
The Webgraph
Framework I:
Compression
Techniques

Edward Park

WebGraph
● The Web graph is gigantic

○ >3 billion nodes, >50 billion arcs at time of publication

● How do we compress the Web?

● Have to deal with both the web and its transpose
○ Transpose = graph with the same nodes, but direction of all arcs are reversed
○ Useful in several ranking algorithms

Properties of the Web graph
● Locality

○ Most links direct to another page in the same host
○ The source URL and target URL are close together lexicographically

● Similarity
○ Pages close to each other have many common successors
○ Many links are copied from one page to another in the same host

Properties of the Web graph
● Similarity is very concentrated

○ Either two lists have nothing in common, or they share large parts of their successor lists
● Consecutivity is common

○ Many links within a page are consecutive (with respect to lexicographic order)
○ Most pages contain sets of navigational links that point to a fixed level of the hierarchy
○ In the tranposed graph, important pages (ie home page) are pointed to by most pages

● Consecutivity is the dual of distance-one similarity
○ If two consecutive pages have very similar successor lists, then the tranposed Web graph has large

intervals

Page 1

Page 2

Page 3

Page 4

Page 1

Page 2

Page 3

Page 4

Gaps in Increasing Sequences of Successors

Compression, Part I
AKA, an exercise in abusing every
conceivable compression tactic you can
think of

● Naive representation - adjacency lists
● Using gaps - instead of storing the

successors, store the differences
between adjacent successors

○ The first element might be negative; to avoid
this, use the map

Compression, Part II
● Reference compression - instead of

showing the adjacency list S(x)
directly, say it is a modified version
of some previous list S(y) [the
reference list]

○ Uses a sequence of bits to indicate which
successors in S(y) are also in S(x) or not

○ Also contains a list of extra nodes for any
pages in S(x) that are not in S(y)

● The reference number r = x - y
○ Assume there is a fixed window size W,

and r is chosen as the value between 0
and W that gives the best compression

Compression, Part III
● Differential compression - the copy

list is seen as an alternating
sequence of 1- and 0-blocks, where
we specify the length of each block

○ Preceded by a block count telling the
number of blocks

○ First block is a 1-block (so say first block
has length 0 if we start with 0-block)

○ All block lengths are decremented by 1
(except the first block)

○ Omit the last block length because its
value can be inferred

● This allows us to code a link in less
than one bit!

Compression, Part IV
● Intervals - each list of extra nodes compressed as a list of integer intervals + a list of residuals

○ Only care about an interval if its length is above a threshold Lmin
○ Each interval represented by its left extreme and its length
○ Left extremes compressed using difference b/w left extreme + previous right extreme minus 2
○ Interval lengths decremented by threshold Lmin

Compression, Part V

● Note this is self-delimiting (except list of residuals)
● Each of these ideas abusing similarity + consecutivity

Reference Counting
● Recall node x will refer to some node y in the past window size W

○ To access the adjacency list of node x, we have to decompress the adjacency list of node y

● Sequential accesses = everything fine
● Random accesses = problem

○ X -> y -> z -> ...
○ Leads to a reference chain - could be arbitrarily long, leading to massive slowdown

● Put a limit to the length of reference chains - R, the max reference count
○ When looking for references, consider all nodes x-1, …, x-W that do not produce reference

chains longer than R
○ Larger R = better compression, longer random access times

Reference Counting

Offset Array
● Need to keep an auxiliary vector of offsets

○ Offsets expressed as bit-displacements for flexibility and scalability

● Problem: We have a limited amount of central memory, can’t store the
entire offset array when doing random accesses

● Solution: Load the offset array partially - only keep the offsets of nodes J,
2J, 3J, … for a parameter J [the jump]

○ J not a compression parameter, only fixed when reading the graph into memory
○ Larger J = smaller memory usage, longer random access times

● Subproblem: skipping over an adjacency list is nontrivial
○ Solution: Load adjacency lists into memory as blocks of J lists each. Store the J outdegrees

at the beginning of each block.

J 2J 3J

Lazy Iteration
● Problem: Computing referenced lists is pretty expensive
● Solution: Don’t do it unless you need to!
● WebGraph enumerates successors using lazy iterators

○ Each time an iterator is required to produce a new successor, check whether it can do it
using local data (intervals + residuals) - if not, then pass the request to the iterator of the
reference node

● No list is ever expanded into memory
○ The only state kept by the recursive stack is intervals + blocks

● Drastically improves performance
○ R = ∞ is fastest sequential access time - main cost is memory access + higher compression

speeds it up

Lazy Iteration

Conclusion
● The Web graph has high locality, similarity, and consecutivity

○ Abuse these to have nice compression schemes

● Limit the size of the reference chain + do lazy iteration to speed up
performance

● WebGraph achieves compression ratios about 2x the best results in the
LINK database

