
An Experimental 
Analysis of a 

Compact Graph 
Representation

Edward Park



Motivation
● Graphs are too big to fit in memory

○ Even medium-sized graphs on devices with limited memory

● Compression helps a lot for performance too - locality!

● This paper builds upon a past paper where they first introduce the graph 
separator-based representation



Graph Separators
● Edge separator = a set of edges that, when removed, partitions the graph 

into two almost equal sized parts
● Vertex separator = a set of vertices that, when removed, partitions the 

graph into two almost equal parts



Graph Separators
● A graph has good separators if it and its subgraphs have minimum 

separators that are significantly better than expected for a random graph 
of its size
○ Means the graph has good locality

● Real-world graphs have good separators
○ Real-world graphs are based on communities
○ Locality is super important!!!

But why do we care about graph separators?





Encoding with Graph Separators
● Assume that we have a graph separator algorithm that returns a 

separator
● Given a graph G, construct a separator tree

○ Each node of the tree contains a subgraph of G and a separator for that subgraph
○ The children of a node contain the two components of the graph induced by the 

separator
○ The leaves are single nodes



Encoding with Graph Separators
Our compression algorithm works as follows:

● Generate an edge separator tree for the graph
● Label the vertices in-order across the leaves
● Use an adjacency table to represent the relabeled 



Implementation - Separator Trees
● “Bottom-up” separator algorithm with child-flipping
● Begins with complete graph and repeatedly collapses edges until a single 

vertex remains
○ Based on the priority metric w(EAB) / s(A) s(B)

● “Child-flipping” - when we construct the tree, choose which side is the left 
and which side is the right in a way to maximize locality



Implementation - Indexing
● Semi-direct-16 stores the start locations for sixteen vertices in five 32-bit 

words
○ Word 1 contains start location of Vertex 0
○ Word 2 contains three ten-bit offsets from Vertex 0 to Vertices 4, 8, 12
○ Words 3-5 contain twelve eight-bit offsets from one of these four vertices to the 

remaining vertices



Implementation - Codes and Decoding
● Gamma codes - store an 

integer d by using a unary 
code for log(d) followed by a 
binary code for its offset

● Snip, Nibble, and Byte codes

(Turns out Byte codes are the 
fastest)





Dynamic Representation
● Incremental insertions + deletions of edges
● Size for a vertex can change, so need to dynamically assign memory
● Fixed block size memory allocation

○ Data structure initially has an array with one memory block for each vertex
○ If memory runs out, the vertex is assigned additional blocks from a pool of spare memory 

blocks

● Blocks for a single vertex are stored via a linked list
○ Each block contains an 8-bit nonce i
○ hash(current_address, i) maps to the address of the next block in the linked list

● To ensure memory locality, a separate pool of contiguous memory blocks 
is allocated for each 1024 vertices of the graph



Dynamic Representation - Caching
● Bad to repeatedly encode + decode neighbors
● When a vertex is queried, its neighbors are decoded and stored in a 

temporary LRU-based cache
● A modified vertex that is flushed from the cache is written back to the 

main data structure in compressed form



Experimental Results
● DFS - visits every edge once in a non-trivial 

order
● Reading edges - accessing vertices in linear / 

random order
● Inserting edges - linear, transpose, or random
● Compared to other (non-compressed) 

methods
○ Adjacency lists - neighbors of a vertex are stored in 

singly linked-list format
○ Adjacency array - adjacency lists in array format
○ The ordering of vertices matters a lot! Using the 

separator-based ordering improved performance by a 
factor of up to 7 



Static Algorithm (compared to Adjacency Array)



Dynamic Algorithm



Dynamic Algorithm (compared to linked lists)



Machines
● Pentium 4 is more powerful, 

larger cache-size, supports 
quadruple loads + hardware 
prefetching
○ Much better at loading 

consecutive blocks in memory, 
not good for random access



Discussion
● The simple and fast separator tree heuristic works well

○ Compression is not that sensitive to the quality of the separator

● Real-world graphs have small separators
● Compressed representations are faster than standard representations 

despite extra computation for decoding
○ Additional cost for decoding is small
○ Performance bottleneck seems to be accessing memory, not the bit operations

● Separator-based orderings had much better performance for adjacency 
lists and adjacency arrays (b/c of caching effects)
○ People need to pay more attention to ordering


