The Webgraph
Framework |
Compression
Techniques

Edward Park

WebGraph

e The Web graph is gigantic
o >3 billion nodes, >50 billion arcs at time of publication
e How do we compress the Web?

e Have to deal with both the web and its transpose

o Transpose = graph with the same nodes, but direction of all arcs are reversed
o Useful in several ranking algorithms

Properties of the Web graph

e Locality

o Most links direct to another page in the same host

o The source URL and target URL are close together lexicographically
e Similarity

o Pages close to each other have many common successors

o Many links are copied from one page to another in the same host

(a) page graph (b) host graph (c) PLD graph

Figure 1: Different aggregation levels of the graph

Properties of the Web graph

e Similarity is very concentrated

o Either two lists have nothing in common, or they share large parts of their successor lists
e (Consecutivity is common

o Many links within a page are consecutive (with respect to lexicographic order)

o Most pages contain sets of navigational links that point to a fixed level of the hierarchy

o Inthe tranposed graph, important pages (ie home page) are pointed to by most pages
e Consecutivity is the dual of distance-one similarity

o If two consecutive pages have very similar successor lists, then the tranposed Web graph has large

intervals
Page 1 X Page 1
Page 2 Page 2

Page 3 Page 3

Page 4 Page 4

Gaps in Increasing Sequences of Successors

0.01 |

0.001

0.0001

1e-05

1e-06 |

1e-07 ' ' L '
1 10 100 1000 10000 100000

Figure 1: Distribution of gaps in a 18.5 Mpages snapshot of the
.uk domain. The scale is logarithmic on both axes, and the line
displays a power law with exponent 1.21.

0.01 |

0.001 |

0.0001

1e-05

- 000 ®o
1e-06 - COUm 0CeTBEs O 0 @

1e-07

1e-08 1 L 1 1
1 10 100 1000 10000 100000

Figure 2: Distribution of gaps in the transpose of a 18.5 Mpages
snapshot of the .uk domain. The scale is logarithmic on both
axes, and the line displays a power law with exponent 1.20
(modulo a scaling factor).

Compression, Part |

AKA, an exercise in abusing every
conceivable compression tactic you can
think of

e Naive representation - adjacency lists
e Using gaps - instead of storing the
successors, store the differences

between adjacent successors

o The first element might be negative; to avoid
this, use the map
2% ifx >0

V= 2lx]—1 ifx <O.

Node | Outdegree

Successors

16
17

15

18

1.1
10
0

S

13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034
15, 16, 17, 22, 23, 24, 315, 316, 317, 3041

13, 15, 16, 17, 50

Table 1: Naive representation using outdegrees and adjacency

lists.

Node | Outdegree | Successors

15 11

16 10
17 0

18 5

3,1,0,0,0,0,3,0,178, 111,718
1,0,0,4,0,0,290,0,0,2723

91,0,0,32

Table 2: Representation using gaps.

Compression, Part |l

e Reference compression - instead of

Node | Outdegree | Successors

15 11 13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034

Showing the adjacency list S(X) 16 10 15, 16, 17, 22, 23, 24, 315, 316, 317, 3041
17 0
directly, say it is a modified version 5 18 15/15,16,1%, 50
of some previous list S(y) [the
. Table 1: Naive representation using outdegrees and adjacency
reference list] lists.
o Uses a sequence of bits to indicate which
. . Node | Outd. | Ref. | Copy list Extra nodes
successors in S(y) are also in S(x) or not R P (e
o Also contains a list of extra nodes forany |2 |11 10 Sl 80 e L RSl Rl
. . 16 10 1 01110011010 | 22, 316, 317, 3041
pages in S(x) that are not in S(y) 17 |0
18 5 3 11110000000 | 50
e The reference numberr=x-y i Do "
¢ Assume there is a fixed window size W, Table 3: Representation using copy lists.

and r is chosen as the value between 0
and W that gives the best compression

Compression, Part Il

Differential compression - the copy
list is seen as an alternating
sequence of 1- and 0-blocks, where

we specify the length of each block

o Preceded by a block count telling the
number of blocks

o First block is a 1-block (so say first block
has length 0 if we start with 0-block)

o All block lengths are decremented by 1
(except the first block)

o Omit the last block length because its
value can be inferred

This allows us to code a link in less
than one bit!

Node | Outd. | Ref. | Copy list Extra nodes
15 11 0 13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034
16 10 1 01110011010 | 22, 316, 317, 3041
17 0
18 5 3 11110000000 | 50
Table 3: Representation using copy lists.
Node | Outd. | Ref. | #blocks | Copy blocks Extra nodes
15 11 0 13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034
16 10 1 i/ 0,0,2,1,1,0,0 | 22,316,317, 3041
17 0
18 5 3 1 4 50

Table 4: Representation using copy blocks.

Compression, Part [V

e Intervals - each list of extra nodes compressed as a list of integer intervals + a list of residuals
o Only care about an interval if its length is above a threshold L _
Each interval represented by its left extreme and its length

O
o Left extremes compressed using difference b/w left extreme + previous right extreme minus 2
o Interval lengths decremented by threshold L .-

in

Node | Outd. | Ref. | #blocks | Copy blocks Extra nodes

15 11 0 13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034

16 10 1 7 0,0,2,1,1,0,0 | 22,316,317, 3041

17 0

18 5 3 1 4 50

Node | Outd. | Ref. | #blocks | Copy blocks # intervals | Left extremes | Length | Residuals

15 11 0 2 0,2 3,0 5,189,111, 718
16 10 1 7 0,0,2,1,1,0,0 | 1 600 0 12,3018

17 0

18 5 3 1 4 0 50

on, Part V

i W >0 Lmin < 00

d ;[bBl---Bb] - "

Compress

i EyLy---E;L; Ry --- R,

r>0

- B<ddg>o
Datum Meaning Notes Represented as.. .
d Outdegree d>0
r Reference number | 0 <r < W
b Block count b>0
Bi, ..., Bp | Blocks Bj > 0;By,... ;Bp >0 Bi,By—1...,Bp—1
i Interval count i>0
Eq,..., E; | Left extremes ExjiZ Ex+Lp+1 vWE—x),Ep—E1—-Ly-1,... ,E;—E;_1—L;_1-—1
Li,...,L; | Interval lengths Lyovieninli 2 Lmin L1 —Lpins e s Li = Lyin
Ri, ..., Ry | Residuals O<Ri<Ry<---<Ry |vV(Rj —x),Rp—R;—1,... ,R — Rj_1—1

Table 6: Data describing the adjacency list of node x.

e Note this is self-delimiting (except list of residuals)
e Each of these ideas abusing similarity + consecutivity

Reference Counting

Recall node x will refer to some node y in the past window size W
o To access the adjacency list of node x, we have to decompress the adjacency list of node y

Sequential accesses = everything fine

Random accesses = problem
o X->y->z7->..
o Leads to areference chain - could be arbitrarily long, leading to massive slowdown
Put a limit to the length of reference chains - R, the max reference count
o When looking for references, consider all nodes x-1, ..., x-W that do not produce reference

chains longer than R
o Larger R = better compression, longer random access times

Reference Counting

18.5 Mpages, 300 Mlinks from . uk

R Average reference chain Bits/node Bits/link

W=1|W=3 (W=7 |W=1|W=3|W=7T|W=1|W=3|W=7
oo | 171.45 | 198.68 | 19598 | 44.22 | 38.28 | 35.81 2.75 2.38 222
3 1.04 1.41 170 | 62.31 52.37 | 48.30 3.87 3.25 3.00
0.36 0.55 0.64 | 81.24 | 6296 | 55.69 5.05 391 3.46
Tranpose
0 1850 | 25.34 | 26.61 | 36.23 | 3348 | 31.88 2.25 2.08 1.98
3 0.69 1.01 123 | 37.68 | 35.09 | 33.81 2.34 2.18 2.10
0.27 0.43 0.51 | 39.83 | 3697 | 35.69 2.47 2.30 222
118 Mpages, 1 Glinks from WebBase
R Average reference chain Bits/node Bits/link
W=1|W=3 (W=7 |W=1|W=3|W=7T|W=1|W=3|W=7
oo | 8527 [11856 | 119.65 | 30.99 | 27.79 | 26.57 3.59 322 3.08
3 0.79 1.10 132 | 3846 | 33.86 [32.29 4.46 3.92 3.74
1 0.28 0.43 0.51 | 46.63 | 38.80 | 36.02 5.40 4.49 4.17
Tranpose
oo | 2749 | 30.69 | 31.60 | 27.86 | 2597 | 24.96 3.23 3.01 2.89
3 0.76 1.09 131 | 2920 | 2740 [26.75 3.38 3.17 3.10
0.29 0.46 0.54 [31.09 | 29.00 | 28.35 3.60 3.36 3.28

Table 7: Experimental data about reference chains with L.;, = 3 and using ¢3 for residuals. The .uk data were gathered using
UbiCrawler; the WebBase data refer to the 1/2001 general crawl.

Offset Array

Need to keep an auxiliary vector of offsets
o Offsets expressed as bit-displacements for flexibility and scalability

Problem: We have a limited amount of central memory, can't store the
entire offset array when doing random accesses
Solution: Load the offset array partially - only keep the offsets of nodes J,

2], 3), ... for a parameter] [the jump]
o] notacompression parameter, only fixed when reading the graph into memory
o Larger] =smaller memory usage, longer random access times
Subproblem: skipping over an adjacency list is nontrivial
o Solution: Load adjacency lists into memory as blocks of J lists each. Store the] outdegrees
at the beginning of each block.

J 2J 3J

Lazy Iteration

e Problem: Computing referenced lists is pretty expensive
e Solution: Don't do it unless you need to!

e WebGraph enumerates successors using lazy iterators
o Each time an iterator is required to produce a new successor, check whether it can do it
using local data (intervals + residuals) - if not, then pass the request to the iterator of the
reference node
e No listis ever expanded into memory
o The only state kept by the recursive stack is intervals + blocks
e Drastically improves performance

o R = jsfastest sequential access time - main cost is memory access + higher compression
speeds it up

Lazy Iteration

18.5 Mpages, 300 Mlinks from . uk

R | Graph size (MiB) Offset-array size (MiB) Link access time (ns)
seq. | J=1|Jd=2|J=4|8seq | J=1l | J=2 | J=4
00 79.0 198 | 31237 | 35752 | 43699
3 106.6 - | 141.3 70.7 35.3 | 206 611 753 886
122.9 233 442 491 605

Transpose

00 70.3 150 | 2382 | 2873 | 2961
3 74.6 - | 141.3 70.7 353 | 171 342 424 516
1 78.8 183 234 312 374

Table 8: Experimental data about access time, obtained on 512 MiB 2.4 GHz Pentium for a 18.5 Mpages snapshot of the . uk domain.

Conclusion

e The Web graph has high locality, similarity, and consecutivity
o Abuse these to have nice compression schemes
e Limit the size of the reference chain + do lazy iteration to speed up
performance

e WebGraph achieves compression ratios about 2x the best results in the
LINK database

