An Experimental
Analysis of d
Compact Grapr
Representatior

Edward Park

Motivation

e Graphs are too big to fit in memory
o Even medium-sized graphs on devices with limited memory

e Compression helps a lot for performance too - locality!

e This paper builds upon a past paper where they first introduce the graph
separator-based representation

Graph Separators

e Edge separator = a set of edges that, when removed, partitions the graph

into two almost equal sized parts
e Vertex separator = a set of vertices that, when removed, partitions the

graph into two almost equal parts

Graph Separators

e A graph has good separators if it and its subgraphs have minimum

separators that are significantly better than expected for a random graph
of its size
o Means the graph has good locality

e Real-world graphs have good separators

o Real-world graphs are based on communities
o Locality is super important!!!

But why do we care about graph separators?

Graph representation

*~\ l‘\
VertexIDs Y0+ 1 %22 3

Offsets 0 4 5 1

>
Edges |('2,('7% 9 | 16 | 0 ‘1, 6 | 9 | 12
- - -
2-0=27-2=5 1-2=-1
Compressed
Edges 2 5 2 7 -1 -1 5 3 3

Sort edges and encode differences

« Graph reordering to improve locality
» Goal: give neighbors IDs close to vertex ID
 BFS, DFS, METIS, our own separator-based

algorithm

Encoding with Graph Separators

Assume that we have a graph separator algorithm that returns a

separator

Given a graph G, construct a separator tree
o Each node of the tree contains a subgraph of G and a separator for that subgraph
o The children of a node contain the two components of the graph induced by the

separator
. BUILDTREE(V, E)
o The leaves are single nodes if |E| = 1 then

return V

(Vas Vsep, Vo) < FINDSEPARATOR(V, E)

Eo — {(u,v) € Elu€ Va Vv € Va}
Ey,—FE—-E,

Va,sep S Va. u Vsep
%,scp & va U Vsep

To «— BuildTree(Va,sep, Ea)
Tb — Bu’ildT’l"Ce(‘/}),sepa Eb)
return SeparatorTree(Tq, Viep, Tb)

Encoding with Graph Separators

Our compression algorithm works as follows:

e Generate an edge separator tree for the graph
e Label the vertices in-order across the leaves
e Use an adjacency table to represent the relabeled

Implementation - Separator Trees

e “Bottom-up” separator algorithm with child-flipping
e Begins with complete graph and repeatedly collapses edges until a single

vertex remains
o Based on the priority metric w(E,;) / s(A) s(B)
e “Child-flipping” - when we construct the tree, choose which side is the left
and which side is the right in a way to maximize locality

Implementation - Indexing

e Semi-direct-16 stores the start locations for sixteen vertices in five 32-bit

words
o Word 1 contains start location of Vertex 0
o Word 2 contains three ten-bit offsets from Vertex 0 to Vertices 4, 8, 12
o Words 3-5 contain twelve eight-bit offsets from one of these four vertices to the
remaining vertices

Implementation - Codes and Decoding

e Gamma codes - store an e 2 oupu
integer d by using a unary 2 2140 010
- T Example
code for log(d) followed by a 4 2140 00100 P
. . 5 22+ 00101
binary code for its offset . e 20110 42225410
. . 7 2143 00111 1
e 5Snip, Nibble, and Byte codes ; M oo
9 23+| 0001001
10 2342 0001010
11 2343 0001011
= 5 v 00000101010
13 2345 0001101
(Turns out Byte codes are the ” e e
fastest) IS i d 0001111
16 2440 000010000
17 24+ 000010001

Variable-length codes

- k-bit codes

- Encode value in chunks of k bits
- Use k-1 bits for data, and 1 bit as the “continue” bit

- Example: encode “401” using 8-bit (byte) code

URSUCLAN 11110010100 1!
o’

Nﬂs for data

1000110001 0000011
o

“continue” bit

Dynamic Representation

e Incremental insertions + deletions of edges
e Size for a vertex can change, so need to dynamically assign memory
e Fixed block size memory allocation

o Data structure initially has an array with one memory block for each vertex

o If memory runs out, the vertex is assigned additional blocks from a pool of spare memory
blocks

e Blocks for a single vertex are stored via a linked list
o Each block contains an 8-bit nonce i
o hash(current_address, i) maps to the address of the next block in the linked list

e To ensure memory locality, a separate pool of contiguous memory blocks
is allocated for each 1024 vertices of the graph

Dynamic Representation - Caching

e Bad to repeatedly encode + decode neighbors
When a vertex is queried, its neighbors are decoded and stored in a

temporary LRU-based cache
A modified vertex that is flushed from the cache is written back to the

main data structure in compressed form

Experimental Results

e DFS - visits every edge once in a non-trivial -

Order Graph Vitxs | Edges |Degree Source
auto 448695 6629222 37 3D mesh [35]

[
i - i i in li feocean | 143437 | 819186 | 6 3D mesh [35
e Reading edges - accessing vertices in linear / |feocean | 143457 $19186 | 6 | 3D mesh 2

ibm17 | 185495 (4471432 150 circuit [1]
ran d om o rd er ibm18 | 210613 [4443720(173 circuit [1]

e |Inserting edges - linear, transpose, or random |4 |197128115538214) 12 strect map [34)

PA 1090920 (3083796 | 9 |street map [34]
_ ooglel | 916428 |5105039| 6326 | web links [10]
. Compared to Other (non Compressed) gooéleo 916428 |5105039| 456 | web links [10]
met h 0 d S lucent | 112969 | 363278 | 423 routers [25]

scan 228298 | 640336 | 1937 | routers [25]

o Adjacency lists - neighbors of a vertex are stored in . eI
singly linked-list format ments.

o Adjacency array - adjacency lists in array format

o The ordering of vertices matters a lot! Using the
separator-based ordering improved performance by a
factor of upto 7

Static Algorithm (compared to Adjacency Array)

Array Our Structure
Rand Sep Byte Nibble Snip Gamma DiffByte
Graph y T/T: | Space | T/T1 | Space | T/T1 | Space | T'/T1 | Space | T/T: | Space | T'/T1 | Space
auto 0.268s | 0.313 | 34.17 | 0.294 | 10.25 | 0.585 | 7.42 | 0.776 | 6.99 | 1.063 | 7.18 | 0.399 [12.33
feocean | 0.048s | 0.312 | 37.60 | 0.312 | 12.79 | 0.604 | 10.86 | 0.791 | 11.12 1.0 11.97 | 0.374 | 13.28
m14b 0.103s | 0.388 | 34.05 | 0.349 | 10.01 | 0.728 | 7.10 | 0970 | 6.55 | 1.320 | 6.68 | 0.504 | 11.97
ibm17 0.095s | 0.536 | 33.33 | 0.536 | 10.19 | 1.115 | 7.72 | 1.400 | 7.58 | 1.968 | 7.70 | 0.747 | 12.85
ibm18 0.113s | 0.398 | 33.52 | 0.442 | 10.24 | 0.867 | 7.53 | 1.070 | 7.18 | 1.469 | 7.17 | 0.548 [12.16
CA 0.920s | 0.126 | 43.40 | 0.146 | 14.77 | 0.243 | 10.65 | 0.293 | 10.55 | 0.333 | 11.25 | 0.167 | 14.81
PA 0.487s | 0.137 | 43.32 | 0.156 | 14.76 | 0.258 | 10.65 | 0.310 | 10.60 | 0.355 | 11.28 | 0.178 | 14.80
lucent 0.030s | 0.266 | 41.95 0.3 14.53 0.5 11.05 | 0.566 | 10.79 | 0.700 | 11.48 | 0.333 | 14.96
scan 0.067s | 0.208 | 43.41 | 0.253 | 15.46 | 0.402 | 11.84 | 0.477 | 11.61 | 0.552 | 12.14 | 0.298 | 16.46
googlel | 0.367s | 0.226 | 37.74 | 0.258 | 11.93 | 0.405 | 8.39 | 0452 | 7.37 | 0539 | 7.19 | 0.302 [13.39
googleO | 0.363s | 0.250 | 37.74 | 0.278 | 12.59 | 0.460 | 9.72 | 0.556 | 9.43 | 0.702 | 9.63 | 0.327 [13.28
Avg 0.287 | 38.202 | 0.302 | 12.501 | 0.561 | 9.357 | 0.696 | 9.07 | 0.909 | 9.424 | 0.380 | 13.662

Table 2: Performance of our static algorithms compared to performance of an adjacency array representation.
Space is in bits per edge; time is for a DF'S, normalized to the first column, which is given in seconds.

Dynamic Algorithm

4 8 12 16 20

Graph T Space | T'/T7 | Space | T/T1 | Space | T'/17 | Space | T//T1 | Space | T'/T1 | Space
auto 0.318s | 11.60 | 0.874 | 10.51 | 0.723 | 9.86 | 0.613 | 10.36 | 0.540 | 9.35 | 0.534 | 11.07
feocean | 0.044s | 14.66 | 0.863 | 13.79 | 0.704 | 12.97 | 0.681 | 17.25 | 0.727 | 22.94 | 0.750 | 28.63
ml4b 0.146s | 11.11 | 0.876 | 10.07 | 0.684 | 9.41 | 0.630 | 10.00 | 0.554 [8.92 | 0.554 | 10.46
ibm17 0.285s | 12.95 | 0.849 | 11.59 | 0.614 | 10.44 | 0.529 | 10.53 | 0.491 | 10.95 | 0.459 | 11.39
ibm18 0.236s | 12.41 | 0.847 | 11.14 | 0.635 | 10.12 | 0.563 | 10.36 | 0.521 | 10.97 0.5 11.64

CA 0.212s | 10.62 | 0.943 | 12.42 | 0.952 | 23.52 1.0 35.10 | 1.018 | 46.68 | 1.066 | 58.26
PA 0.119s | 10.69 | 0.941 | 12.41 | 0.949 | 23.35 1.0 34.85 | 1.025 | 46.35 | 1.058 | 57.85
lucent 0.018s | 13.67 | 0.888 | 14.79 | 0.833 | 22.55 | 0.833 | 31.64 | 0.833 | 41.22 | 0.888 | 51.09
scan 0.034s | 15.23 | 0.941 | 16.86 | 0.852 | 26.39 | 0.852 | 37.06 | 0.852 | 48.08 [0.882 | 59.34

googlel [0.230s | 11.91 | 0.895 | 12.04 | 0.752 | 15.71 | 0.730 | 20.53 | 0.730 | 25.78 | 0.726 | 31.21
googleO | 0.278s | 13.62 | 0.863 | 13.28 | 0.694 [15.65 | 0.658 | 19.52 | 0.640 | 24.24 | 0.676 | 29.66
Avg 12.58 | 0.889 | 12.62 | 0.763 | 16.36 | 0.735 | 21.56 | 0.721 | 26.86 | 0.736 | 32.78

Table 3: Performance of our dynamic algorithm using nibble codes with various block sizes. For each size we give
the space needed in bits per edge (assuming enough blocks to leave the secondary hash table 80% full) and the
time needed to perform a DFS. Times are normalized to the first column, which is given in seconds. .

Dynamic Algorithm (compared to linked lists)

Linked List

Our Structure

Random Vtx Order Sep Vtx Order Space Opt Time Opt
Rand | Trans Lin Rand | Trans Lin Block | Time Block | Time
Graph T T/ | T/TW | T/Th | T/Th | T/T1 | Space Size | T/T1 | Space Size | T/T1 | Space
auto 1.160s | 0.512 | 0.260 | 0.862 | 0.196 | 0.093 | 68.33 16 0.148 9.35 20 0.087 | 13.31
feocean | 0.136s | 0.617 | 0.389 | 0.801 | 0.176 | 0.147 | 75.21 8 0:227 | 12.97 10 0117 | 14.71
ml4b 0.565s | 0.442 | 0.215 | 0.884 | 0.184 | 0.090 [68.09 16 0.143 8.92 20 0.086 | 13.53
ibm17 0.735s | 0.571 | 0.152 | 0.904 | 0.357 | 0.091 | 66.66 12 0.205 | 10.53 20 0.118 | 14.52
ibm18 0.730s | 0.524 | 0.179 | 0.890 | 0.276 | 0.080 | 67.03 10 0.190 | 10.13 20 0.108 | 14.97
CA 1.240s | 0.770 | 0.705 | 0.616 | 0.107 | 0.101 | &86.80 3 0.170 | 10.62 5 0.108 | 15.65
PA 0.660s | 0.780 | 0.701 | 0.625 | 0.112 | 0.109 | 86.64 3 0.180 | 10.69 5 0.115 | 15.64
lucent 0.063s | 0.634 | 0.492 | 0.730 | 0.190 | 0.142 | 83.90 3 0.285 | 13.67 6 0.174 | 20.49
scan 0.117s | 0.735 | 0.555 | 0.700 | 0.188 | 0.128 | 86.82 3 0.290 | 15.23 8 0.170 | 28.19
googlel 0.975s | 0.615 | 0.376 | 0.774 | 0.164 | 0.096 | 75.49 4 0.211 | 12.04 16 0.125 | 28.78
googleO | 0.960s | 0.651 | 0.398 | 0.786 | 0.162 | 0.108 | 75.49 5 0.231 | 13.54 16 0.123 | 26.61
Avg 0.623 | 0.402 | 0.779 | 0.192 | 0.108 | 76.405 0.207 | 11.608 0.121 | 18.763

Table 4: The performance of our dynamic algorithms compared to linked lists. For each graph we give the space-
and time-optimal block size. Space is in bits per edge; time is for a DFS, normalized to the first column, which

is given in seconds.

Machines

e Pentium 4 is more powerful,
larger cache-size, supports
quadruple loads + hardware

prefetching
o Much better at loading
consecutive blocks in memory,
not good for random access

Read Find Insert
Graph DFS | Linear | Random | Next | Linear | Random | Transpose | Space
ListRand 1.000 | 0.099 0.744 0.121 | 0.571 28.274 3.589 76.405
ListOrdr 0.322 | 0.096 0.740 0.119 | 0.711 28.318 0.864 76.405
LEDARand | 2.453 | 1.855 2.876 2.062 | 16.802 | 21.808 16.877 432.636
LEDAOrdr 1.119 | 0.478 2.268 0.519 | 7.570 20.780 7.657 432.636
DynSpace 0.633 | 0.440 0.933 0.324 | 14.666 | 23.901 15.538 11.608
DynTime 0.367 | 0.233 0.650 0.222 | 9.725 15.607 10.183 18.763
CachedSpace | 0.622 | 0.431 0.935 0.324 | 2.433 28.660 8.975 13.34
CachedTime | 0.368 | 0.240 0.690 0.246 | 2.234 19.849 6.600 19.073
ArrayRand 0.945 | 0.095 0.638 0.092 — — — 38.202
ArrayOrdr 0.263 | 0.092 0.641 0.092 — — — 38.202
Byte 0.279 | 0.197 0.693 0.205 — — — 12.501
Nibble 0.513 | 0.399 0.873 0.340 — — — 9.357
Snip 0.635 | 0.562 1.044 0.447 — — — 9.07
Gamma 0.825 | 0.710 1.188 0.521 — — — 9.424
Table 5: Summary of space and normalized times for various operations on the Pentium 4.
Read Find Insert

Graph DFS | Linear | Random | Next | Linear | Random | Transpose | Space
ListRand 1.000 | 0.631 0.995 0.508 | 1.609 17.719 3.391 76.405
ListOrdr 0.710 | 0.626 0.977 0.516 | 1.551 17.837 1.632 76.405
LEDARand | 3.163 | 2.649 3.038 2.518 | 17.543 | 19.342 17.880 432.636
LEDAOrdr 2.751 | 2.168 2.878 1.726 | 11.846 | 19.365 11.783 432.636
DynSpace 0.626 | 0.503 0.715 0.433 | 17.791 22.520 18.423 11.608
DynTime 0.422 | 0.342 0.531 0.335 | 13.415 | 16.926 13.866 17.900
CachedSpace | 0.614 | 0.498 0.723 0.429 | 2.616 25.380 7.788 13.36
CachedTime | 0.430 | 0.355 0.558 0.360 | 2.597 20.601 6.569 17.150
ArrayRand 0.729 | 0.319 0.643 0.298 — . e 38.202
ArrayOrdr 0.429 | 0.319 0.639 0.302 — — — 38.202
Byte 0.330 | 0.262 0.501 0.280 — — — 12.501
Nibble 0.488 | 0.411 0.646 0.387 = o — 9.357
Snip 0.684 | 0.625 0.856 0.538 — B — 9.07
Gamma 0.854 | 0.764 1.016 0.640 — — — 9.424

Table 6: Summary of space and normalized times for various operations on the Pentium III.

Discussion

e The simple and fast separator tree heuristic works well
o Compression is not that sensitive to the quality of the separator

e Real-world graphs have small separators
e Compressed representations are faster than standard representations

despite extra computation for decoding
o Additional cost for decoding is small
o Performance bottleneck seems to be accessing memory, not the bit operations

e Separator-based orderings had much better performance for adjacency

lists and adjacency arrays (b/c of caching effects)
o People need to pay more attention to ordering

