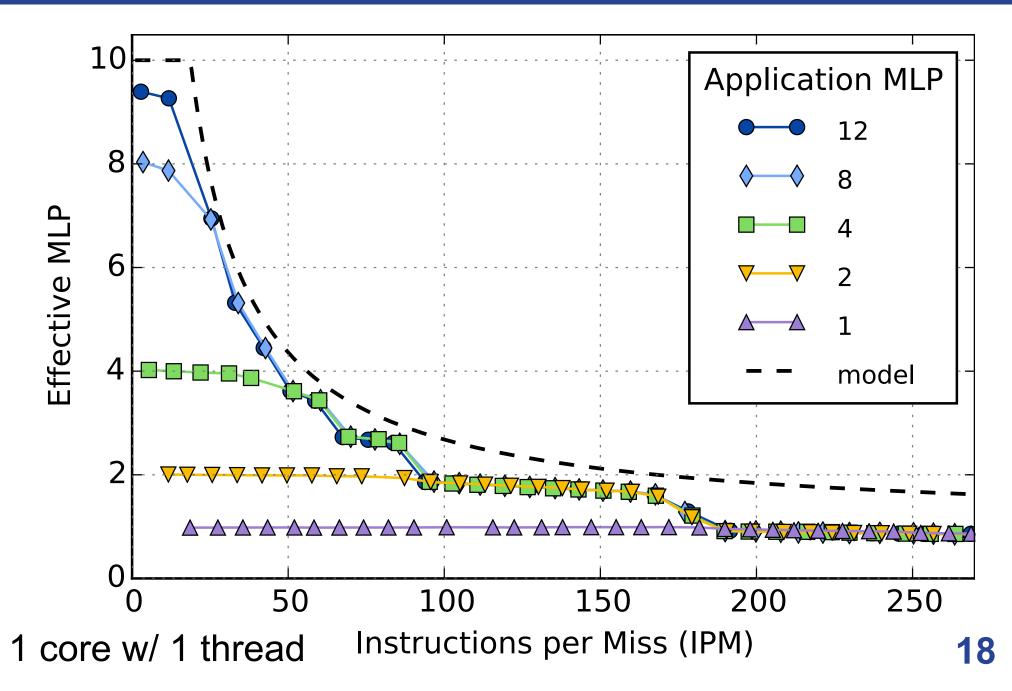


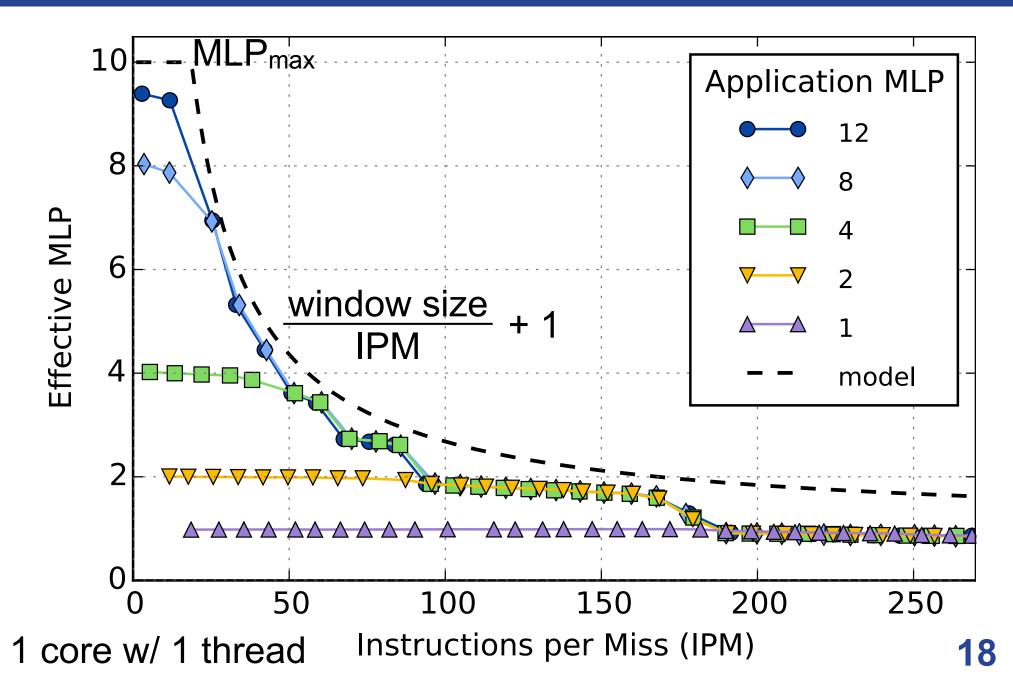
1 core w/ 1 thread Instructions per Miss (IPM)

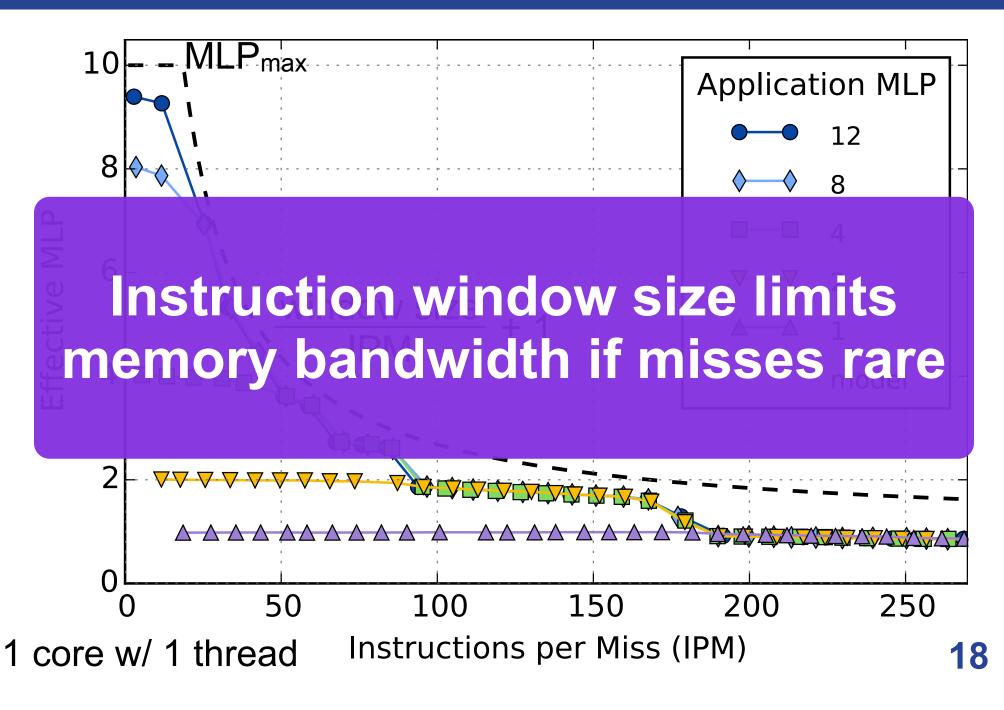
18

RE

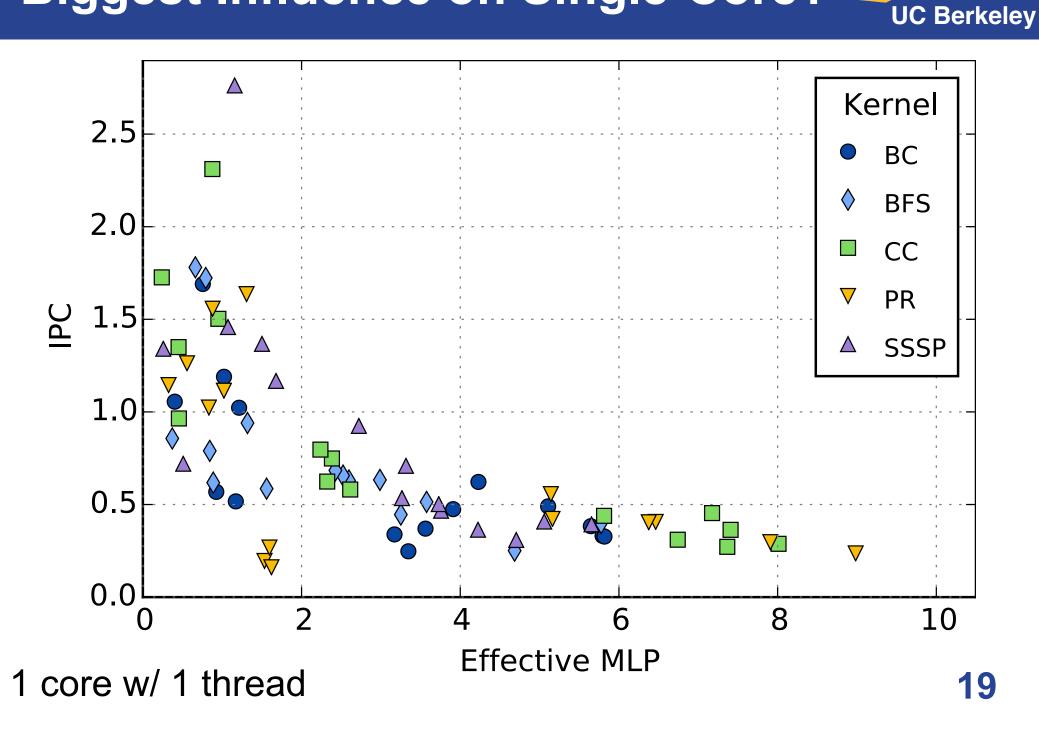




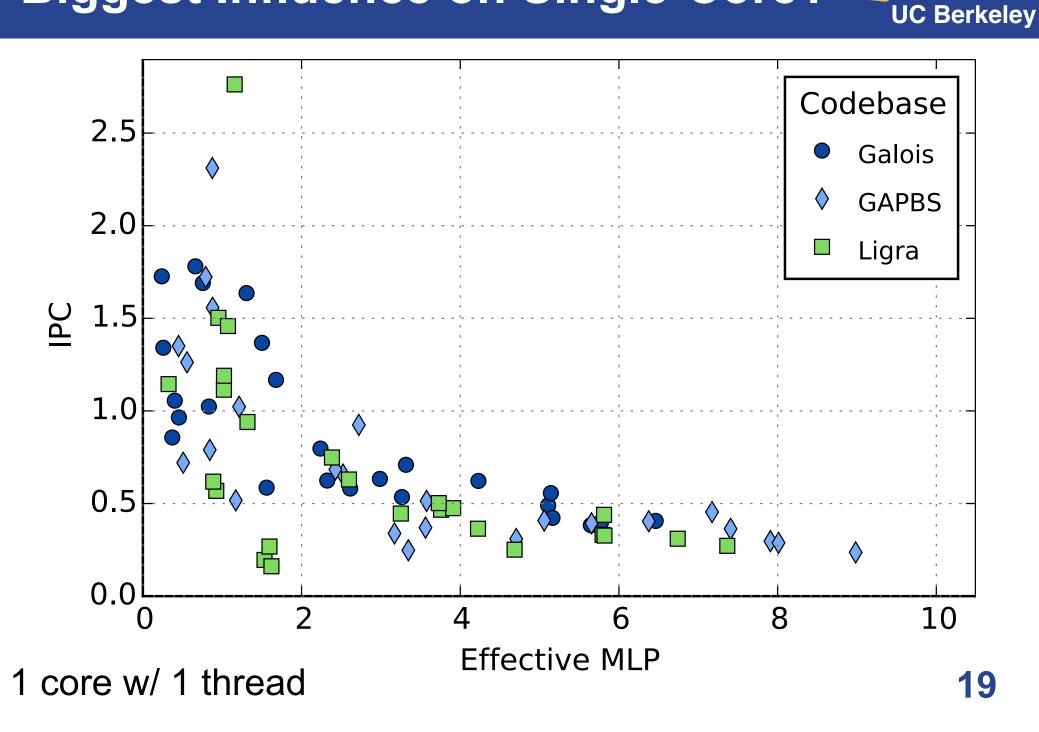


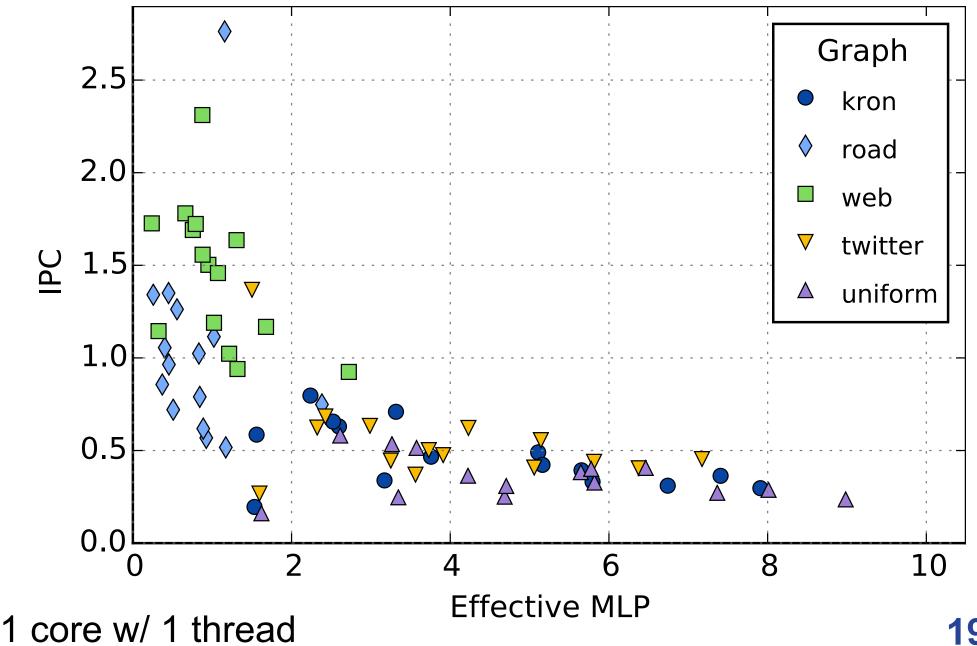


1 core w/ 1 thread



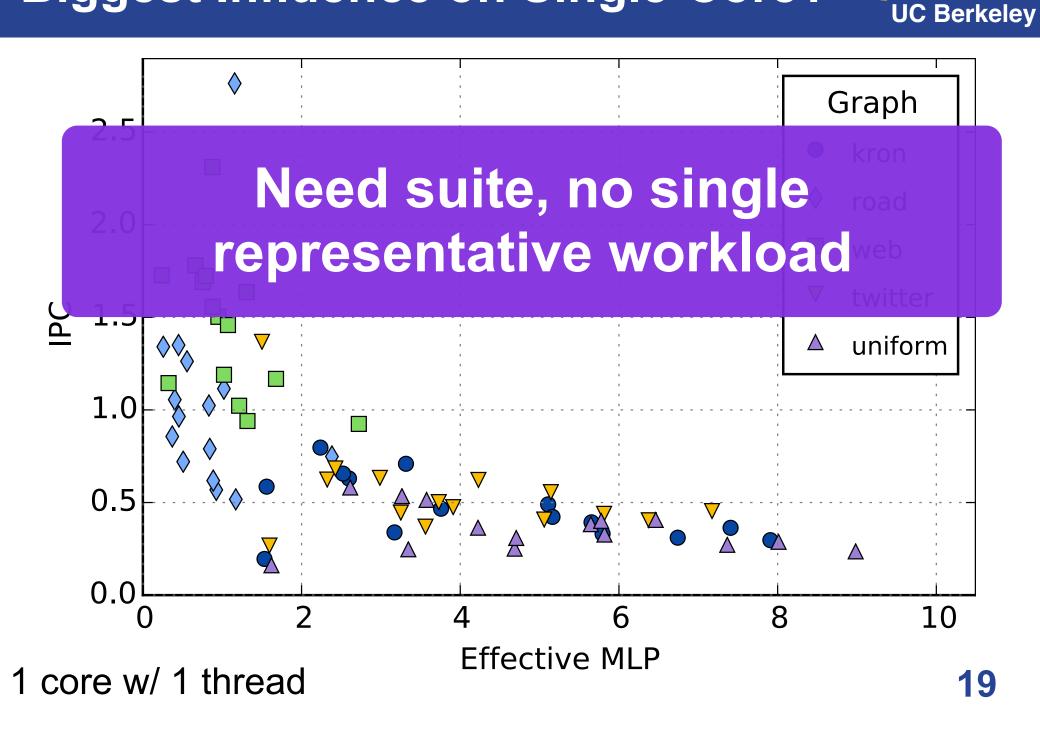
RE

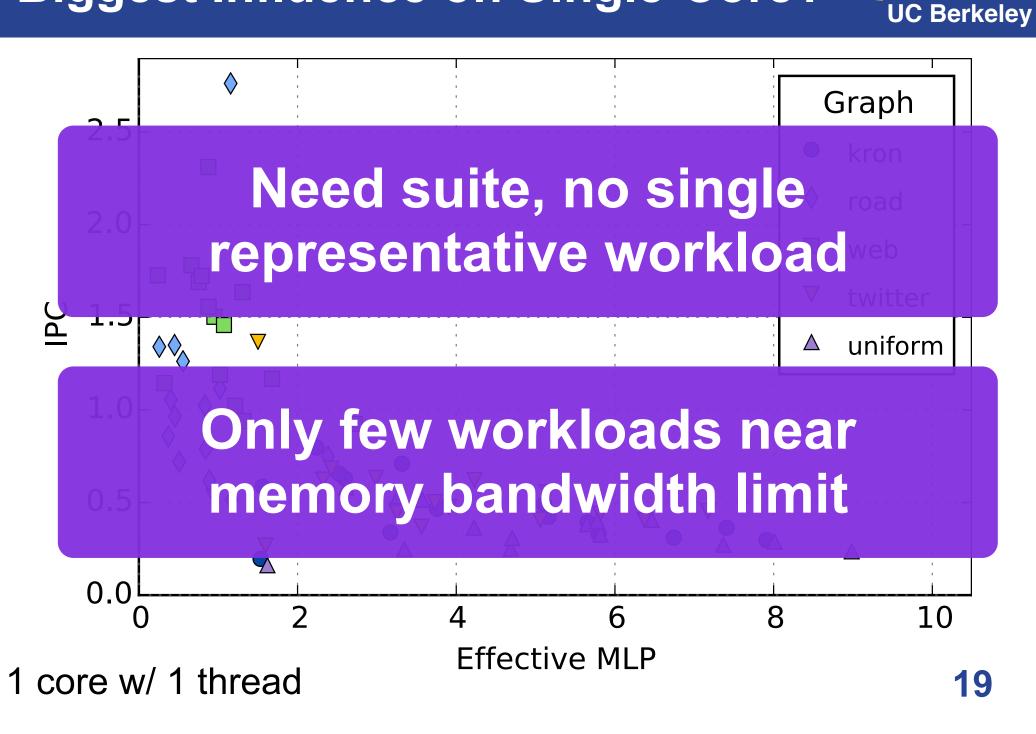




19

RE

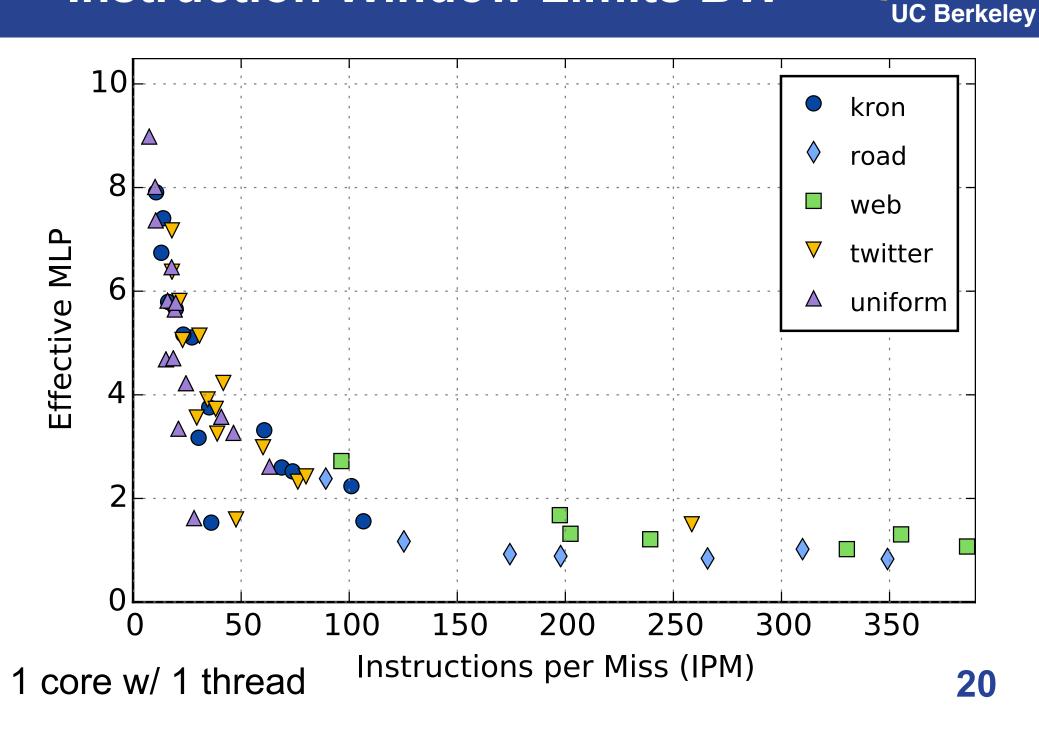




Instruction Window Limits BW

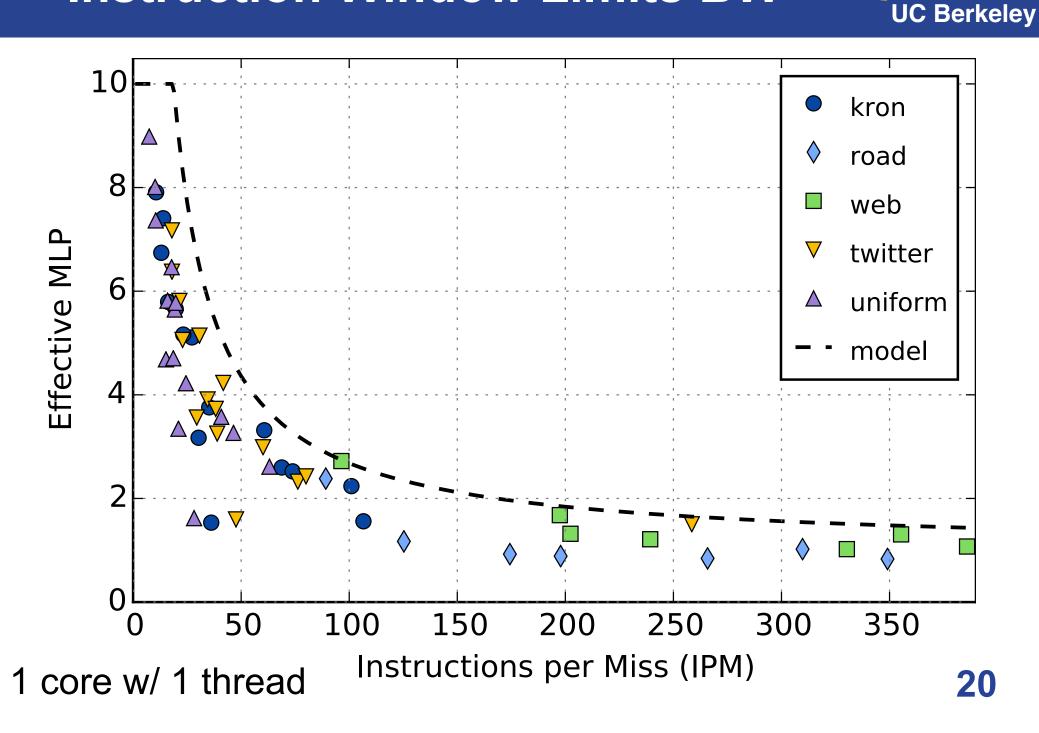
1 core w/ 1 thread

Instruction Window Limits BW



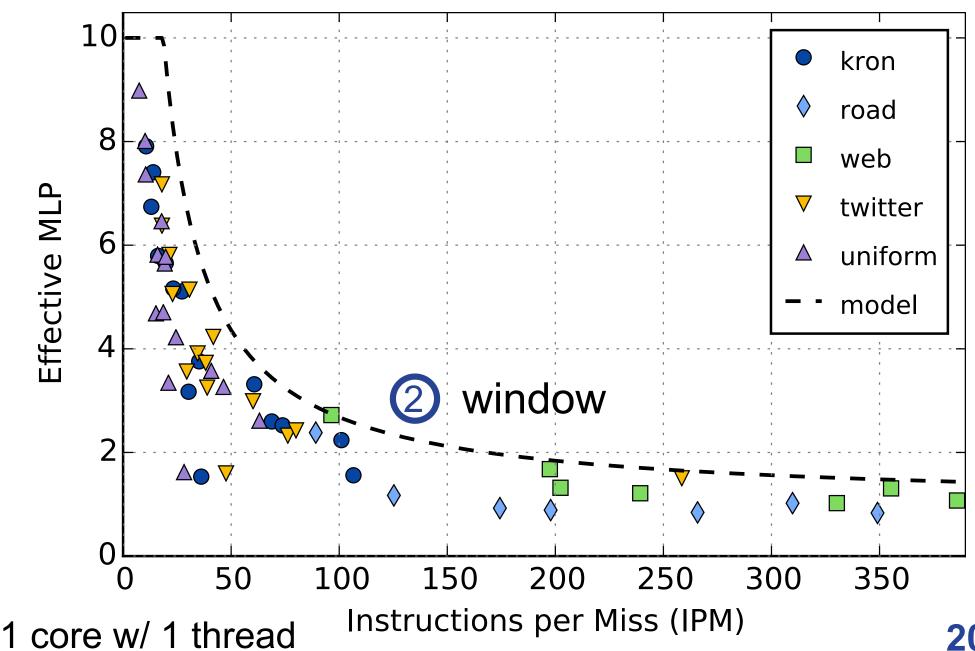
RE

Instruction Window Limits BW



RE

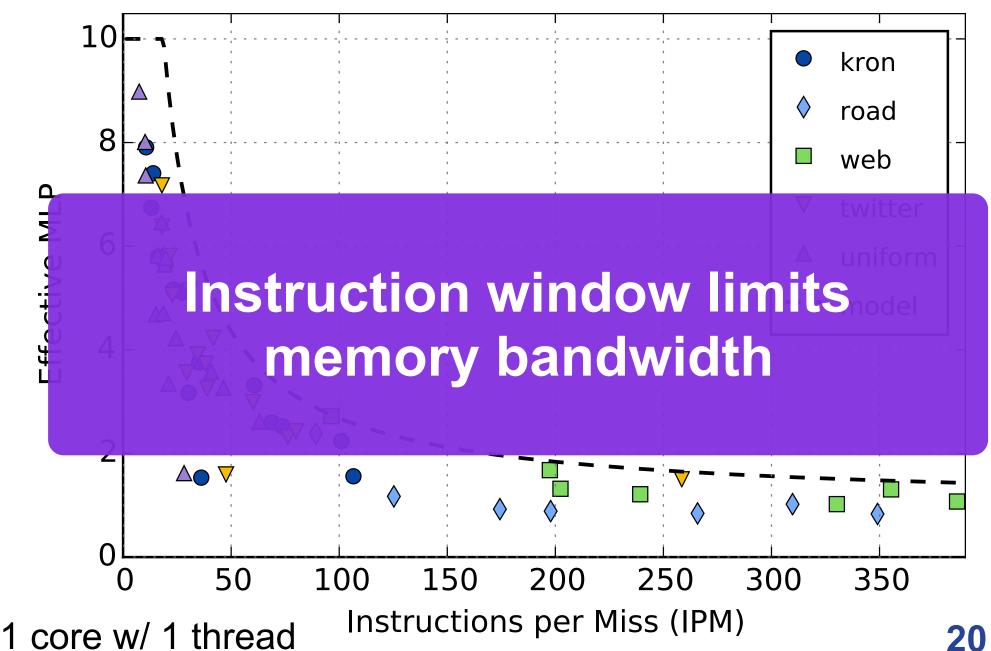
Instruction Window Limits BW



RE

UC Berkeley

Instruction Window Limits BW



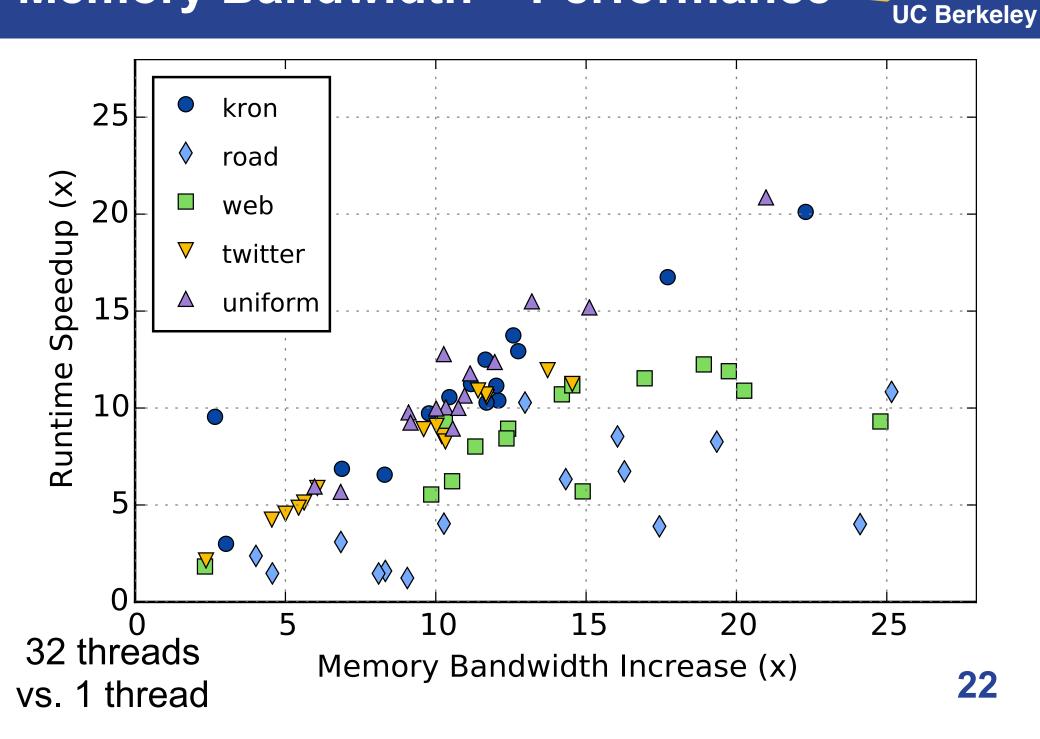
RE

UC Berkeley

Outline

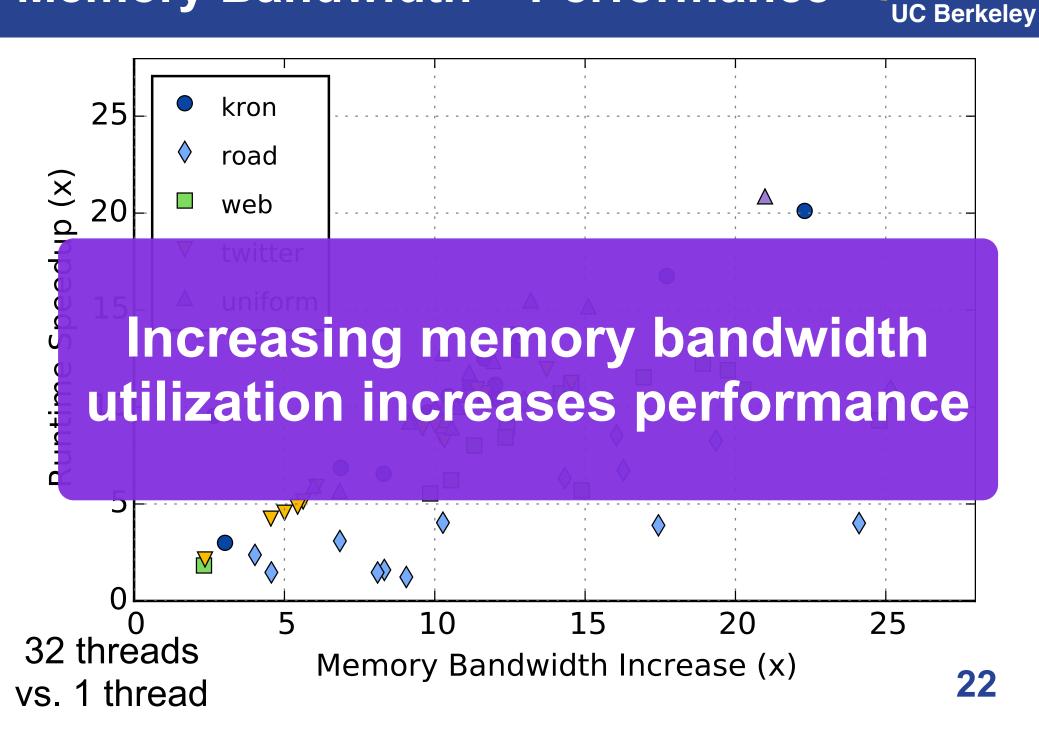
- Methodology
- Platform Memory Bandwidth Availability
- Single-core Results
- Parallel Results
- GAP Benchmark Suite
- Conclusion

Memory Bandwidth ~ Performance

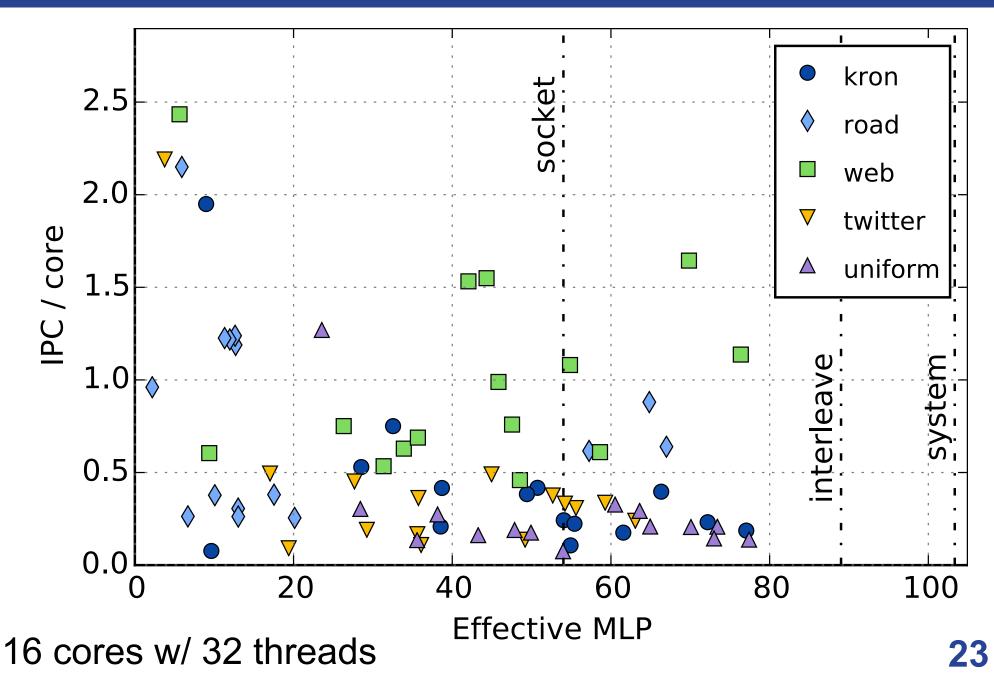


RE

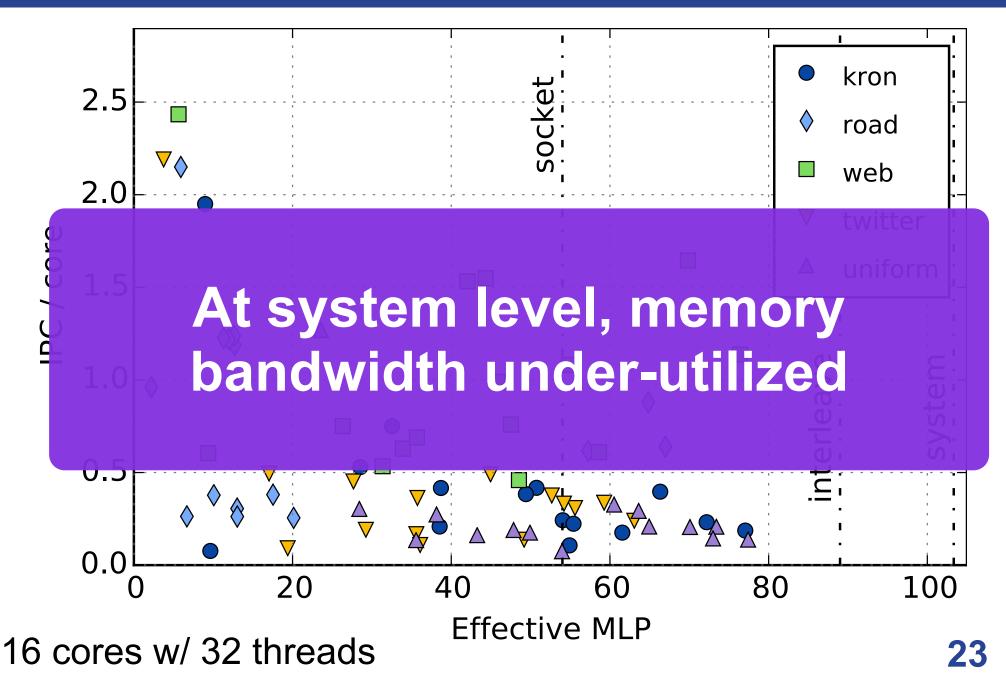
Memory Bandwidth ~ Performance



Parallel Utilization



Parallel Utilization



Multithreading Opportunity

Multithreading Opportunity

same hardware (shared)

same hardware (shared)

bandwidth same hardware (shared)

Multithreading Opportunity

fetch + fewer instructions in flight

same hardware (shared)

bandwidth same hardware (shared)

Multithreading Opportunity

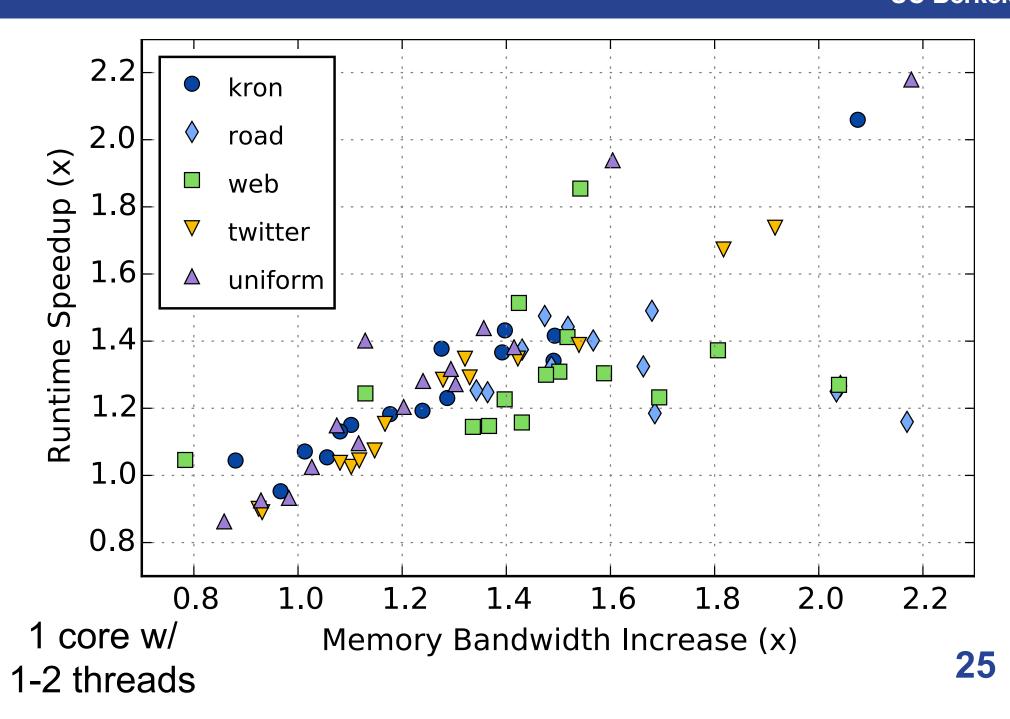
fetch + fewer instructions in flight

window same hardware (shared)

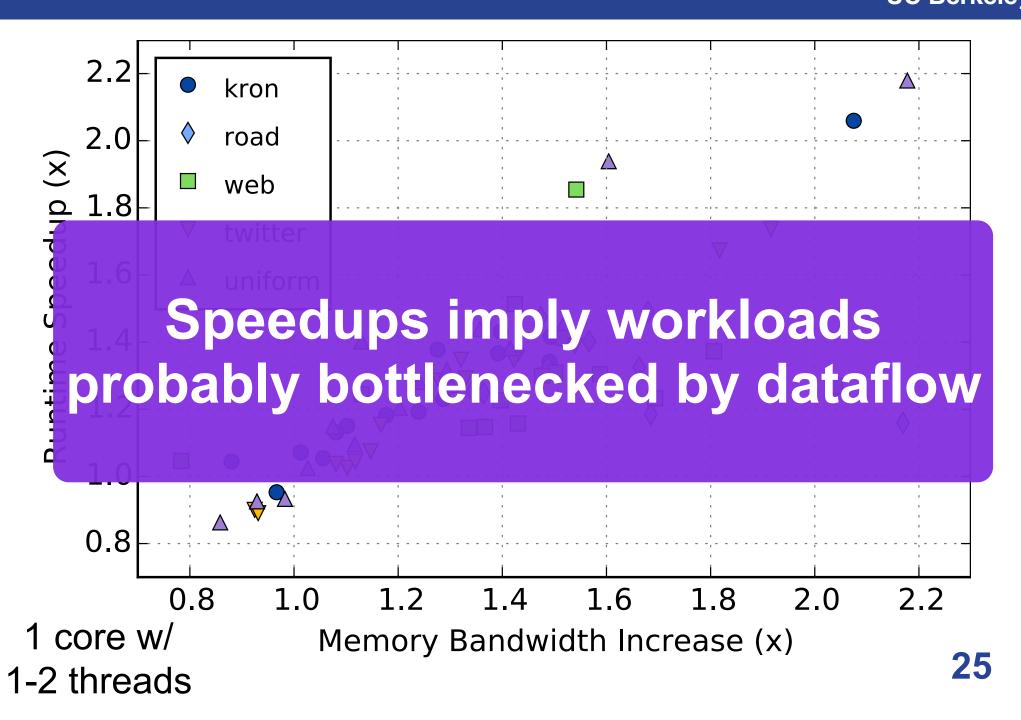
③ dataflow ++ more application MLP

A bandwidth same hardware (shared)

Multithreading Increases Bandwidth



Multithreading Increases Bandwidth



Conclusions

 Most graph workloads do not utilize a large fraction of memory bandwidth

- Most graph workloads do not utilize a large fraction of memory bandwidth
 - Many graph workloads have decent locality

- Most graph workloads do not utilize a large fraction of memory bandwidth
 - Many graph workloads have decent locality
 - Cache misses too infrequent to fit in window

- Most graph workloads do not utilize a large fraction of memory bandwidth
 - Many graph workloads have decent locality
 - Cache misses too infrequent to fit in window
 - Changing processor alone could help

- Most graph workloads do not utilize a large fraction of memory bandwidth
 - Many graph workloads have decent locality
 - Cache misses too infrequent to fit in window
 - Changing processor alone could help
- Sub-linear parallel speedups cast doubt on gains from multithreading on OoO core

Outline

- Performance Analysis for Graph Applications
- Milk / Propagation Blocking
- Frequency based Clustering
- CSR Segmenting
- Summary

Milk / Propagation Blocking

- Is changing the architecture really the only way to improve the performance of graph applications running in memory?
 - Boosting MLP
- Other approaches
 - Reducing the amount of communication

Optimizing Indirect Memory References with milk

Vladimir Kiriansky, Yunming Zhang, Saman Amarasinghe

MIT

PACT '16

September 13, 2016, Haifa, Israel

Indirect Accesses

for(int i=0; i<N; i++)</pre>

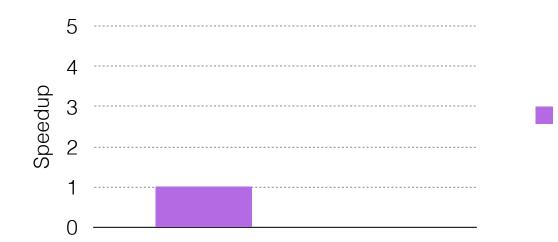
count[d[i]]++;

Indirect Accesses with OpenMP

- 01 #pragma omp parallel for
- 02 for(int i=0; i<N; i++)
- 03 **#pragma omp atomic**
- 04 count[d[i]]++;

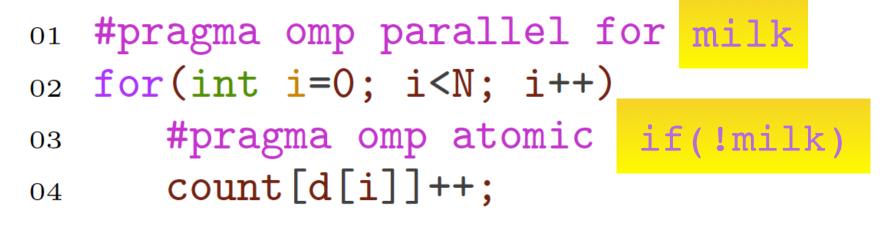
Indirect Accesses with OpenMP

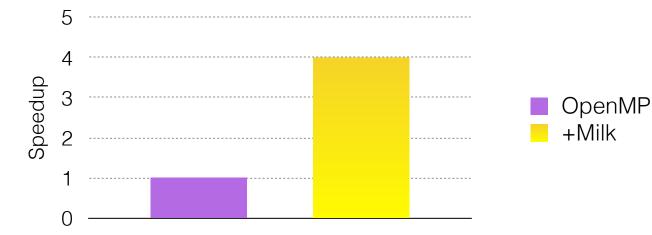
- 01 #pragma omp parallel for
- 02 for(int i=0; i<N; i++)
- 03 #pragma omp atomic 04 count[d[i]]++;



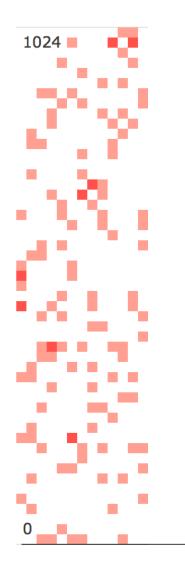
uniform [0..100M) 8 threads, 8MB L3 OpenMP

Indirect Accesses with **milk**





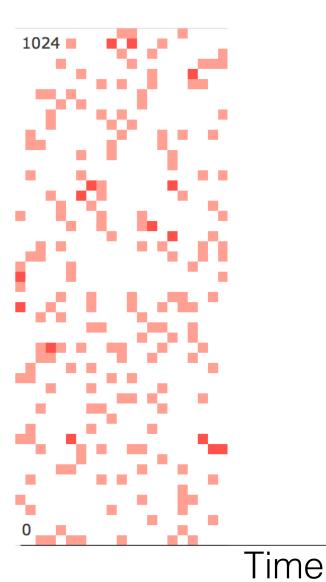
uniform [0..100M) 8 threads, 8MB L3

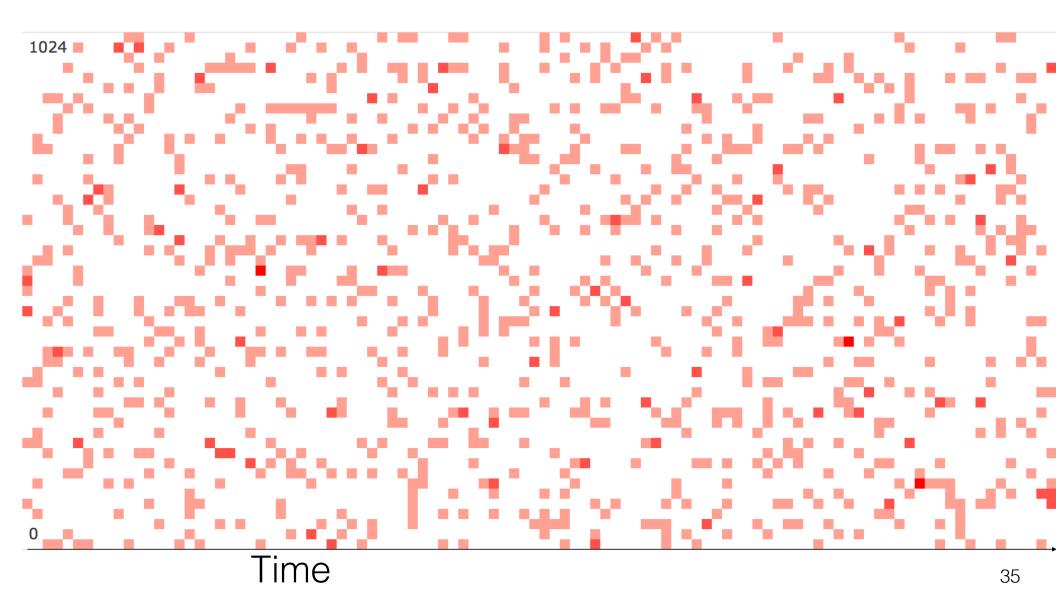


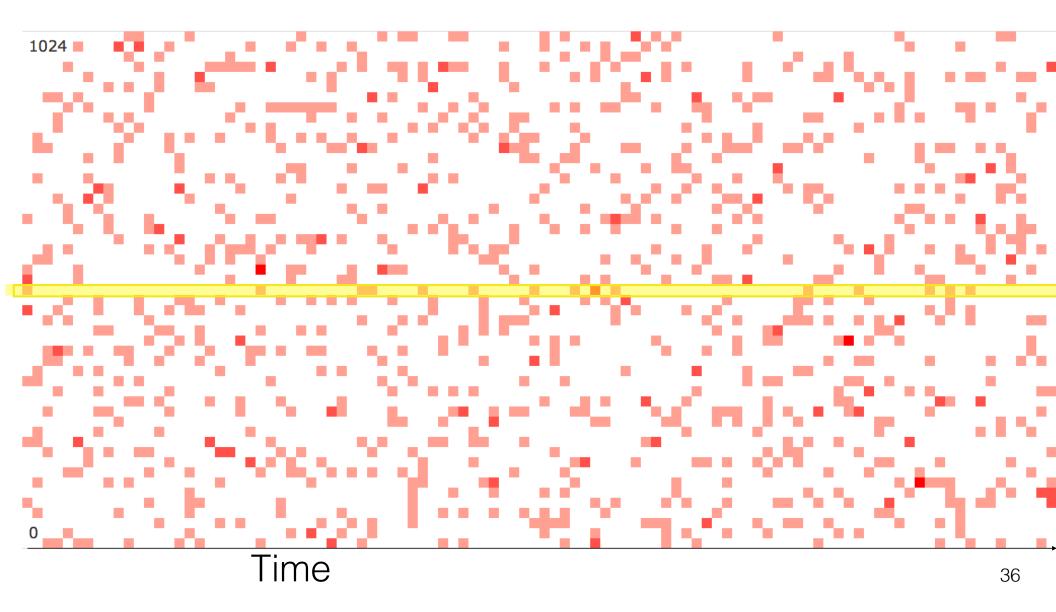
- Cache miss
- TLB miss

Time

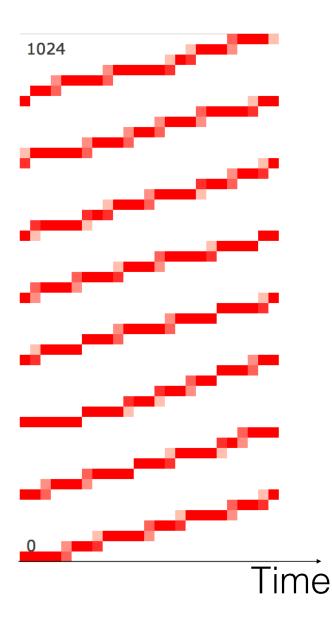
- DRAM row miss
- No prefetching



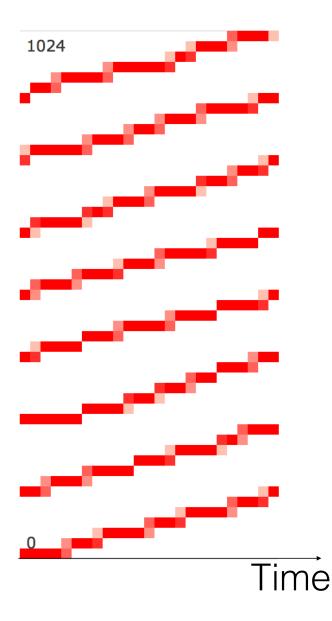




Milk Clustering

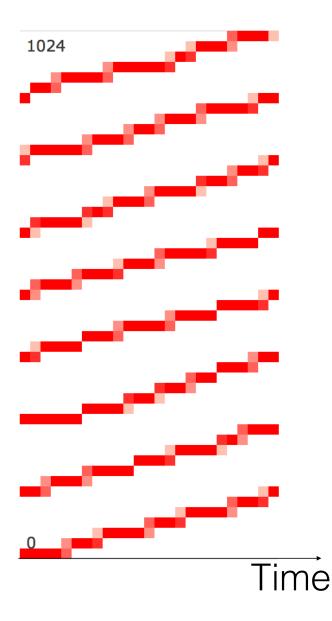


Milk Clustering



- Cache hit
- TLB hit
- DRAM row hit
- Effective prefetching

Milk Clustering



- Cache hit
- TLB hit
- DRAM row hit
- Effective prefetching
- No need for atomics!

Outline

• Milk programming model

• milk syntax

• MILK compiler and runtime

Foundations

• Milk programming model — extending BSP

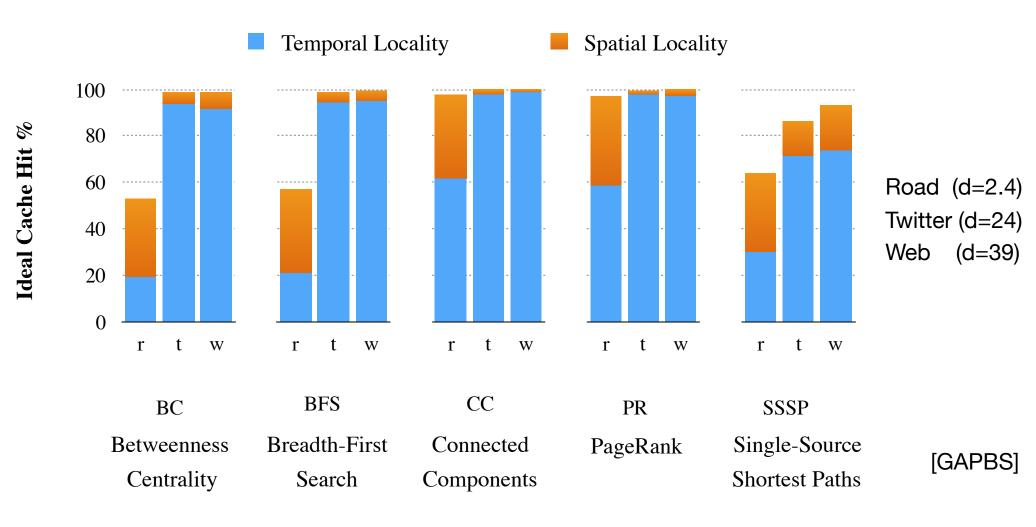
• **milk** syntax — OpenMP for C/C++

• MILK compiler and runtime — LLVM/Clang

Big (sparse) Data

- Terabyte Working Sets
 AWS 2TB VM
- In-memory Databases, Key-value stores
- Machine Learning
- Graph Analytics

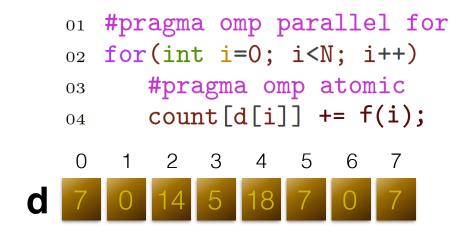
Infinite Cache Locality in Graph Applications



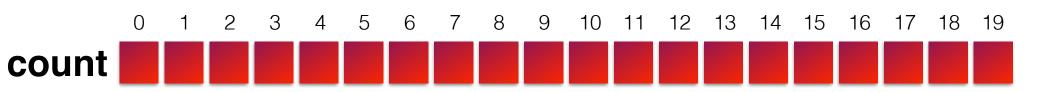
Milk Execution Model

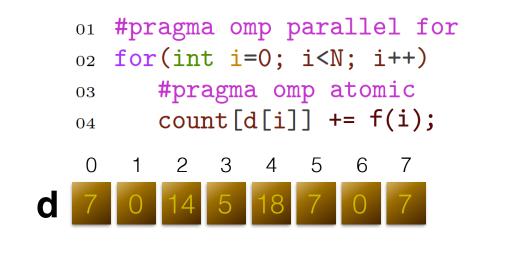
- Collection
- Distribution
- Delivery

Propagation Blocking: Binning (Collection + Distribution), Deliver (Accumulation)

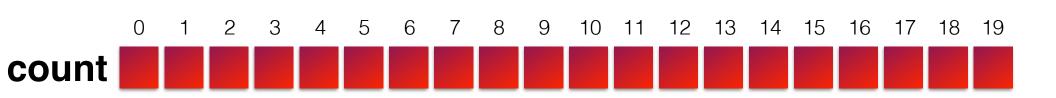


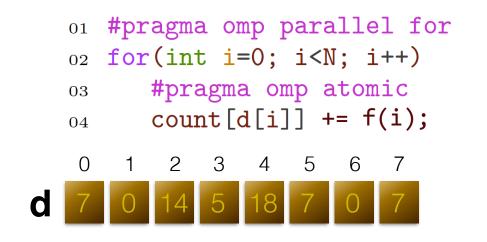
Collection



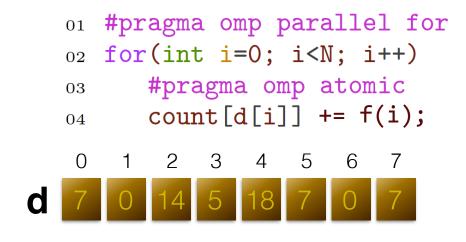


Collection

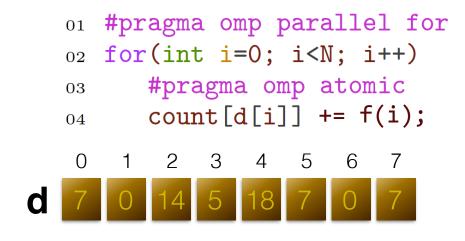




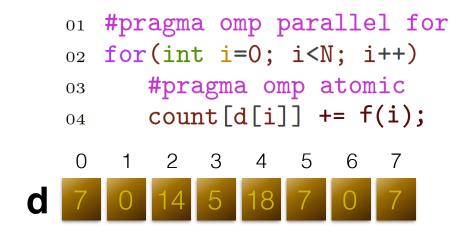
Distribution



Distribution



Delivery



Delivery



milk syntax

- milk clause in parallel loop
- **milk** directive per indirect access
 - tag(i) address to group by
 - pack (v) additional state

pack Combiners

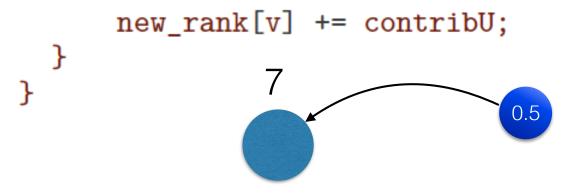
pack(v[:all]) pack(v:+|*|min|max|any)

PageRank

vector<float> contrib, new_rank;

void PageRank_Push() {

for (Node u=0; u < g.num_nodes(); u++) {
 float contribU = contrib[u];
 for (Node v : g.out_neigh(u))</pre>



PageRank with OpenMP

```
void PageRank_Push() {
#pragma omp parallel for
for (Node u=0; u < g.num_nodes(); u++) {
float contribU = contrib[u];
for (Node v : g.out_neigh(u))</pre>
```

```
#pragma omp atomic
            new_rank[v] += contribU;
    }
}
```

PageRank with milk

```
void PageRank_Push() {
#pragma omp parallel for milk
for (Node u=0; u < g.num_nodes(); u++) {
  float contribU = contrib[u];
  for (Node v : g.out_neigh(u))</pre>
```

```
#pragma omp atomic if(!milk)
            new_rank[v] += contribU;
    }
}
```

PageRank with milk

```
void PageRank_Push() {
#pragma omp parallel for milk
  for (Node u=0; u < g.num_nodes(); u++) {
    float contribU = contrib[u];
    for (Node v : g.out_neigh(u))
#pragma milk pack(contribU : +) tag(v)
#pragma omp atomic if(!milk)
        new_rank[v] += contribU;
    }
}</pre>
```

MILK compiler and runtime

- Collection loop transformation
- Distribution runtime library
- Delivery continuation

PageRank with milk

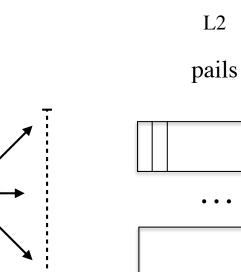
```
void PageRank_Push() {
#pragma omp parallel for milk
for (Node u=0; u < g.num_nodes(); u++) {
float contribU = contrib[u];
for (Node v : g.out_neigh(u))
#pragma milk pack(contribU : +) tag(v)
#pragma omp atomic if(!milk)
new_rank[v] += contribU;
}
</pre>
```

PageRank: Collection

vector<float> contrib, new_rank;

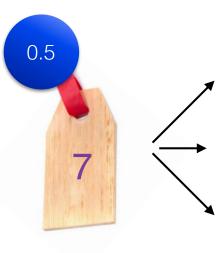
void PageRank_Push() {
#pragma omp parallel for milk
 for (Node u=0; u < g.num_nodes(); u++) {
 float contribU = contrib[u];
 for (Node v : g.out_neigh(u))
#pragma milk pack(contribU : +) tag(v)</pre>

Tag Distribution



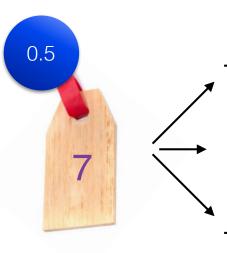
9-bit radix partition

Tag Distribution

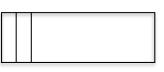


pails

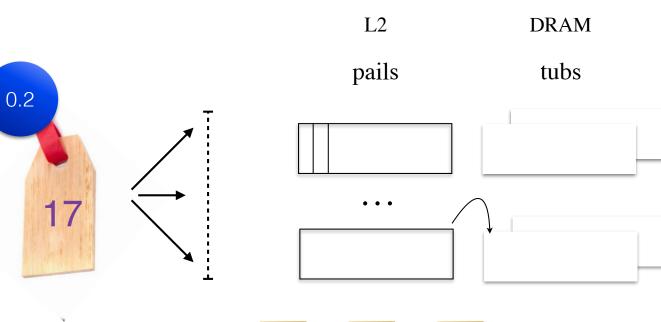
Tag Distribution



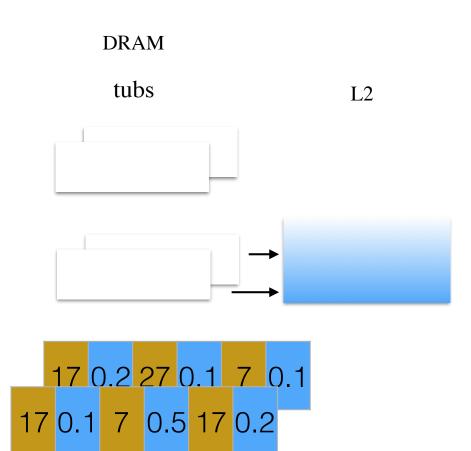
pails



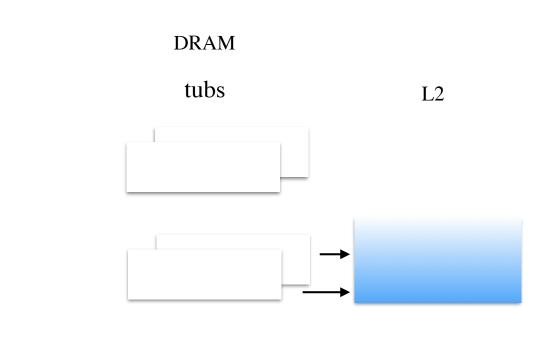
Distribution: Pail Overflow



Milk Delivery



Milk Delivery

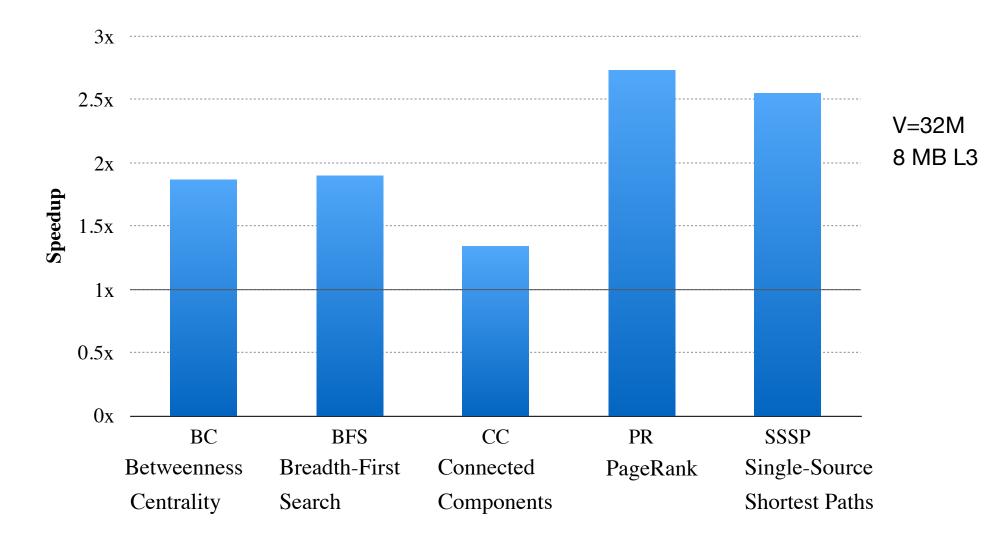


#pragma milk pack(contribU : +) tag(v)
#pragma omp atomic if(!milk)
 new_rank[v] += contribU;

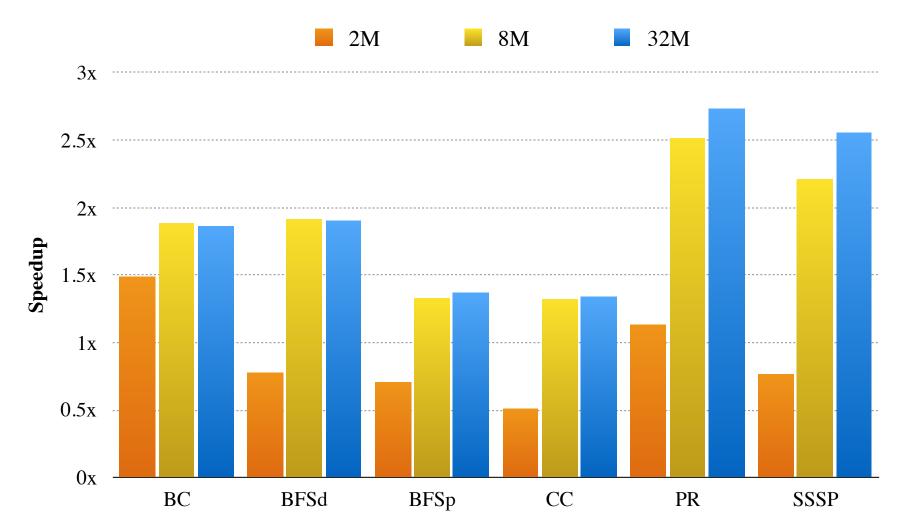
Related Work

- Database JOIN optimizations
 - [Shatdal94] cache partitioning
 - [Manegold02, Kim09, Albutiu12, Balkesen15] TLB, SIMD, NUMA, non-temporal writes, software write buffers

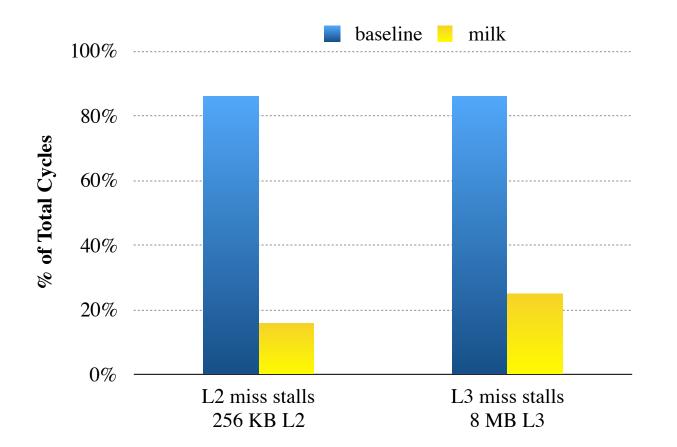
Overall Speedup with milk



Overall Speedup with milk

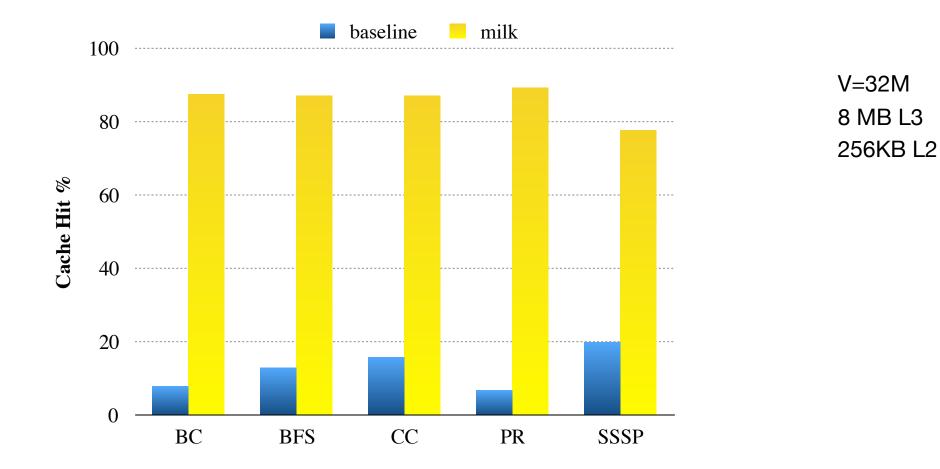


Stall Cycle Reduction

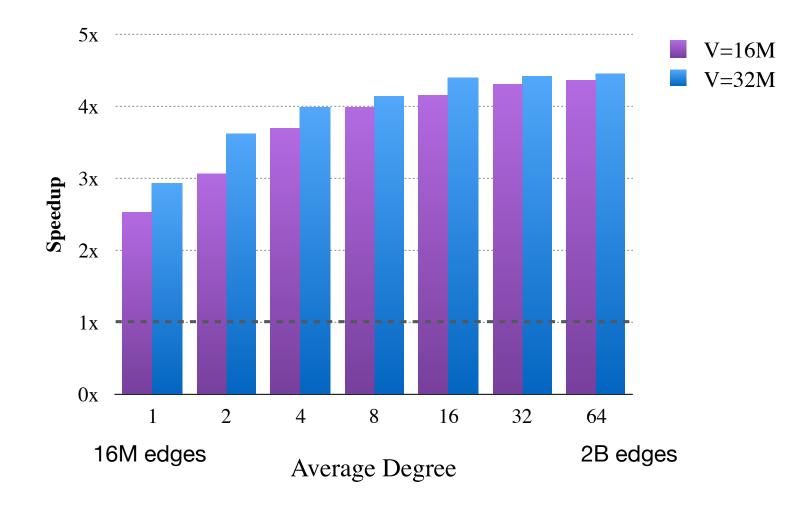


PageRank, V=32M, d=16 (uniform)

Indirect Access Cache Hit%



→ Higher Degree→ Higher Locality



Related Works

 How is Milk different from BigSparse and Propagation Blocking?

Related Work

- Big Sparse
 - Big Sparse can work on both graphs with good and bad locality (Milk and Propagation Blocking both work on low locality graphs)
 - Can afford to do global sort instead of bucketing
- Propagation Blocking
 - Milk doesn't have two separate phases for Binning and Accumulate (Collection, Distribution, Delivery are all fused together using coroutines)
 - PB reuses the tags to save memory bandwidth assuming the application is iterative
 - Milk has a more general programming model for various applications

Outline

- Performance Analysis for Graph Applications
- Milk / Propagation Blocking
- Frequency based Clustering
- CSR Segmenting
- Summary

Making Caches Work for Graph Analytics

Yunming Zhang, Vladimir Kiriansky, Charith Mendis, Matei Zaharia*, Saman Amarasinghe

MIT CSAIL and *Stanford InfoLab

Outline

- PageRank
- Frequency based Vertex Reordering
- Cache-aware Segmenting
- Evaluation

while ...

for node : graph.vertices

for ngh : graph.getInNeighbors(node)

newRanks[node] += ranks[ngh]/outDegree[ngh];

for node : graph.vertices

newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks

while ...

for node : graph.vertices
for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices
 newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks

while ...

for node : graph.vertices
for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices
 newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks

while ...

for node : graph.vertices

for ngh : graph.getInNeighbors(node)

newRanks[node] += ranks[ngh]/outDegree[ngh];

for node : graph.vertices

newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks

while ...

for node : graph.vertices

for ngh : graph.getInNeighbors(node)

newRanks[node] += ranks[ngh]/outDegree[ngh];

for node : graph.vertices

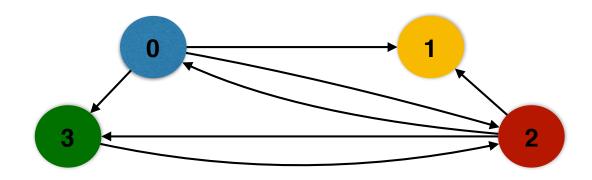
newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks

while ...

for node : graph.vertices
for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices
 newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks

while ...

for node : graph.vertices
for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices
 newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks



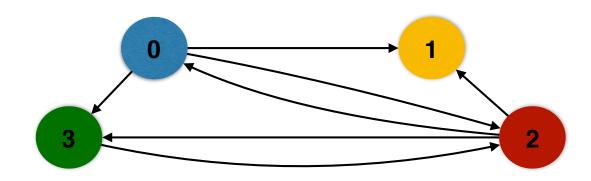
while ...

for node : graph.vertices

Focus on the random memory accesses on ranks array

for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices

newRanks[node] = baseScore + damping*newRanks[node]; swap ranks and newRanks



while ...

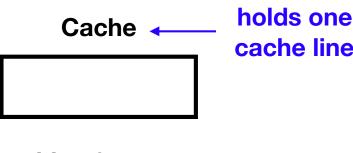
for node : graph.vertices

Focus on the random memory accesses on ranks array

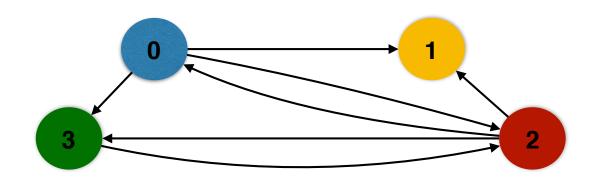
for ngh : graph.getInNeighbors(node) newRanks[node] += ranks[ngh]/outDegree[ngh];

for node : graph.vertices

newRanks[node] = baseScore + damping*newRanks[node]; swap ranks and newRanks



cache line



while ...

for node : graph.vertices

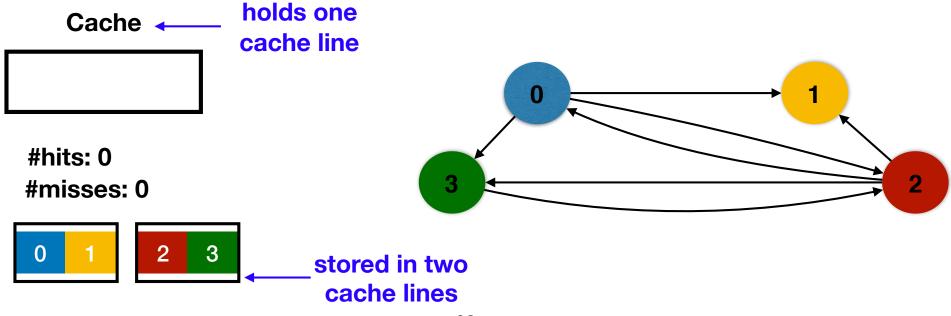
Focus on the random memory accesses on ranks array

for ngh : graph.getInNeighbors(node) newRanks[node] += ranks[ngh]/outDegree[ngh];

for node : graph.vertices

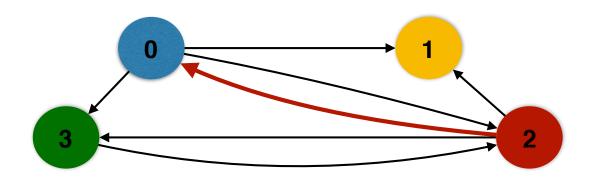
newRanks[node] = baseScore + damping*newRanks[node];

swap ranks and newRanks



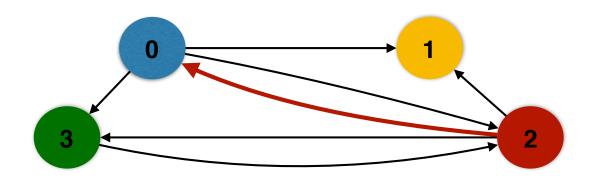
while ...

for node : graph.vertices
 for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices
 newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks



while ...

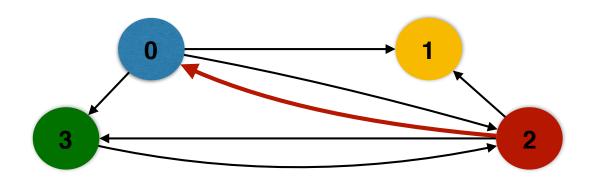
for node : graph.vertices
 for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices
 newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks



while ...

for node : graph.vertices
for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices
 newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks

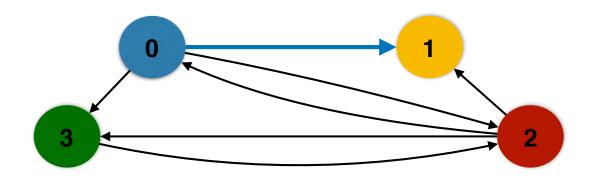
#hits: 0 #misses: 1



while ...

for node : graph.vertices
for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices
 newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks

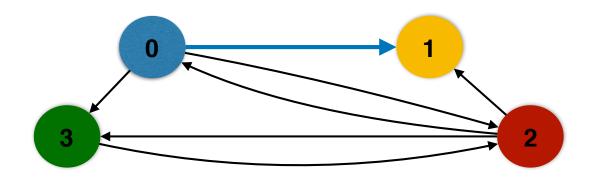
#hits: 0 #misses: 1



while ...

for node : graph.vertices
for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices
 newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks

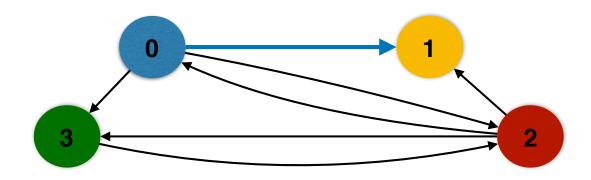
#hits: 0 #misses: 1



while ...

for node : graph.vertices
for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices
 newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks

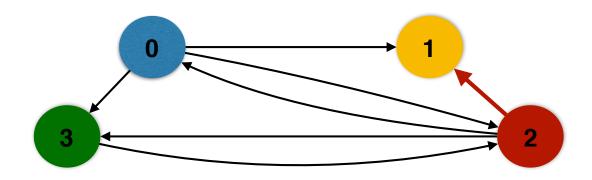
Cache



while ...

for node : graph.vertices
for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices
 newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks

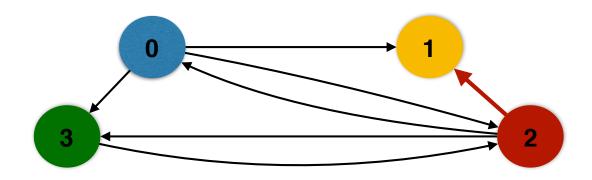
#hits: 0
#misses: 2



while ...

for node : graph.vertices
for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices
 newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks

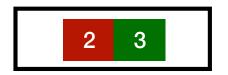
Cache

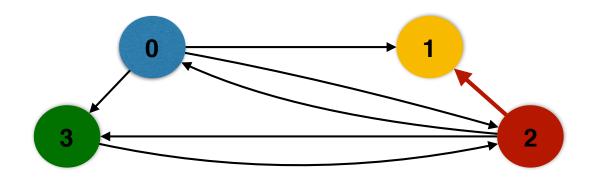


while ...

for node : graph.vertices
for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices
 newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks

Cache

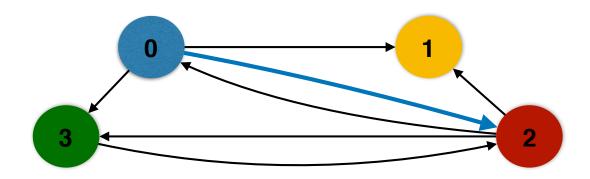




while ...

for node : graph.vertices
for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices
 newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks

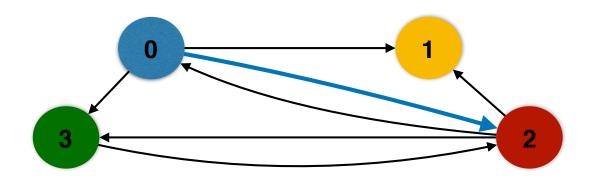
#hits: 0
#misses: 3



while ...

for node : graph.vertices
for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices
 newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks

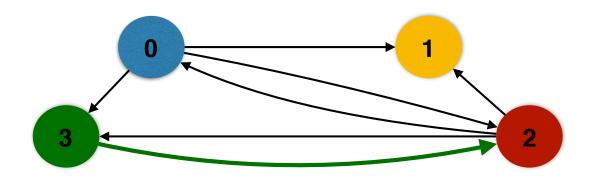
Cache



while ...

for node : graph.vertices
for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices
 newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks

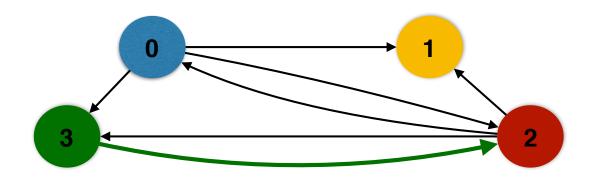
Cache



while ...

for node : graph.vertices
for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices
 newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks

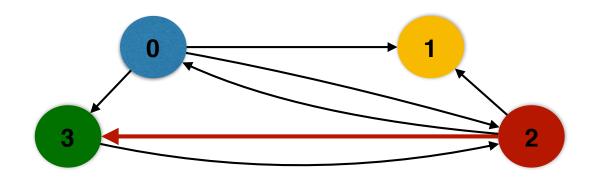
Cache



while ...

for node : graph.vertices
for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices
 newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks

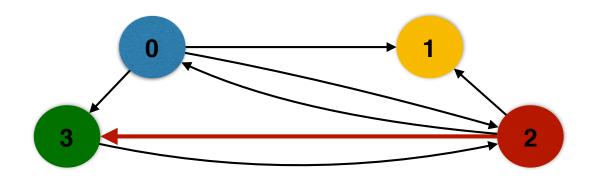
Cache



while ...

for node : graph.vertices
for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices
 newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks

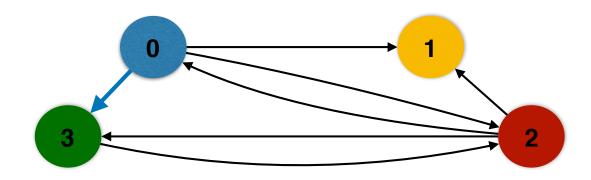
Cache



while ...

for node : graph.vertices
for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices
 newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks

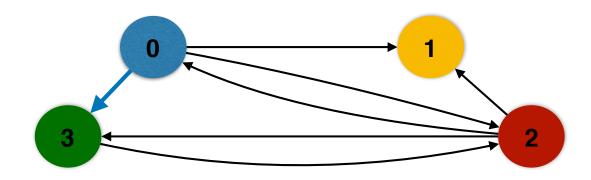
Cache



while ...

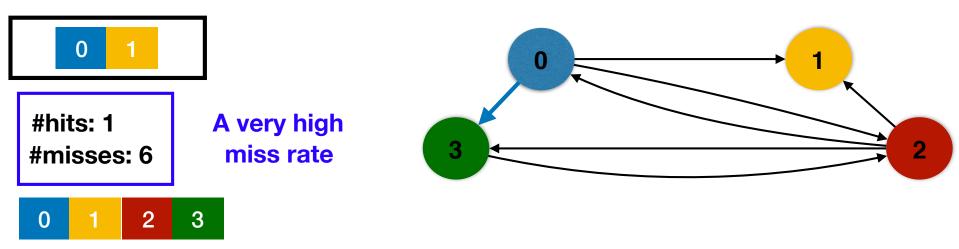
for node : graph.vertices
for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices
 newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks

Cache



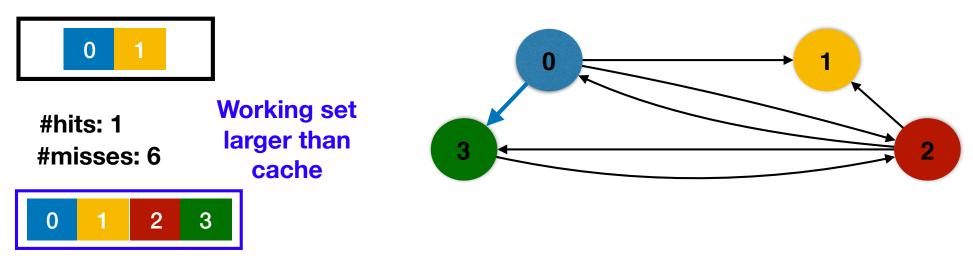
while ...

for node : graph.vertices
for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices
 newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks



while ...

for node : graph.vertices
for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices
 newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks



while ...

for node : graph.vertices

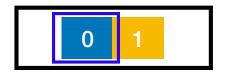
for ngh : graph.getInNeighbors(node)

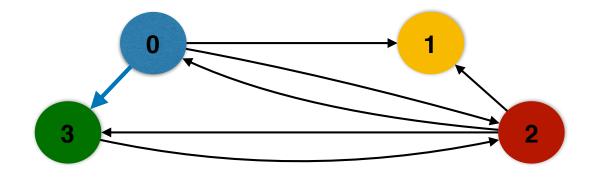
newRanks[node] += ranks[ngh]/outDegree[ngh];

for node : graph.vertices

Often only use part of the cache line newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks

Cache





- Working set much larger than cache size
- Access pattern is random
 - Often uses part of the cache line
 - Can not benefit from hardware prefetching
 - TLB miss, DRAM row miss (hundreds of cycles)

Real-world graphs often have working set 10-200x larger than cache size

- Working set much larger than cache size
- Access pattern is random
 - Often uses part of the cache line
 - Can not benefit from hardware prefetching
 - TLB miss, DRAM row miss (hundreds of cycles)

- Working set much larger than cache size
- Access pattern is random
 - Often uses part of the cache line
 - Can not benefit from hardware prefetching
 - TLB miss, DRAM row miss (hundreds of cycles)

- Working set much larger than cache size
- Access pattern is random Often only use 1/16 1/8 of a cache line in modern hardware
 - Often uses part of the cache line
 - Can not benefit from hardware prefetching
 - TLB miss, DRAM row miss (hundreds of cycles)

while ...

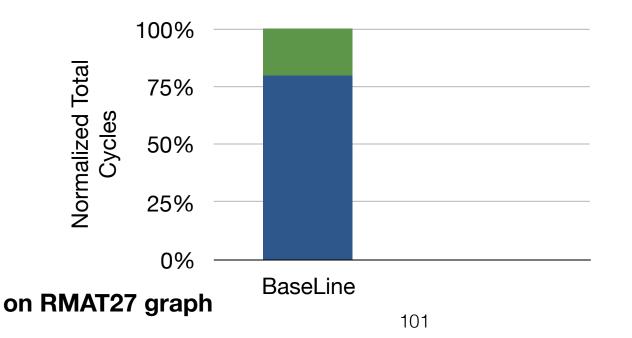
for node : graph.vertices

for ngh : graph.getInNeighbors(node)

newRanks[node] += ranks[ngh]/outDegree[ngh];

for node : graph.vertices

newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks



while ...

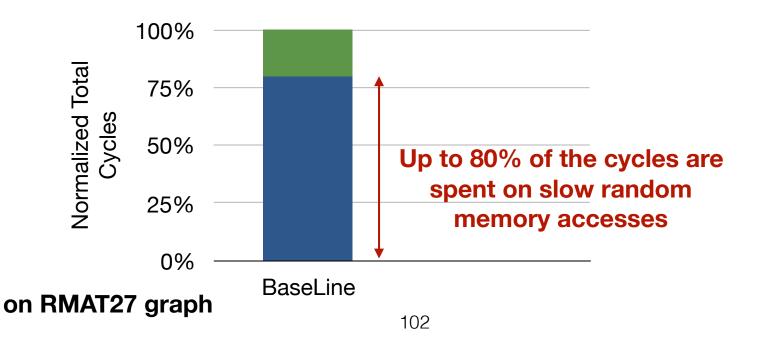
for node : graph.vertices

for ngh : graph.getInNeighbors(node)

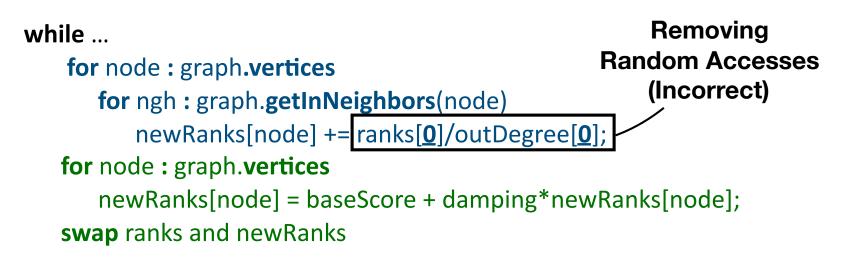
newRanks[node] += ranks[ngh]/outDegree[ngh];

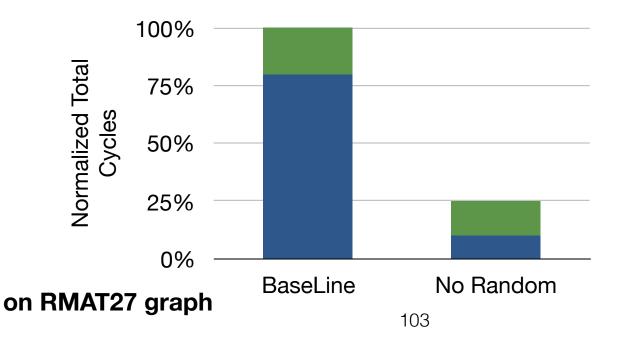
for node : graph.vertices

newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks

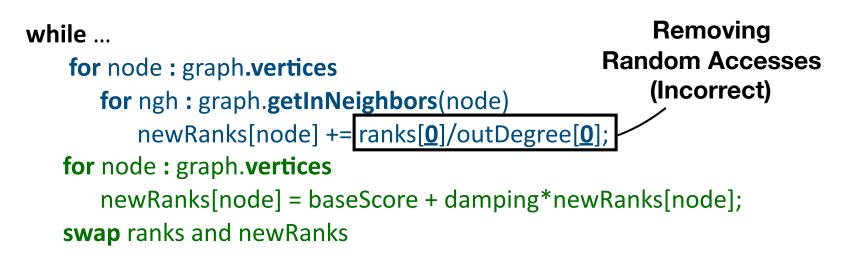


PageRank





PageRank



while ...

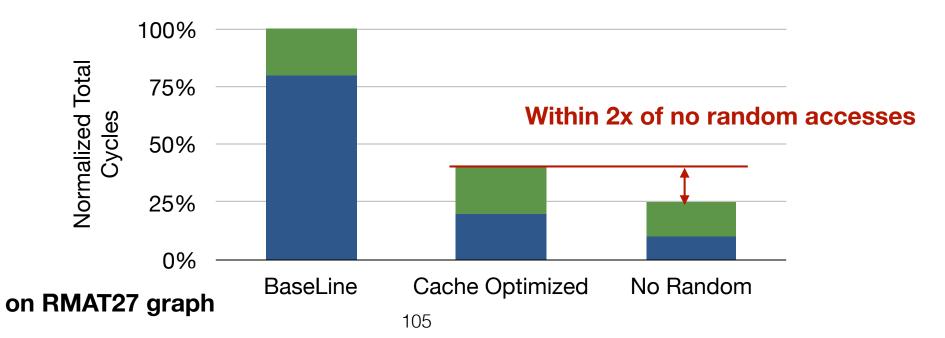
for node : graph.vertices

for ngh : graph.getInNeighbors(node)

newRanks[node] += ranks[0]/outDegree[0];

for node : graph.vertices

newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks

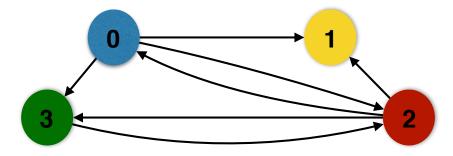


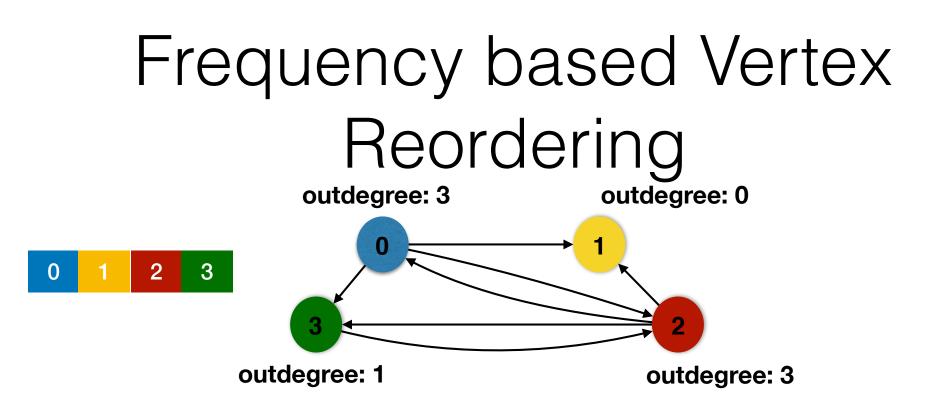
Outline

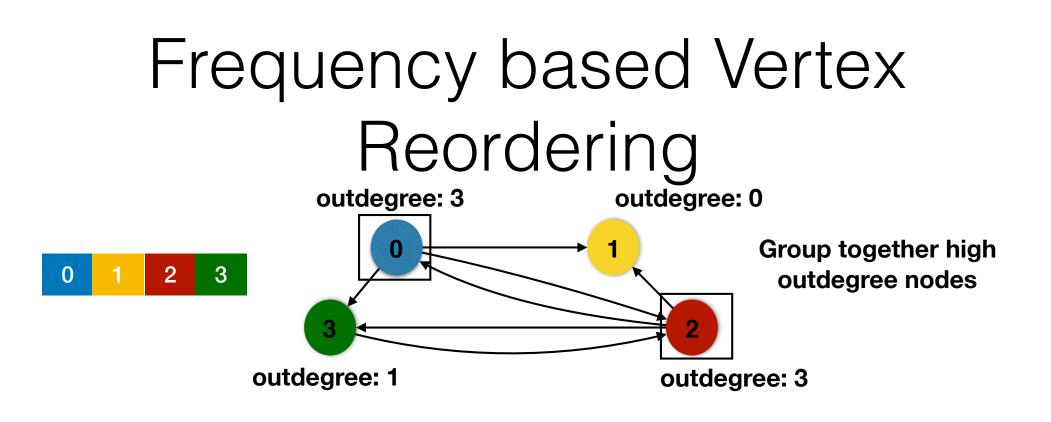
- PageRank
- Frequency based Vertex Reordering
- Cache-aware Segmenting
- Evaluation

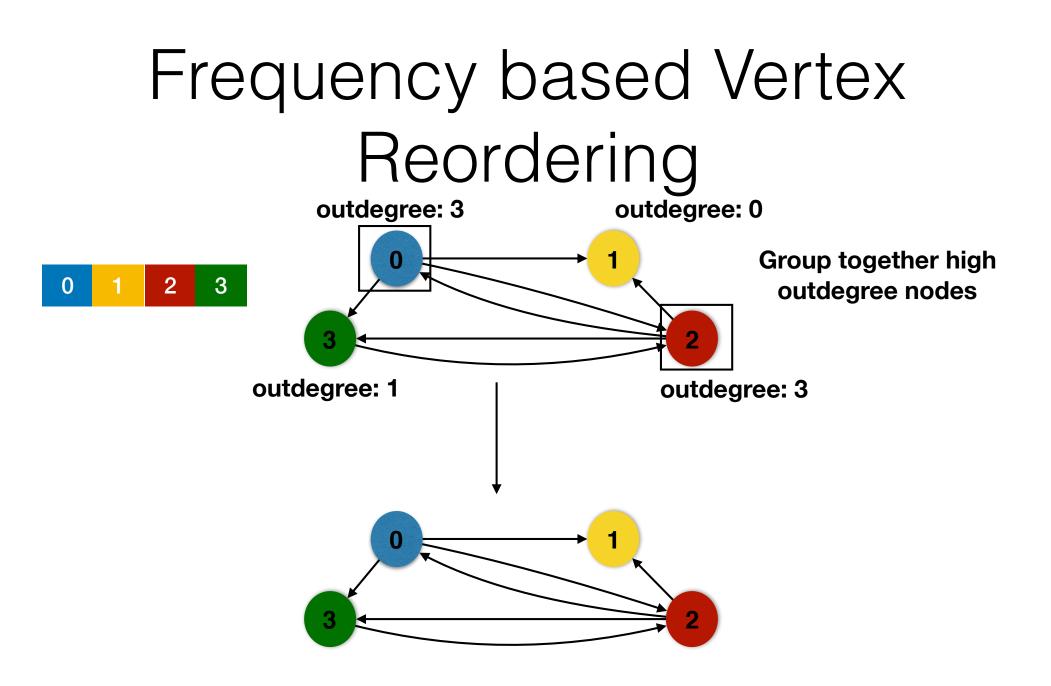
- Key Observations
 - Cache lines are underutilized
 - Certain vertices are much more likely to be accessed than other vertices

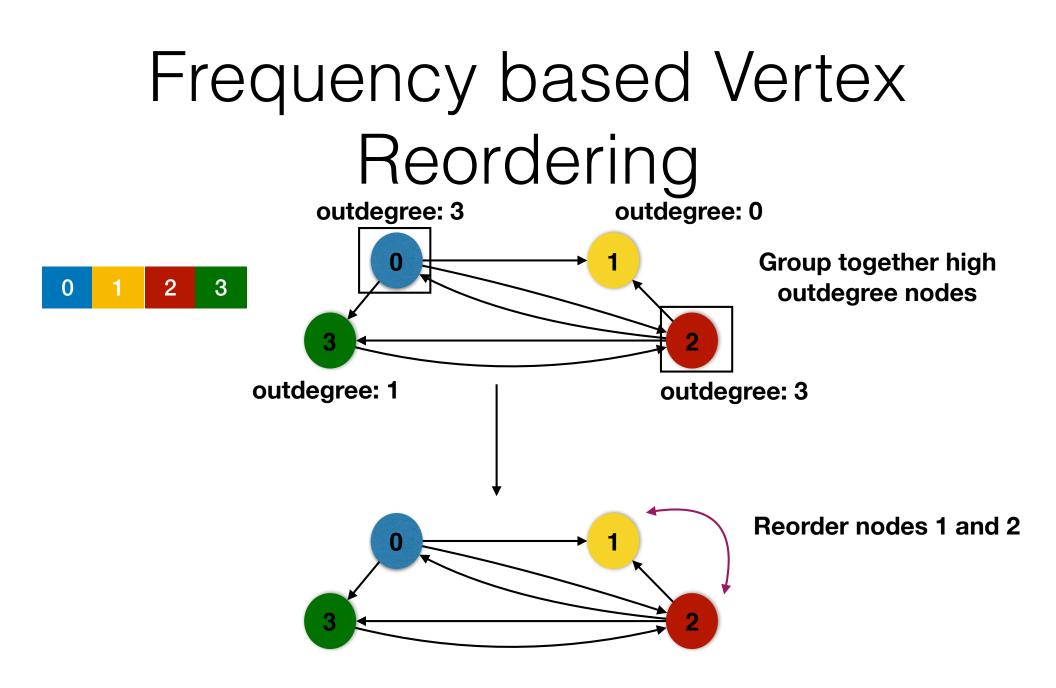
- Key Observations
 - Cache lines are underutilized
 - Certain vertices are much more likely to be accessed than other vertices
- Design
 - Group together the frequently accessed nodes
 - Keep the ordering of average degree nodes

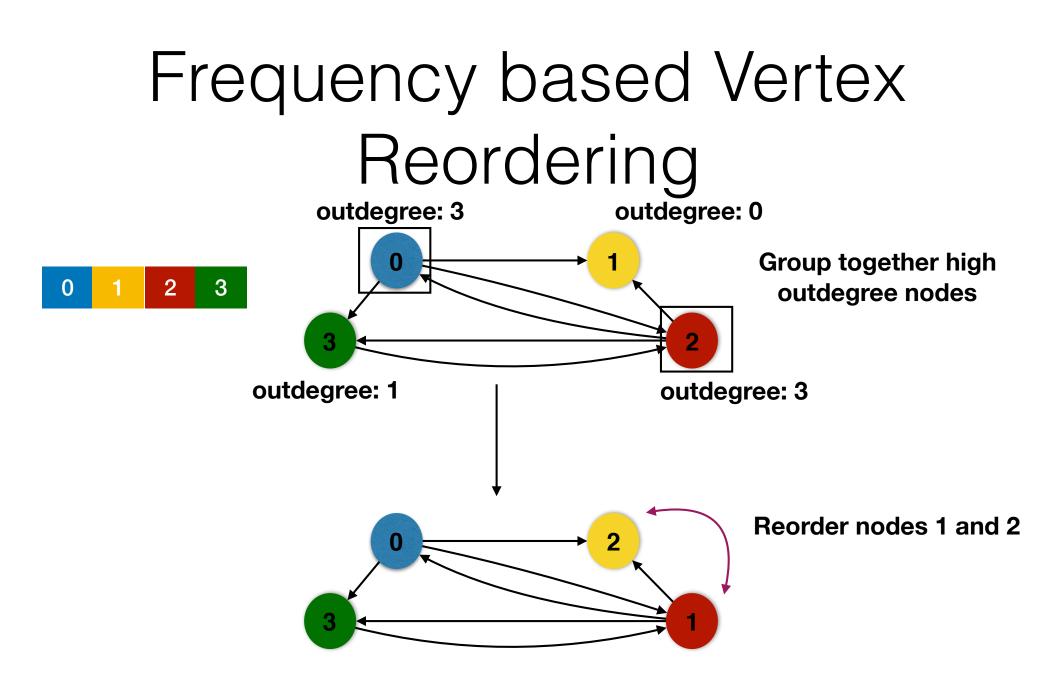


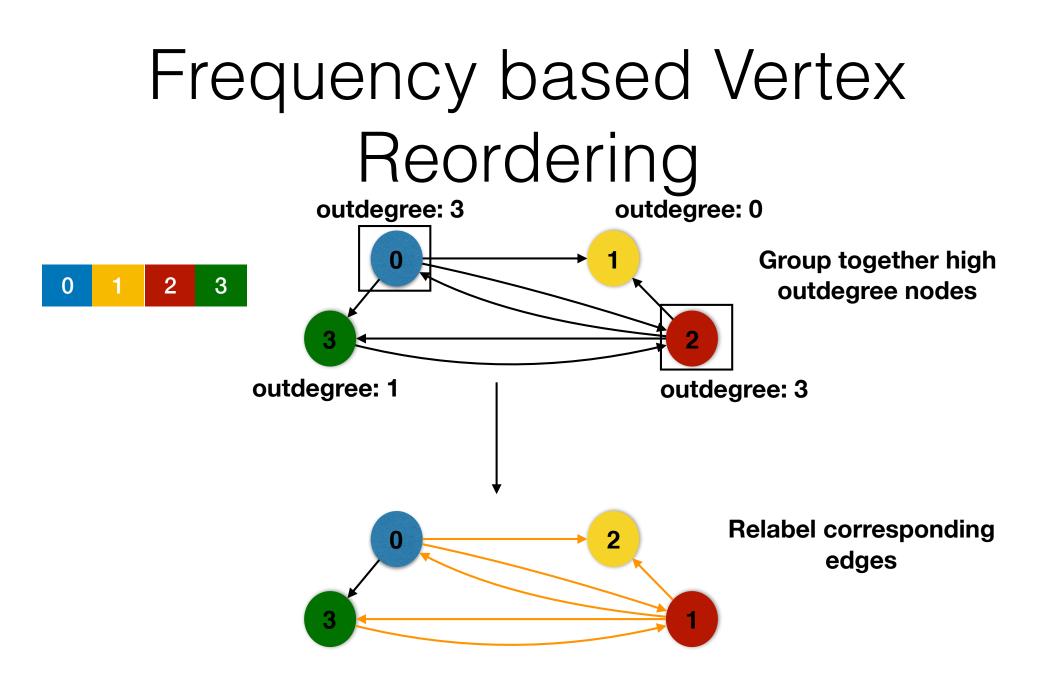


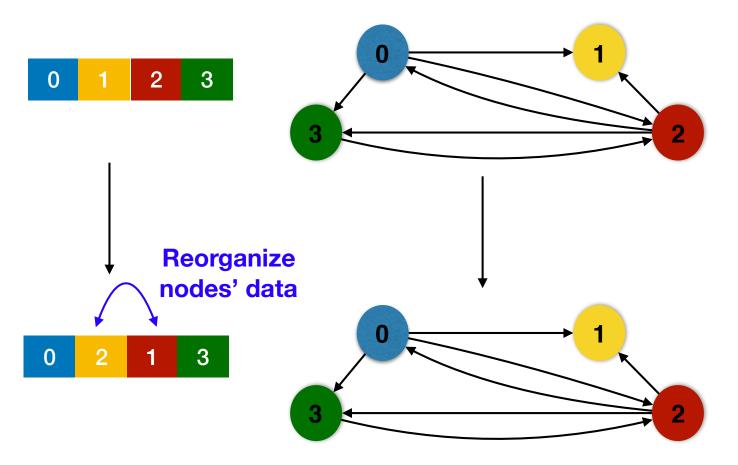


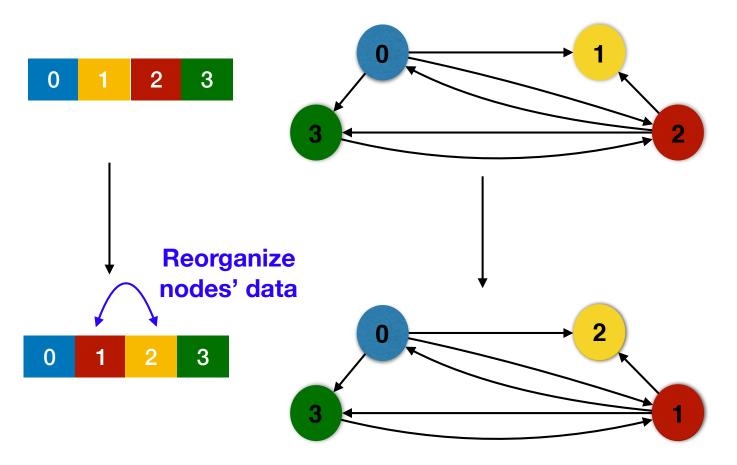


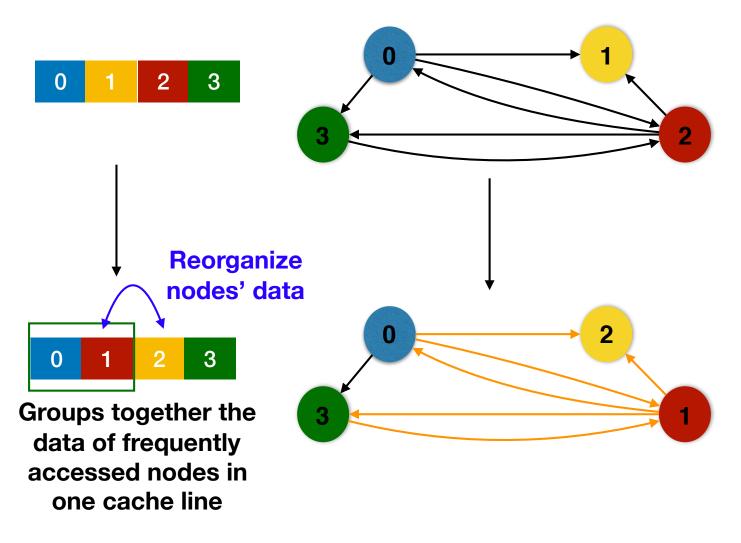






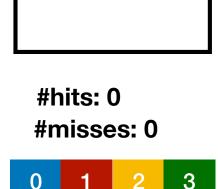


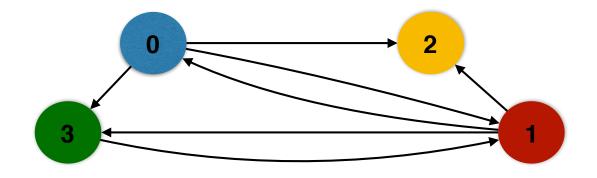




while ...

for node : graph.vertices
for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices
 newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks





while ...

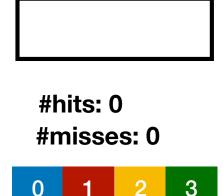
for node : graph.vertices

Focus on the random memory accesses on ranks array

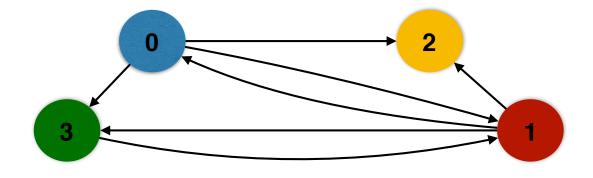
for ngh : graph.getInNeighbors(node) newRanks[node] += ranks[ngh]/outDegree[ngh]; for node : graph.vertices

newRanks[node] = baseScore + damping*newRanks[node]; swap ranks and newRanks

Cache

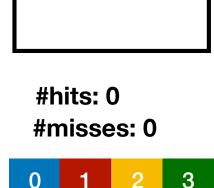


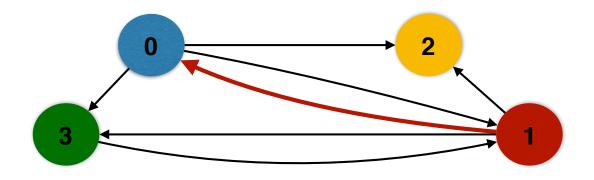
0



while ...

for node : graph.vertices
 for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices
 newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks





while ...

for node : graph.vertices
 for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices
 newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks

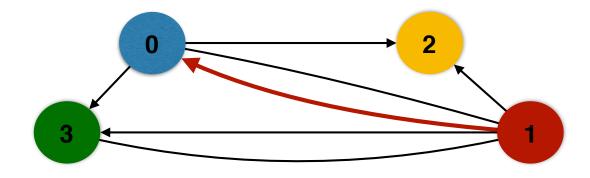
Cache



0

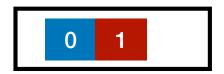
2

3

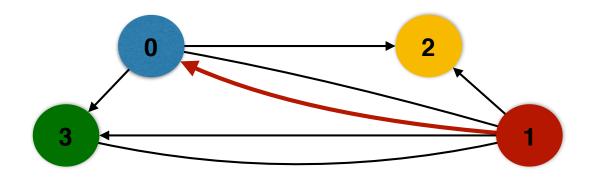


while ...

for node : graph.vertices
for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices
 newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks



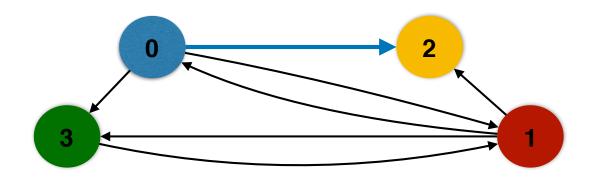
#hits: 0
#misses: 1



while ...

for node : graph.vertices
for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices
 newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks

#hits: 0 #misses: 1

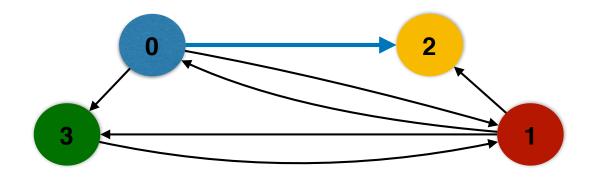


while ...

for node : graph.vertices
for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices
 newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks

Cache

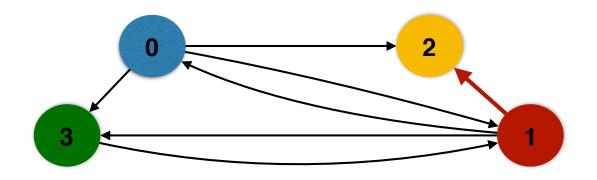
#hits: 1 #misses: 1



while ...

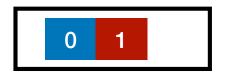
for node : graph.vertices
for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices
 newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks

#hits: 1 #misses: 1

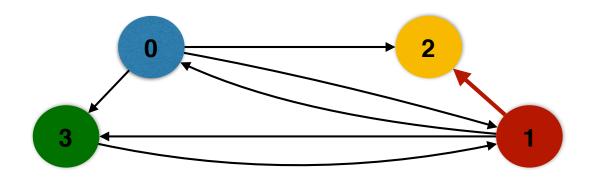


while ...

for node : graph.vertices
for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices
 newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks

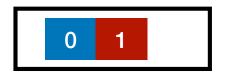


#hits: 2
#misses: 1

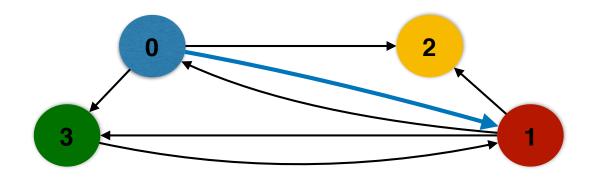


while ...

for node : graph.vertices
for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices
 newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks

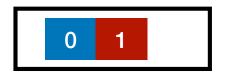


#hits: 2
#misses: 1

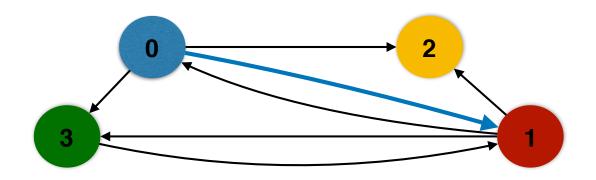


while ...

for node : graph.vertices
for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices
 newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks



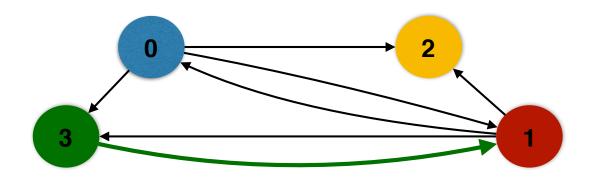
#hits: 3 #misses: 1



while ...

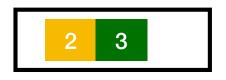
for node : graph.vertices
for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices
 newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks

#hits: 3 #misses: 1

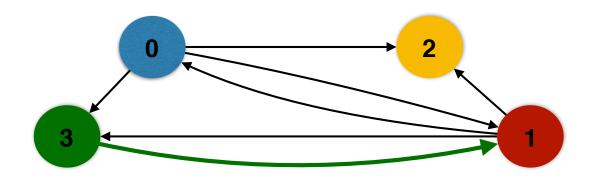


while ...

for node : graph.vertices
for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices
 newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks

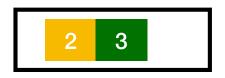


#hits: 3
#misses: 2

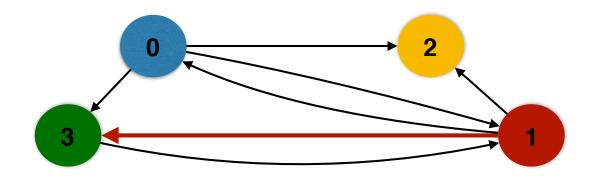


while ...

for node : graph.vertices
for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices
 newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks

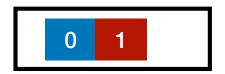


#hits: 3
#misses: 2

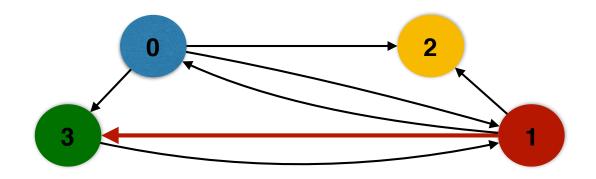


while ...

for node : graph.vertices
for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices
 newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks

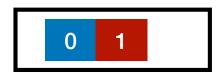


#hits: 3
#misses: 3

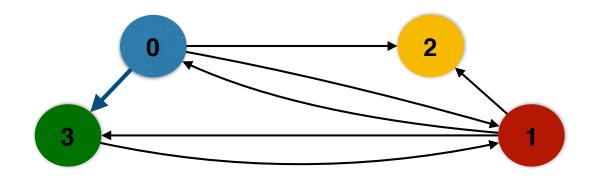


while ...

for node : graph.vertices
for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices
 newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks



#hits: 3
#misses: 3

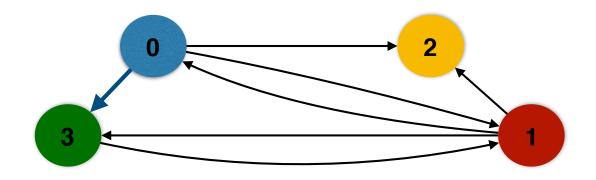


while ...

for node : graph.vertices
for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices
 newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks

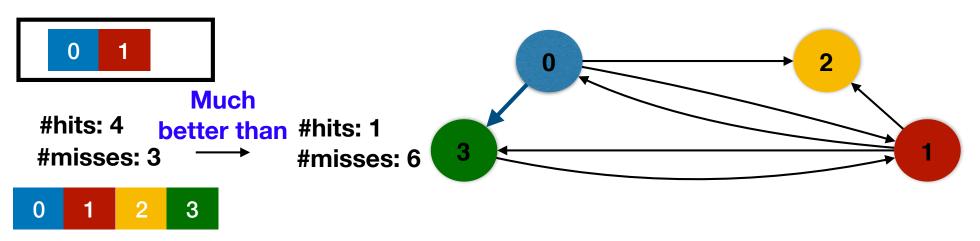
Cache

#hits: 4
#misses: 3



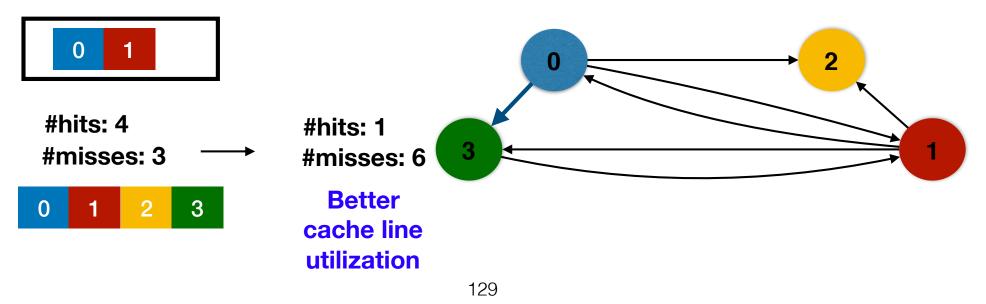
while ...

for node : graph.vertices
for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices
 newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks



while ...

for node : graph.vertices
for ngh : graph.getInNeighbors(node)
 newRanks[node] += ranks[ngh]/outDegree[ngh];
for node : graph.vertices
 newRanks[node] = baseScore + damping*newRanks[node];
swap ranks and newRanks

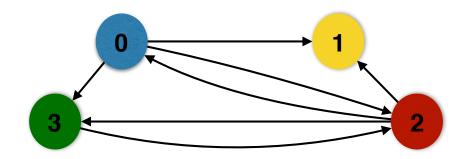


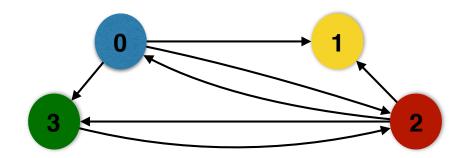
Outline

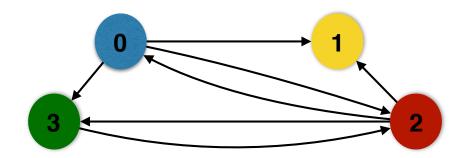
- PageRank
- Frequency based Vertex Reordering
- Cache-aware Segmenting
- Evaluation

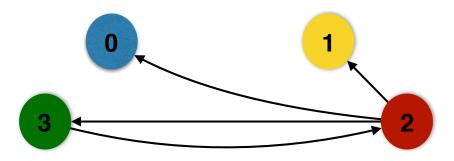
Cache-aware Segmenting

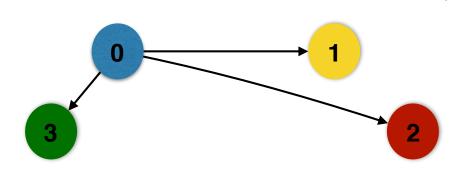
- Design
 - Partition the graph into subgraphs where the random access are limited to LLC
 - Process each partition sequentially and accumulate rank contributions for each partition
 - Merge the rank contributions from all subgraphs

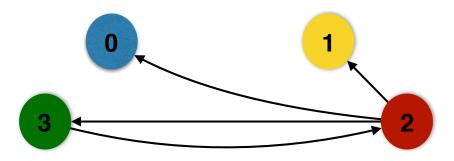


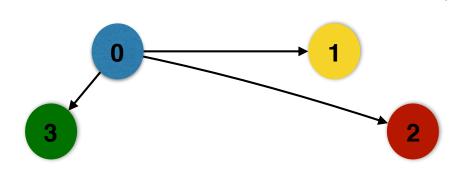


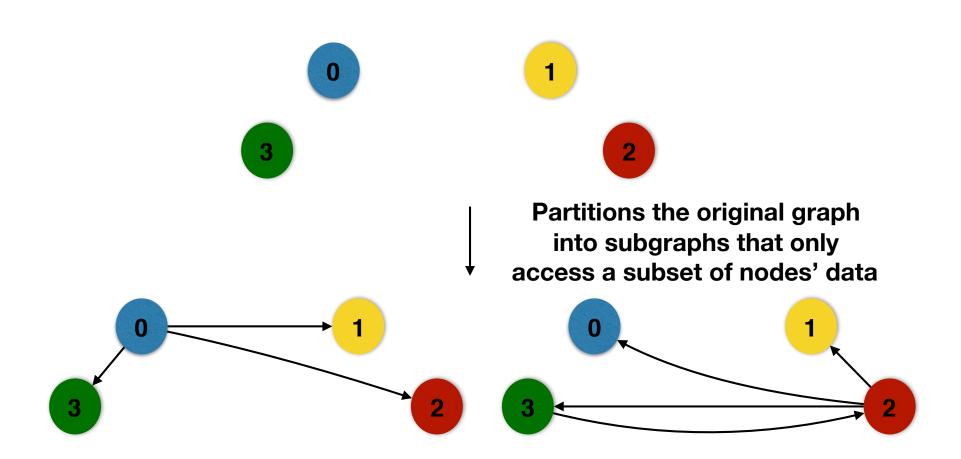


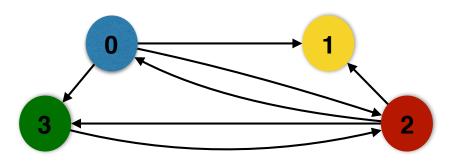


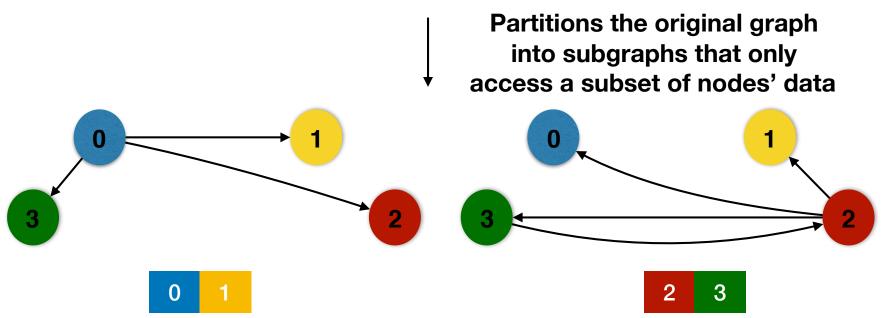


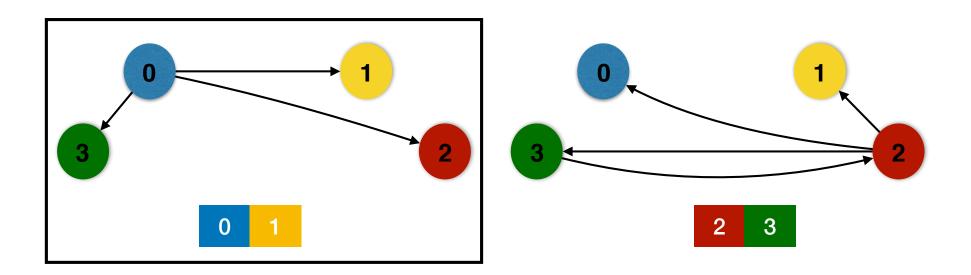


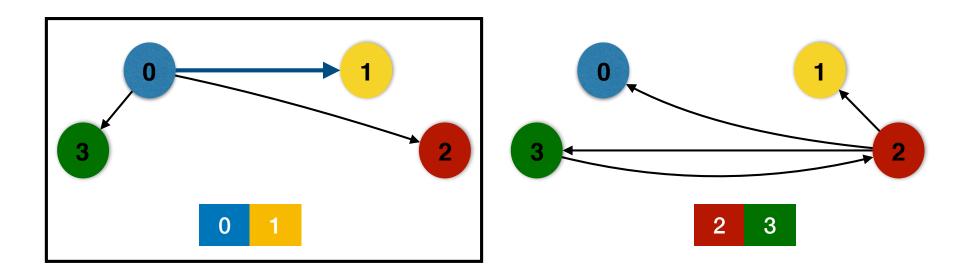


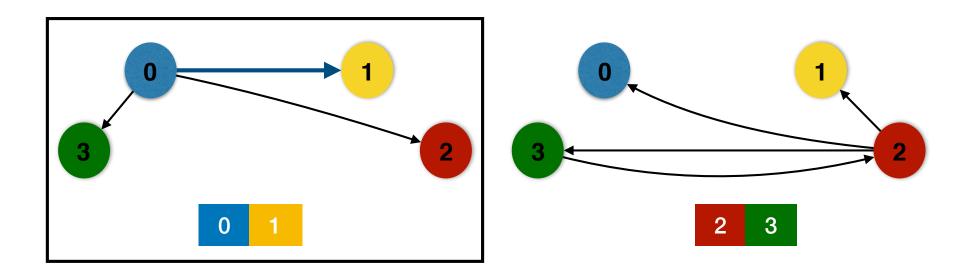


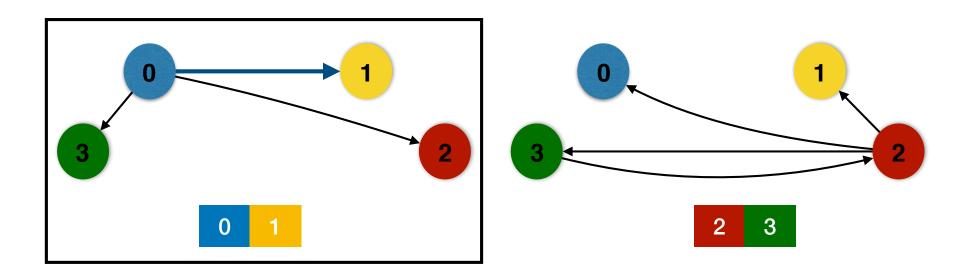




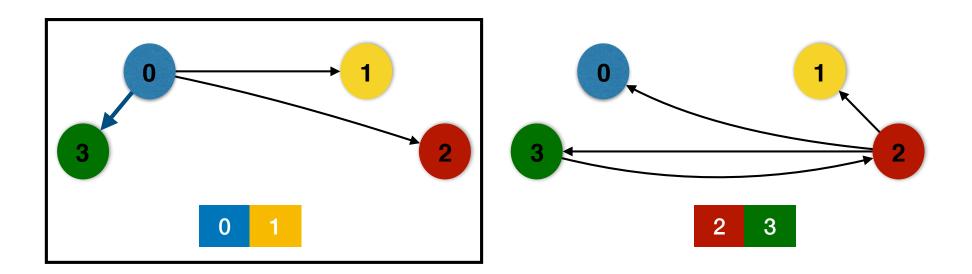


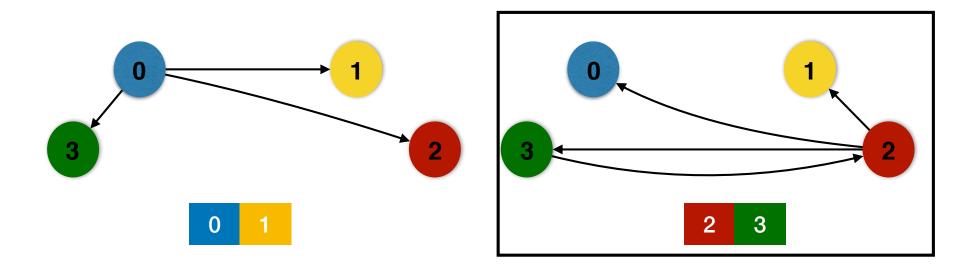




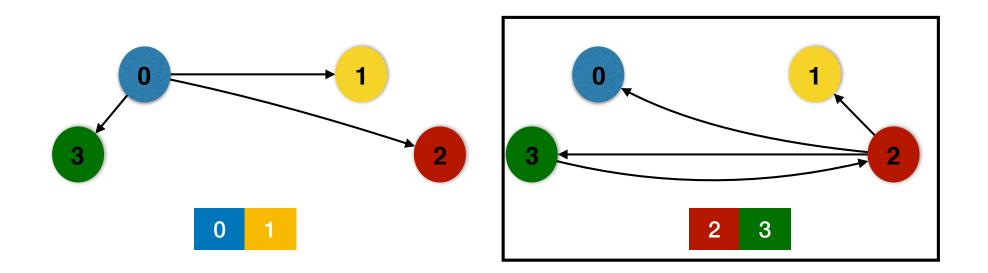




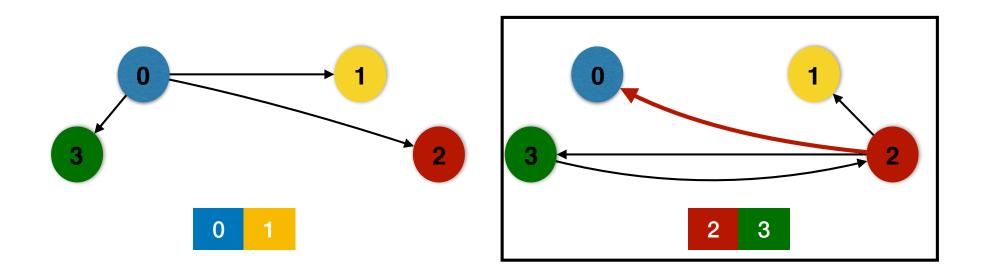




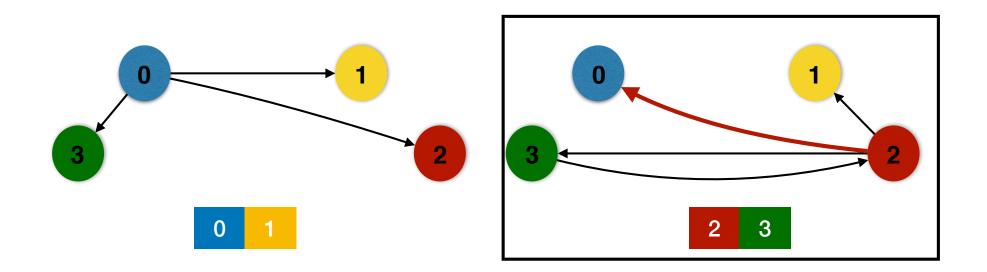
#hits: 2
#misses: 1

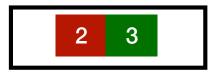


#hits: 2
#misses: 1

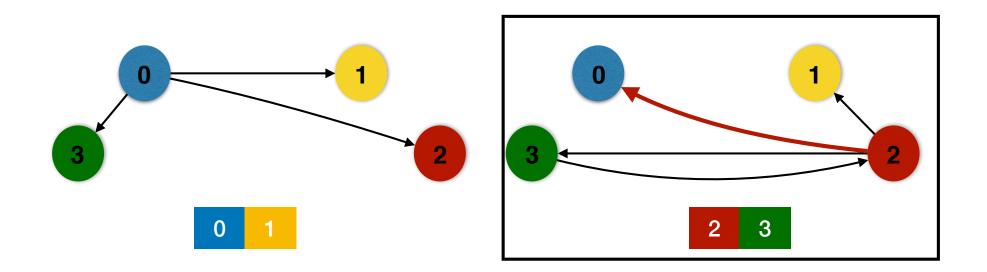


#hits: 2
#misses: 1



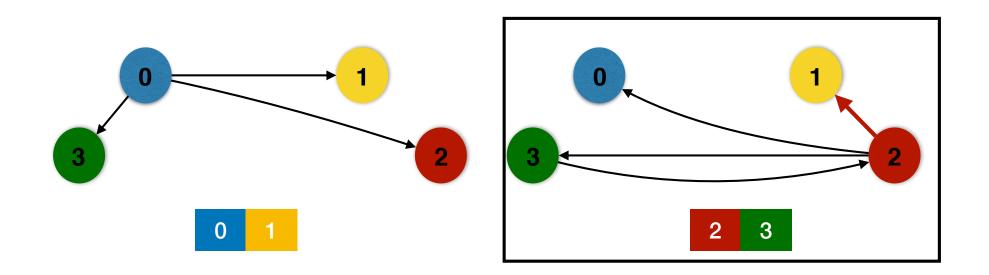


#hits: 2
#misses: 2

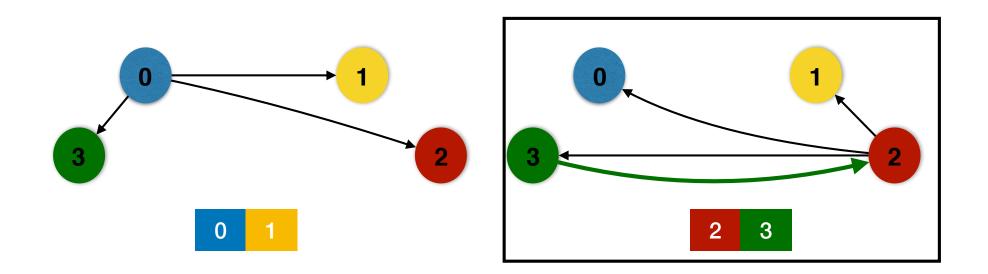


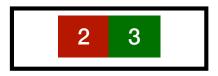


#hits: 3
#misses: 2

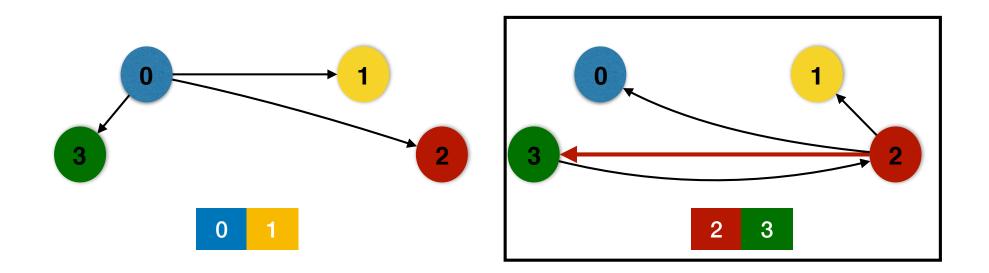


#hits: 4
#misses: 2



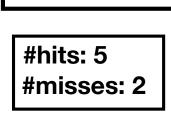


#hits: 5
#misses: 2

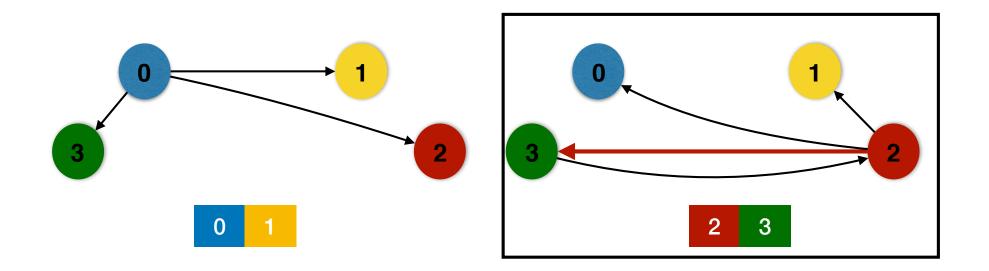


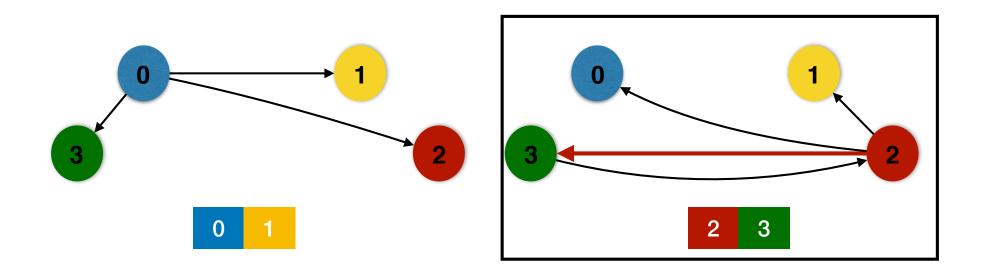
Cache

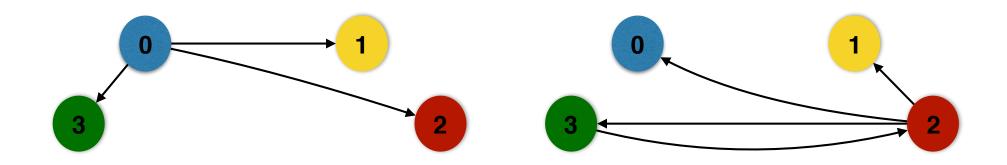
3

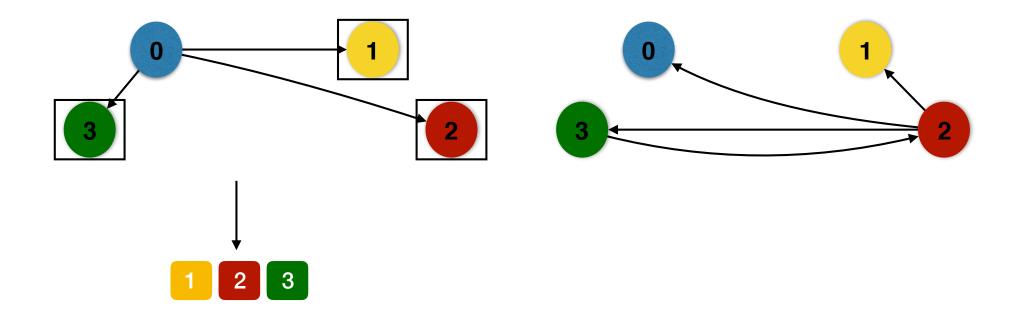


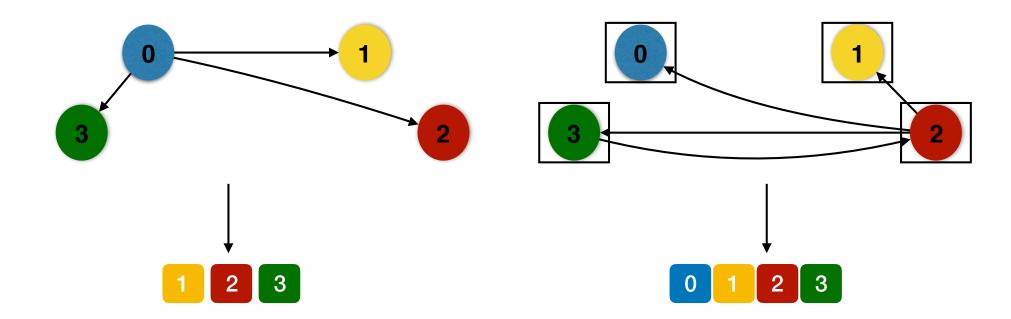
2

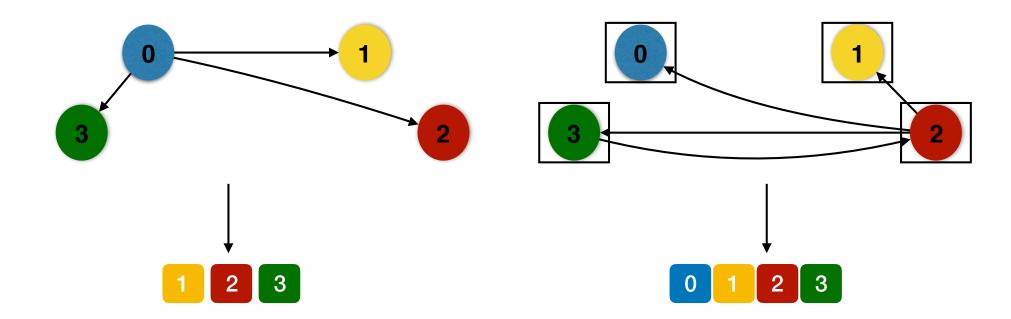


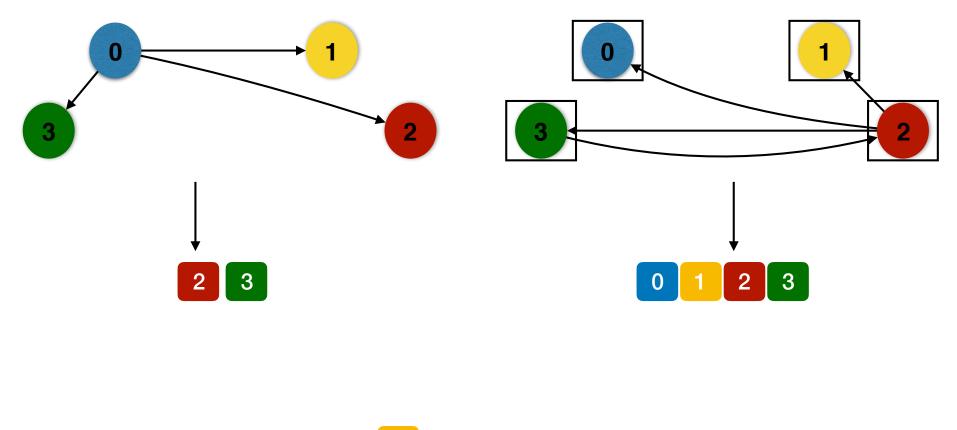


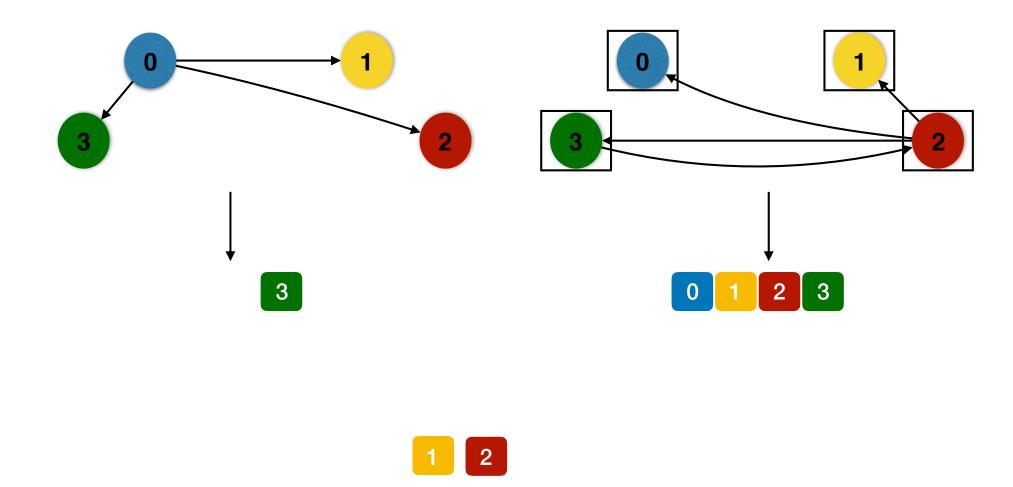


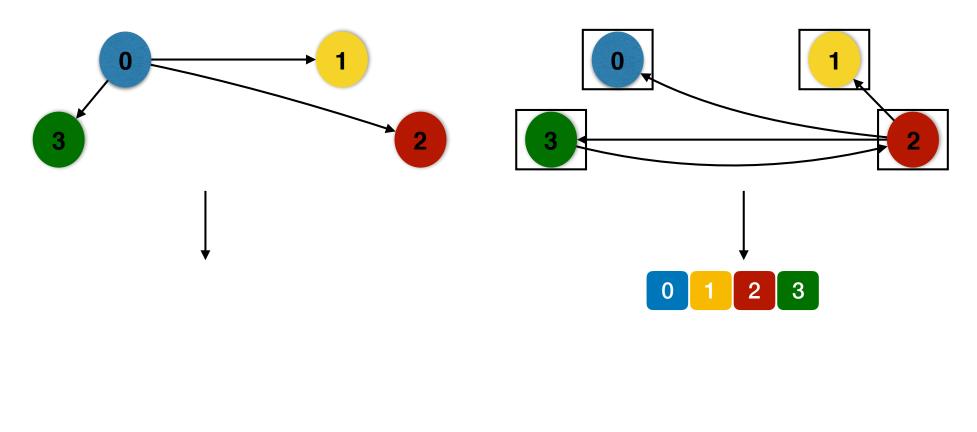


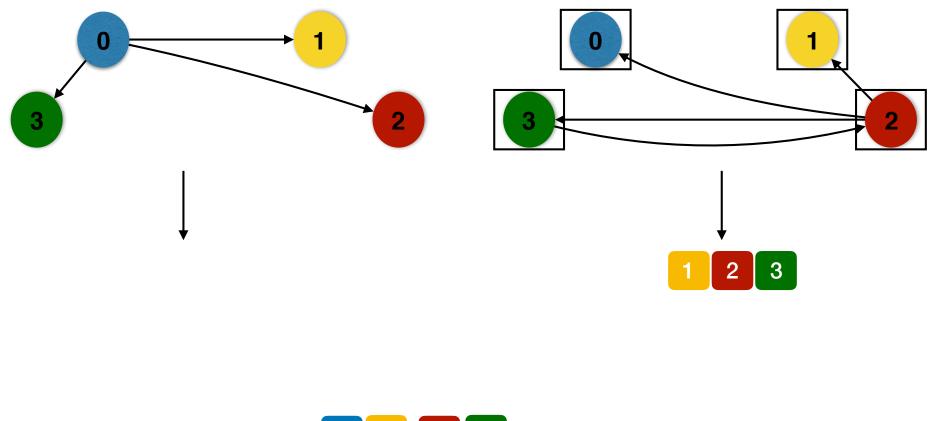


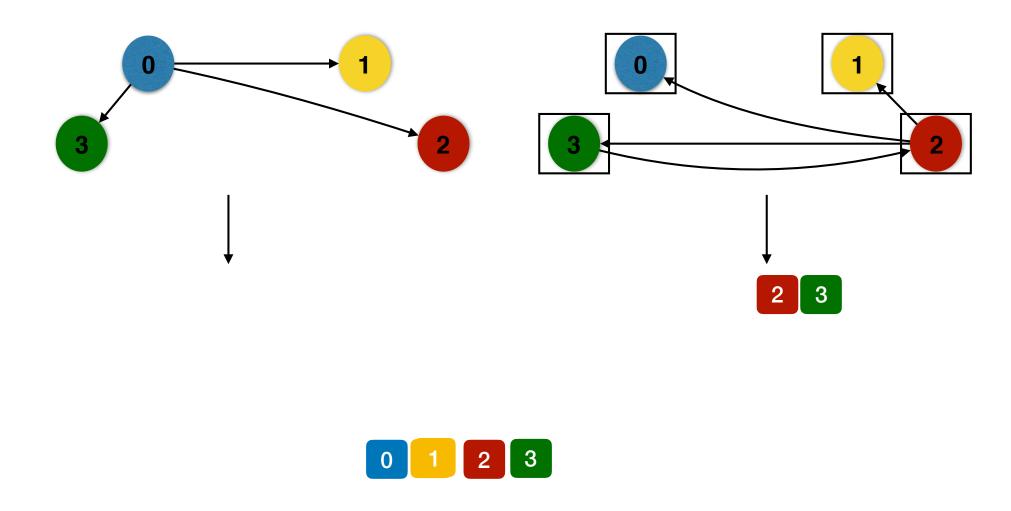


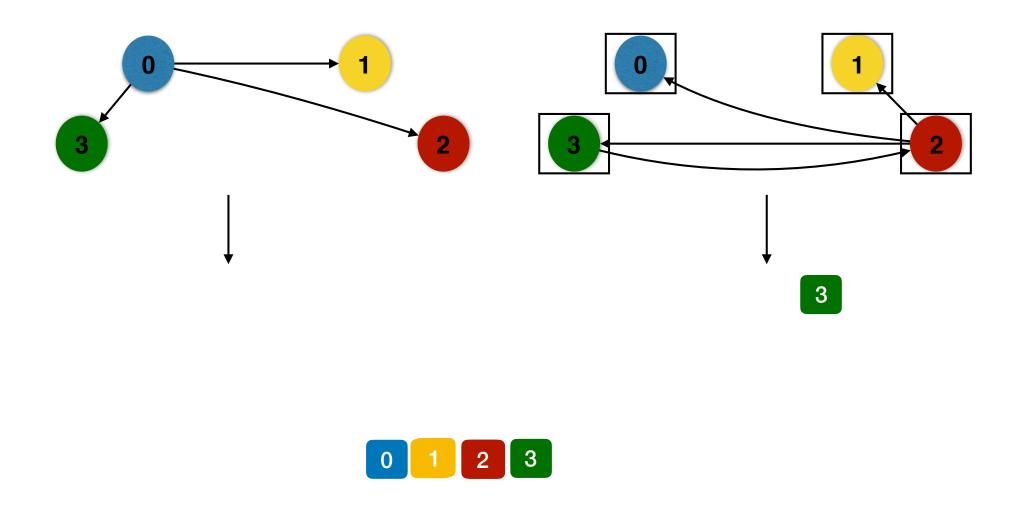


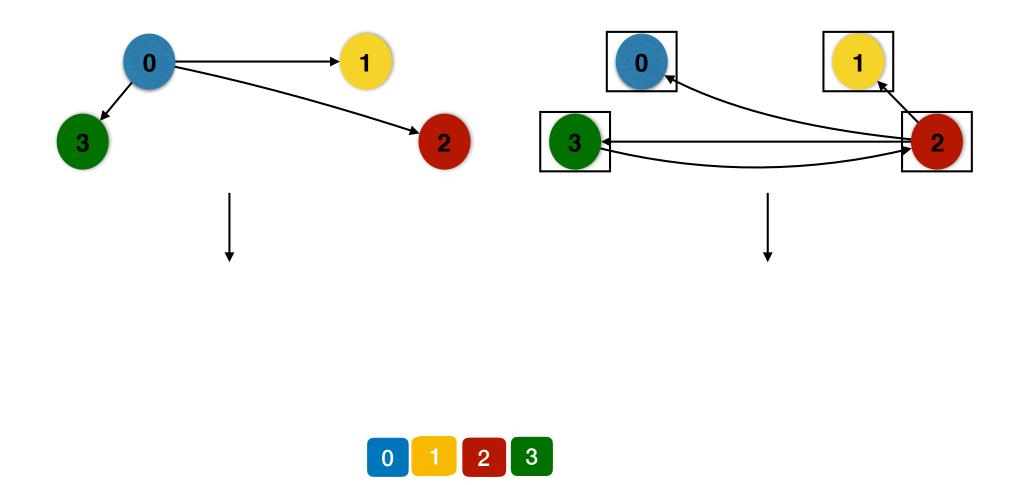


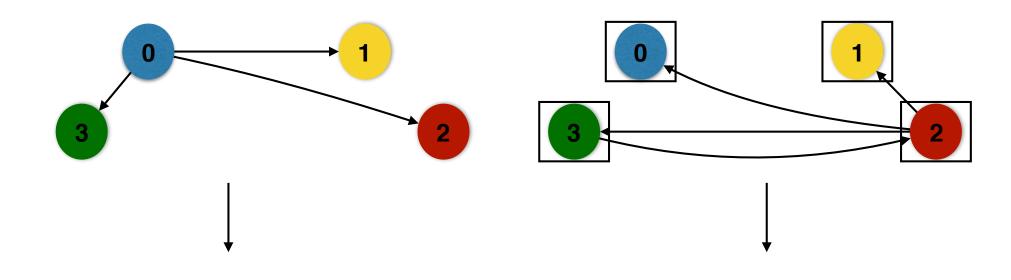




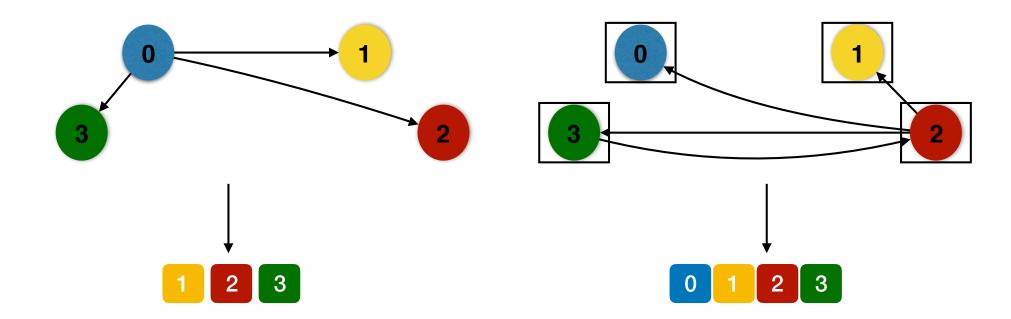


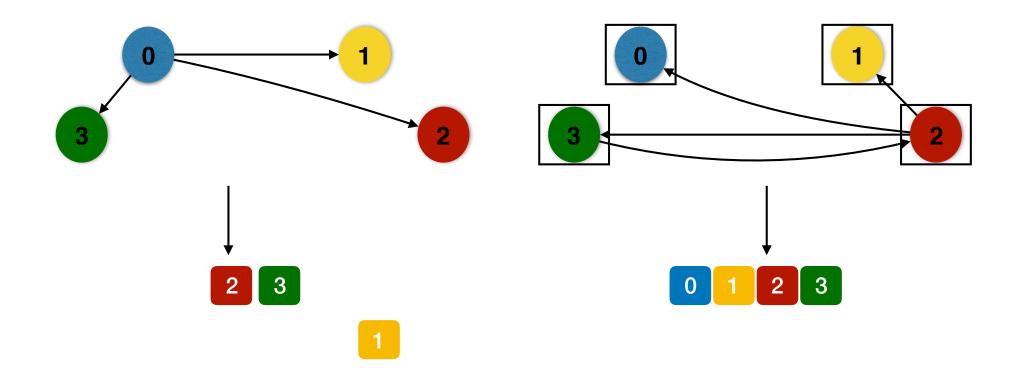


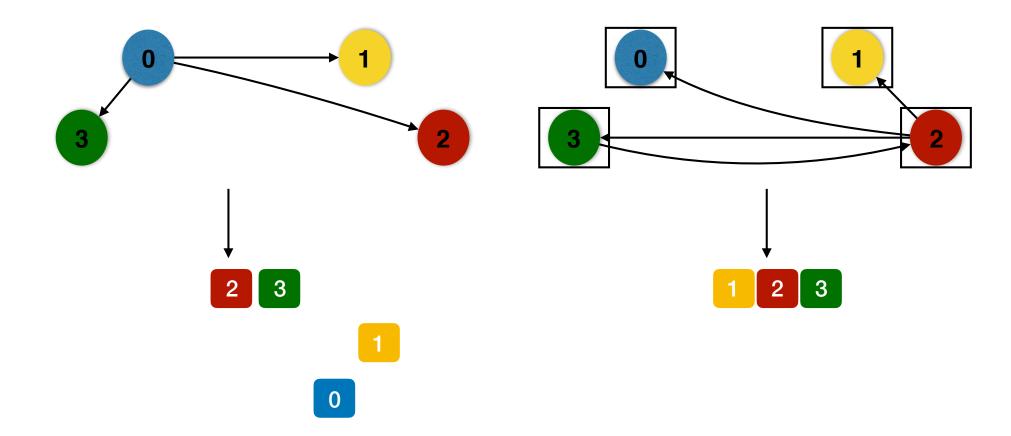


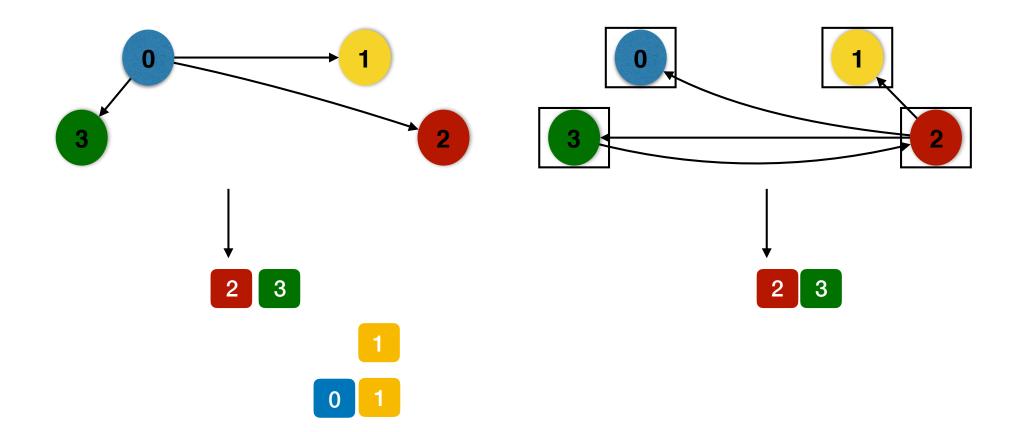


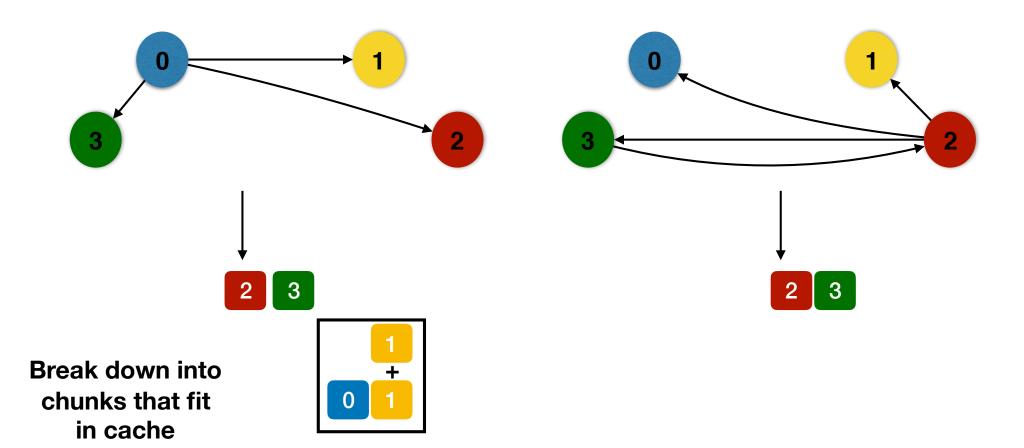
The naive approach incurs random DRAM accesses

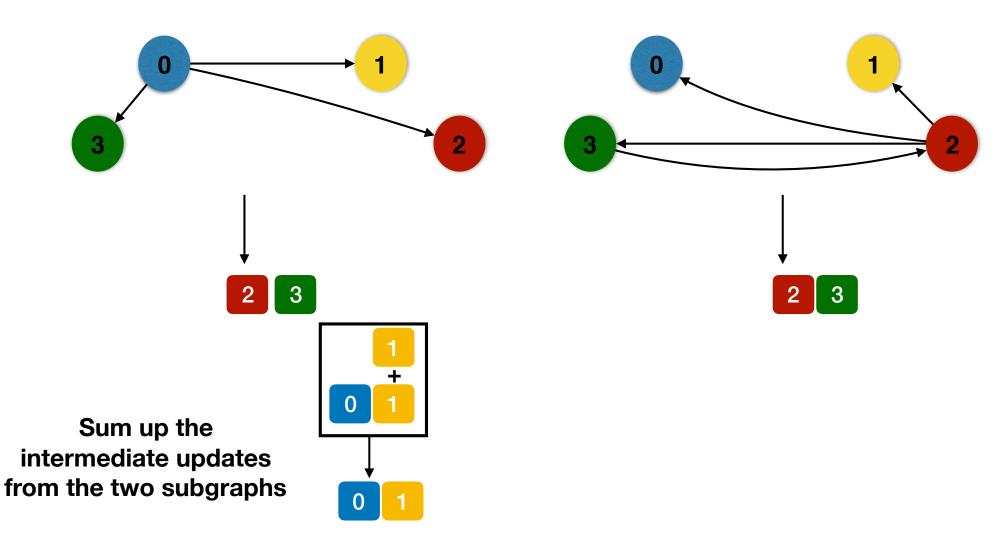


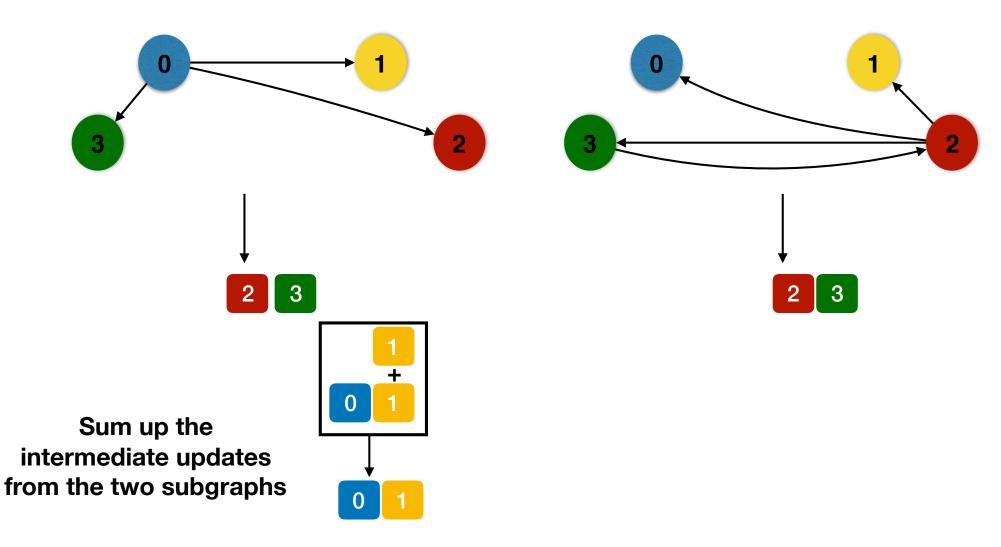


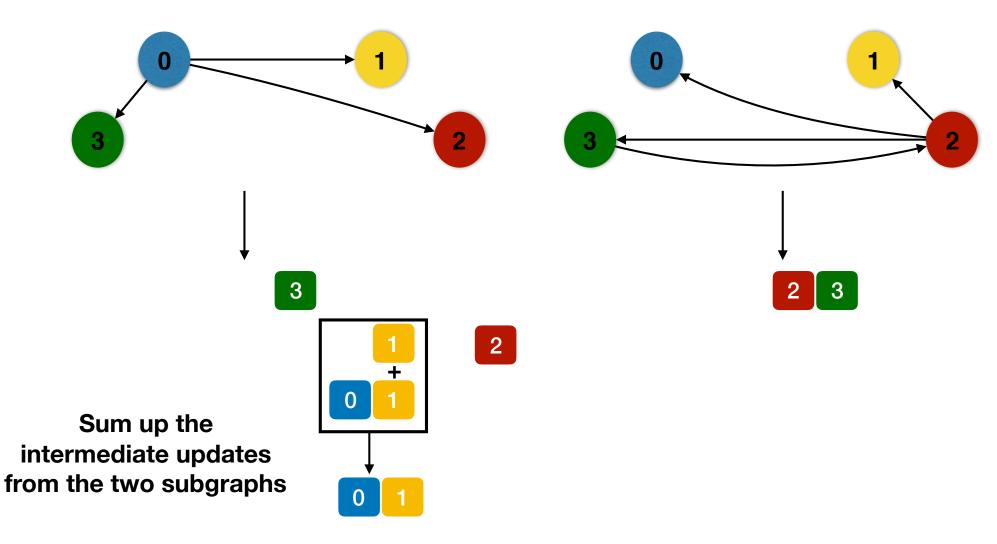


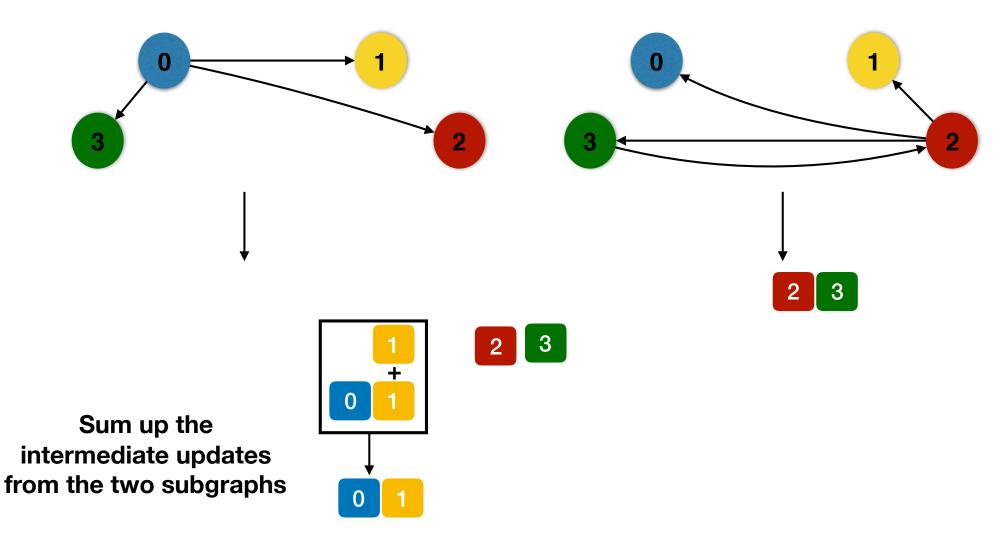


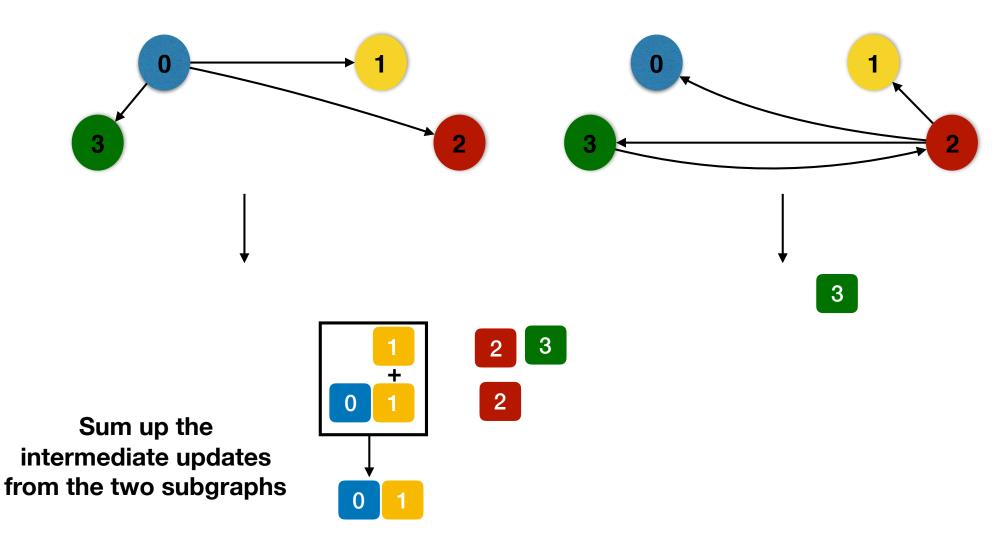


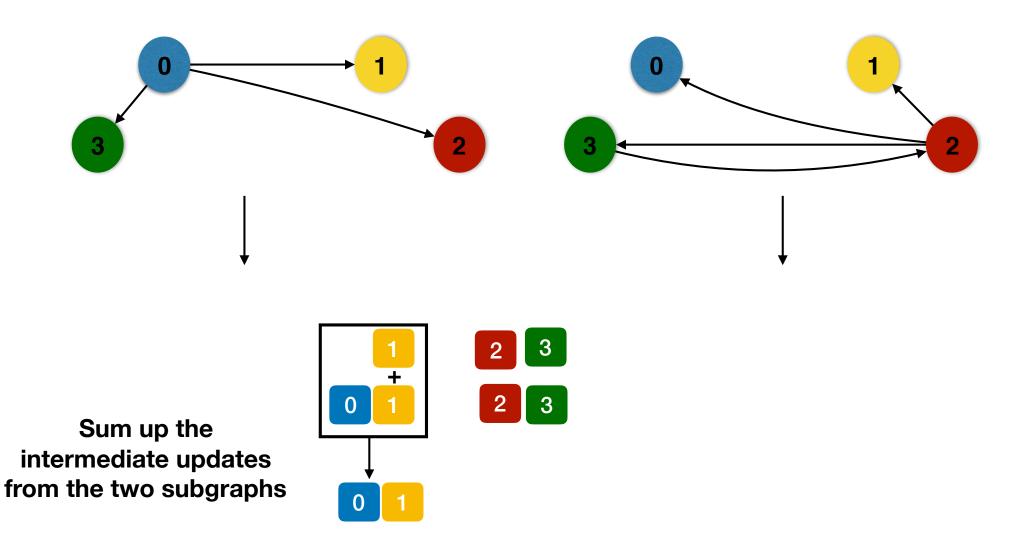


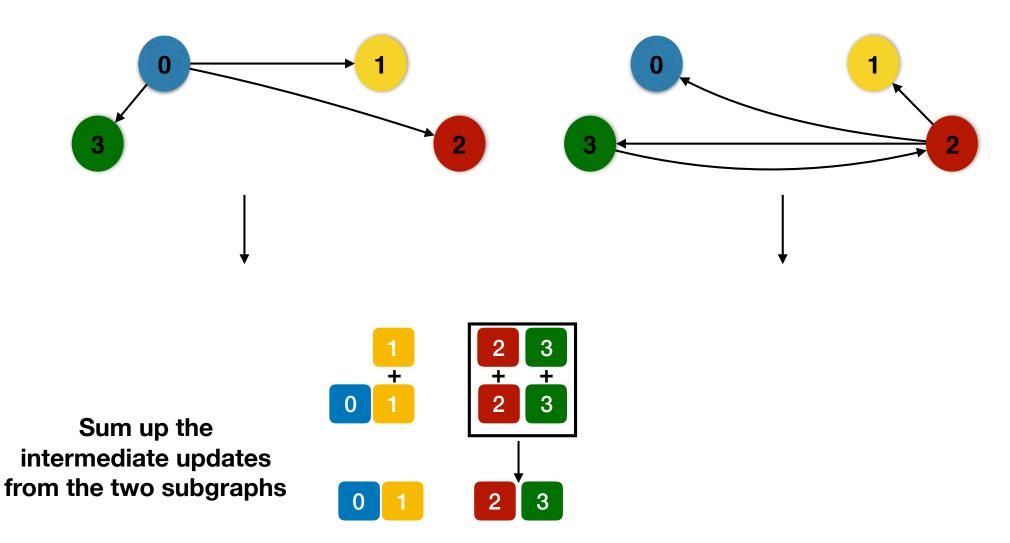












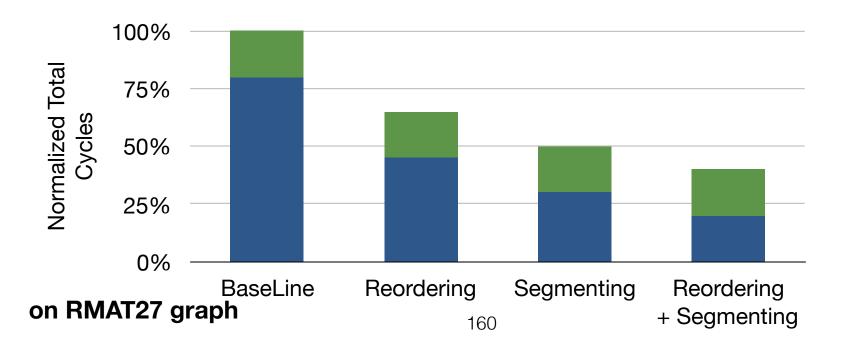
while ...

for node : graph.vertices

for ngh : graph.getInNeighbors(node)

newRanks[node] += ranks[ngh]/outDegree[ngh];

for node : graph.vertices



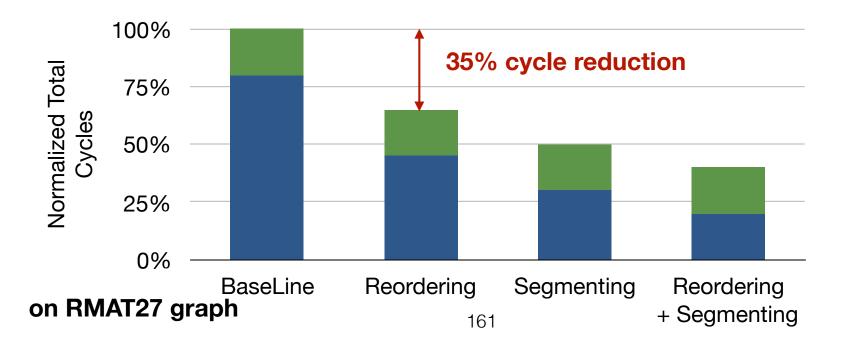
while ...

for node : graph.vertices

for ngh : graph.getInNeighbors(node)

newRanks[node] += ranks[ngh]/outDegree[ngh];

for node : graph.vertices



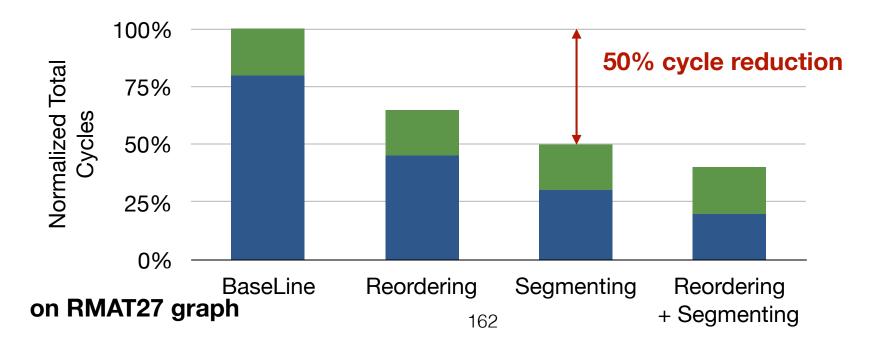
while ...

for node : graph.vertices

for ngh : graph.getInNeighbors(node)

newRanks[node] += ranks[ngh]/outDegree[ngh];

for node : graph.vertices



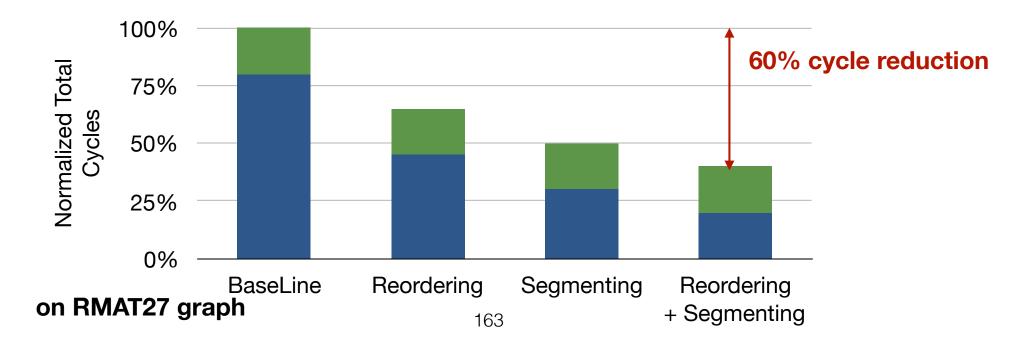
while ...

for node : graph.vertices

for ngh : graph.getInNeighbors(node)

newRanks[node] += ranks[ngh]/outDegree[ngh];

for node : graph.vertices



Related Work

- Distributed Graph Systems
 - Shared memory efficiency is a key component of distributed graph processing systems (PowerGraph, GraphLab, Pregel..)
- Shared-memory Graph Systems
 - Frameworks (Ligra, Galois, GraphMat ..) did not focus on cache optimizations
 - Milk [PACT16], Propagation Blocking[IPDPS17]
- Out-of-core Systems (GraphChi, XStream)

Outline

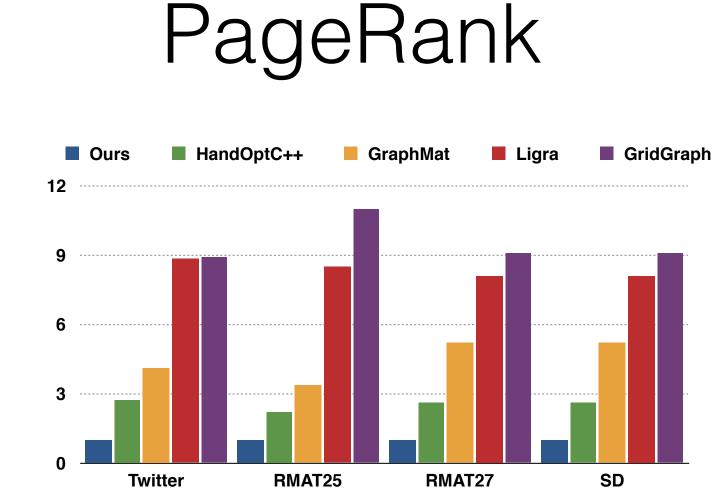
- Motivation
- Frequency based Vertex Reordering
- Cache-aware Segmenting
- Evaluation

	PageRank (20 iter)	Label Propagation (per iter)	Betweenness Centrality (per start node)
Twitter	5.8s	0.27s	1.21s
RMAT27	11.6s	0.52s	1.825s
Web Graph	8.6s	0.34s	0.0875s

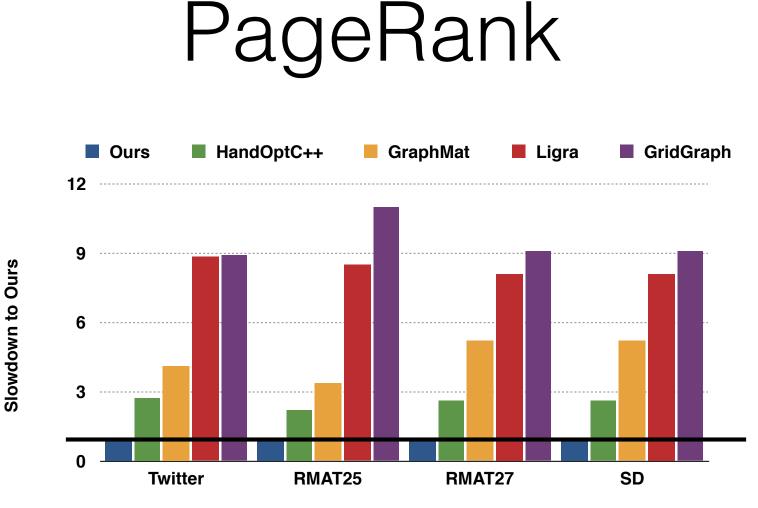
		PageRank (20 iter)	Label Propagation (per iter)	Betweenness Centrality (per start node)
In a single machine, we can complete 20 iterations of PageRank on 40 million nodes Twitter graph within 6s	Twitter	5.8s	0.27s	1.21s
	RMAT27	11.6s	0.52s	1.825s
	Web Graph	8.6s	0.34s	0.0875s

		PageRank (20 iter)	Label Propagation (per iter)	Betweenness Centrality (per start node)
In a single machine, we can complete 20 iterations of PageRank on 40 million nodes Twitter graph within 6s	Twitter	5.8s	0.27s	1.21s
	RMAT27	11.6s	0.52s	1.825s
	Web Graph	8.6s	0.34s	0.0875s
The best published results so far is 12.7s (Gemini OSDI 2017)				

		PageRank (20 iter)	Label Propagation (per iter)	Betweenness Centrality (per start node)
Very fast execution on label propagation used in Connected Components and SSSP (Bellman-Ford)	Twitter	5.8s	0.27s	1.21s
	RMAT27	11.6s	0.52s	1.825s
	Web Graph	8.6s	0.34s	0.0875s

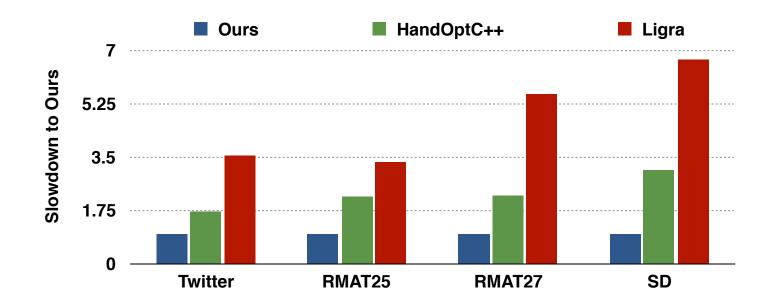


Slowdown to Ours

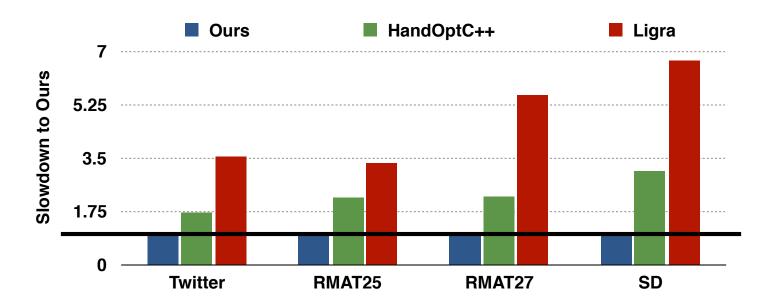


Intel expert hand optimized version and state-of-the art graph frameworks are 2.2-11x slower than our version

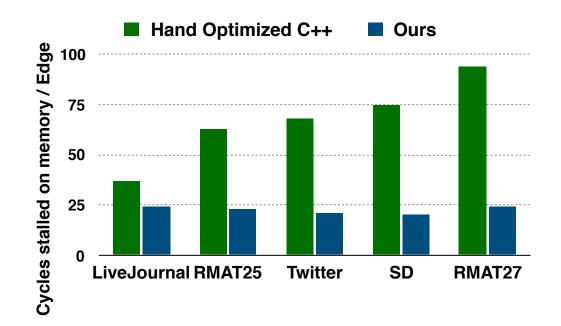
Label Propagation

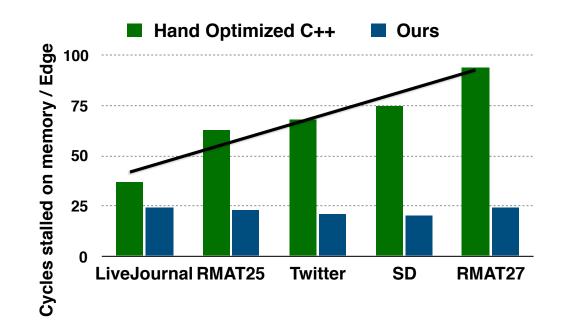


Label Propagation

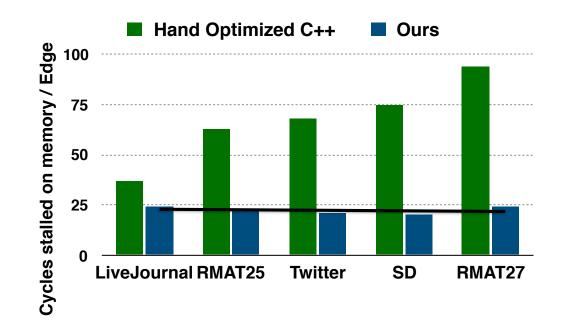


Intel expert hand optimized version and state-of-the art graph frameworks are 1.7-6.7x slower than our version





Cycles stalled on memory per edge increases as the size of the graph increases



Cycles stalled on memory per edge stays constant as the size of the graph increases

Summary

- Performance Bottleneck of Graph Applications
- Frequency based Vertex Reordering
- Cache-aware Segmenting

Outline

- Performance Analysis for Graph Applications
- Milk / Propagation Blocking
- Frequency based Clustering
- CSR Segmenting
- Summary

Improving Cache Performance for Graph Computations

- Reordering the Graph
- Partitioning the Graph for Locality
- Runtime Reordering the Memory Accesses

Improving Cache Performance for Graph Computations

• Reordering the Graph

What are the tradeoffs ?

- Partitioning the Graph for Locality
- Runtime Reordering the Memory Accesses

Improving Cache Performance for Graph Computations

- Reordering the Graph
 - Small preprocessing cost, modest performance improvement, dependent on graph structure
- Partitioning the Graph for Locality
 - Bigger preprocessing cost, small runtime overhead, bigger performance gains, suitable for applications with lots of random accesses.
- Runtime Reordering the Memory Accesses
 - No preprocessing cost, bigger runtime overhead

Outside of Graph Computing?

- Sparse Linear Algebra
 - Matrix Reordering, Preconditioning (Graph Reordering)
 - Cache Blocking (CSR segmenting)
 - Inspector-Executor (Runtime Access Reordering)
- These are Fundamental Communication Reductions Techniques, used in many other domains (sparse linear algebra, join optimization in databases)

Performance Engineering

- Understand your applications' performance characteristics
 - Many papers worked on different ways to abandon cache and improve MLP with a large number of threads
- Understand the tradeoff space of the optimizations
 - Pick the technique that best suit your hardware, application and data