# The Webgraph Framework I: Compression Techniques

Edward Park

# WebGraph

- The Web graph is gigantic
  - >3 billion nodes, >50 billion arcs at time of publication
- How do we compress the Web?

- Have to deal with both the web and its transpose
  - Transpose = graph with the same nodes, but direction of all arcs are reversed
  - Useful in several ranking algorithms

# Properties of the Web graph

#### Locality

- Most links direct to another page in the same host
- The source URL and target URL are close together lexicographically

#### Similarity

- Pages close to each other have many common successors
- Many links are copied from one page to another in the same host

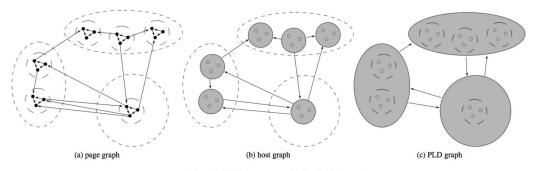
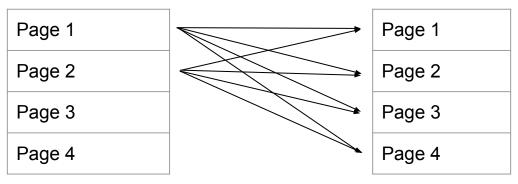




Figure 1: Different aggregation levels of the graph

## Properties of the Web graph

- Similarity is very concentrated
  - Either two lists have nothing in common, or they share large parts of their successor lists
- Consecutivity is common
  - Many links within a page are consecutive (with respect to lexicographic order)
  - Most pages contain sets of navigational links that point to a fixed level of the hierarchy
  - o In the tranposed graph, important pages (ie home page) are pointed to by most pages
- Consecutivity is the dual of distance-one similarity
  - If two consecutive pages have very similar successor lists, then the tranposed Web graph has large intervals



# Gaps in Increasing Sequences of Successors

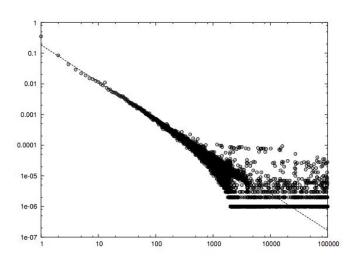



Figure 1: Distribution of gaps in a 18.5 Mpages snapshot of the .uk domain. The scale is logarithmic on both axes, and the line displays a power law with exponent 1.21.

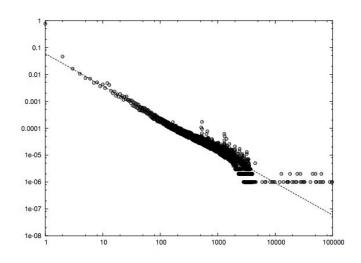



Figure 2: Distribution of gaps in the transpose of a 18.5 Mpages snapshot of the .uk domain. The scale is logarithmic on both axes, and the line displays a power law with exponent 1.20 (modulo a scaling factor).

## Compression, Part I

AKA, an exercise in abusing every conceivable compression tactic you can think of

- Naive representation adjacency lists
- Using gaps instead of storing the successors, store the differences between adjacent successors
  - The first element might be negative; to avoid this, use the map

$$\nu(x) = \begin{cases} 2x & \text{if } x \ge 0\\ 2|x| - 1 & \text{if } x < 0. \end{cases}$$

| Node | Outdegree | Successors                                     |
|------|-----------|------------------------------------------------|
|      |           |                                                |
| 15   | 11        | 13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034 |
| 16   | 10        | 15, 16, 17, 22, 23, 24, 315, 316, 317, 3041    |
| 17   | 0         |                                                |
| 18   | 5         | 13, 15, 16, 17, 50                             |
|      |           | •••                                            |

Table 1: Naive representation using outdegrees and adjacency lists.

| Node | Outdegree | Successors                            |
|------|-----------|---------------------------------------|
|      | •••       | •••                                   |
| 15   | 11        | 3, 1, 0, 0, 0, 0, 3, 0, 178, 111, 718 |
| 16   | 10        | 1, 0, 0, 4, 0, 0, 290, 0, 0, 2723     |
| 17   | 0         |                                       |
| 18   | 5         | 9, 1, 0, 0, 32                        |
|      |           |                                       |

Table 2: Representation using gaps.

## Compression, Part II

- Reference compression instead of showing the adjacency list S(x) directly, say it is a modified version of some previous list S(y) [the reference list]
  - Uses a sequence of bits to indicate which successors in S(y) are also in S(x) or not
  - Also contains a list of extra nodes for any pages in S(x) that are not in S(y)
- The reference number r = x y
  - Assume there is a fixed window size W, and r is chosen as the value between 0 and W that gives the best compression

| Node | Outdegree | Successors                                     |
|------|-----------|------------------------------------------------|
|      |           | •••                                            |
| 15   | 11        | 13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034 |
| 16   | 10        | 15, 16, 17, 22, 23, 24, 315, 316, 317, 3041    |
| 17   | 0         | NOT SHOOL AND SHOOL NOT SHOW SHOW SHOW         |
| 18   | 5         | 13, 15, 16, 17, 50                             |
|      |           |                                                |

Table 1: Naive representation using outdegrees and adjacency lists.

| Node | Outd. | Ref. | Copy list   | Extra nodes                                    |
|------|-------|------|-------------|------------------------------------------------|
|      |       |      | •••         | •••                                            |
| 15   | 11    | 0    |             | 13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034 |
| 16   | 10    | 1    | 01110011010 | 22, 316, 317, 3041                             |
| 17   | 0     |      |             |                                                |
| 18   | 5     | 3    | 11110000000 | 50                                             |
|      |       |      |             |                                                |

Table 3: Representation using copy lists.

#### Compression, Part III

- Differential compression the copy list is seen as an alternating sequence of 1- and 0-blocks, where we specify the length of each block
  - Preceded by a block count telling the number of blocks
  - First block is a 1-block (so say first block has length 0 if we start with 0-block)
  - All block lengths are decremented by 1 (except the first block)
  - Omit the last block length because its value can be inferred
- This allows us to code a link in less than one bit!

| Node | Outd. | Ref. | Copy list   | Extra nodes                                    |
|------|-------|------|-------------|------------------------------------------------|
|      |       |      | •••         | •••                                            |
| 15   | 11    | 0    |             | 13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034 |
| 16   | 10    | 1    | 01110011010 | 22, 316, 317, 3041                             |
| 17   | 0     |      |             |                                                |
| 18   | 5     | 3    | 11110000000 | 50                                             |
|      |       |      |             | •••                                            |

Table 3: Representation using copy lists.

| Node | Outd. | Ref. | # blocks | Copy blocks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Extra nodes                                    |
|------|-------|------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
|      |       |      |          | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                            |
| 15   | 11    | 0    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034 |
| 16   | 10    | 1    | 7        | 0, 0, 2, 1, 1, 0, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22, 316, 317, 3041                             |
| 17   | 0     |      | >400     | Security to the security and the security of t |                                                |
| 18   | 5     | 3    | 1        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50                                             |
|      |       |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |

Table 4: Representation using copy blocks.

#### Compression, Part IV

- Intervals each list of extra nodes compressed as a list of integer intervals + a list of residuals
  - $\circ$  Only care about an interval if its length is above a threshold L<sub>min</sub>
  - Each interval represented by its left extreme and its length
  - Left extremes compressed using difference b/w left extreme + previous right extreme minus 2
  - $\circ$  Interval lengths decremented by threshold  $L_{\min}$

| Node  | Outd. | Ref. | # blocks | Copy blocks         | Extra nodes                                    |
|-------|-------|------|----------|---------------------|------------------------------------------------|
|       |       |      | •••      |                     | •••                                            |
| 15    | 11    | 0    |          |                     | 13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034 |
| 16    | 10    | 1    | 7        | 0, 0, 2, 1, 1, 0, 0 | 22, 316, 317, 3041                             |
| 17    | 0     |      |          |                     |                                                |
| 18    | 5     | 3    | 1        | 4                   | 50                                             |
| • • • |       |      |          | •••                 | •••                                            |

| Node | Outd. | Ref. | # blocks | Copy blocks         | # intervals | Left extremes | Length | Residuals        |
|------|-------|------|----------|---------------------|-------------|---------------|--------|------------------|
|      |       |      |          |                     |             |               |        |                  |
| 15   | 11    | 0    |          |                     | 2           | 0, 2          | 3, 0   | 5, 189, 111, 718 |
| 16   | 10    | 1    | 7        | 0, 0, 2, 1, 1, 0, 0 | 1           | 600           | 0      | 12, 3018         |
| 17   | 0     |      |          | 301 301 301 301 50  |             |               |        |                  |
| 18   | 5     | 3    | 1        | 4                   | 0           |               |        | 50               |
|      |       |      |          |                     |             |               | • • •  |                  |

# Compression, Part V

$$d\left[\overbrace{r[b \ B_1 \cdots B_b]_{r>0}}^{W>0} \left[\overbrace{i \ E_1 L_1 \cdots E_i L_i}^{L_{\min} < \infty} R_1 \cdots R_k\right]_{\beta < d}\right]_{\beta < d} \right]_{d>0}$$

| Datum            | Meaning          | Notes                              | Represented as                                             |
|------------------|------------------|------------------------------------|------------------------------------------------------------|
| d                | Outdegree        | $d \ge 0$                          |                                                            |
| r                | Reference number | $0 \le r \le W$                    |                                                            |
| b                | Block count      | $b \ge 0$                          |                                                            |
| $B_1,\ldots,B_b$ | Blocks           | $B_1 \geq 0, B_2, \ldots, B_b > 0$ | $B_1, B_2 - 1 \dots, B_b - 1$                              |
| i                | Interval count   | $i \ge 0$                          |                                                            |
| $E_1,\ldots,E_i$ | Left extremes    | $E_{k+1} \ge E_k + L_k + 1$        | $\nu(E_1-x), E_2-E_1-L_1-1, \ldots, E_i-E_{i-1}-L_{i-1}-1$ |
| $L_1,\ldots,L_i$ | Interval lengths | $L_1,\ldots,L_i\geq L_{\min}$      | $L_1-L_{\min},\ldots,L_i-L_{\min}$                         |
| $R_1,\ldots,R_k$ | Residuals        | $0 \leq R_1 < R_2 < \cdots < R_k$  | $\nu(R_1-x), R_2-R_1-1, \ldots, R_k-R_{k-1}-1$             |

Table 6: Data describing the adjacency list of node x.

- Note this is self-delimiting (except list of residuals)
- Each of these ideas abusing similarity + consecutivity

# Reference Counting

- Recall node x will refer to some node y in the past window size W
  - $\circ$  To access the adjacency list of node x, we have to decompress the adjacency list of node y
- Sequential accesses = everything fine
- Random accesses = problem
  - X -> y -> z -> ...
  - Leads to a reference chain could be arbitrarily long, leading to massive slowdown
- Put a limit to the length of reference chains R, the max reference count
  - When looking for references, consider all nodes x-1, ..., x-W that do not produce reference chains longer than R
  - Larger R = better compression, longer random access times

# Reference Counting

|          | 18.5 Mpages, 300 Mlinks from .uk  |            |         |           |           |       |           |      |       |  |  |  |
|----------|-----------------------------------|------------|---------|-----------|-----------|-------|-----------|------|-------|--|--|--|
| R        | Averag                            | e referenc | e chain |           | Bits/node |       | Bits/link |      |       |  |  |  |
|          | W = 1                             | W=3        | W = 7   | W = 1     | W=3       | W = 7 | W = 1     | W=3  | W = 7 |  |  |  |
| $\infty$ | 171.45                            | 198.68     | 195.98  | 44.22     | 38.28     | 35.81 | 2.75      | 2.38 | 2.22  |  |  |  |
| 3        | 1.04                              | 1.41       | 1.70    | 62.31     | 52.37     | 48.30 | 3.87      | 3.25 | 3.00  |  |  |  |
| 1        | 0.36                              | 0.55       | 0.64    | 81.24     | 62.96     | 55.69 | 5.05      | 3.91 | 3.46  |  |  |  |
| Tranpose |                                   |            |         |           |           |       |           |      |       |  |  |  |
| $\infty$ | 18.50                             | 25.34      | 26.61   | 36.23     | 33.48     | 31.88 | 2.25      | 2.08 | 1.98  |  |  |  |
| 3        | 0.69                              | 1.01       | 1.23    | 37.68     | 35.09     | 33.81 | 2.34      | 2.18 | 2.10  |  |  |  |
| 1        | 0.27                              | 0.43       | 0.51    | 39.83     | 36.97     | 35.69 | 2.47      | 2.30 | 2.22  |  |  |  |
|          | 118 Mpages, 1 Glinks from WebBase |            |         |           |           |       |           |      |       |  |  |  |
| R        | Averag                            | e referenc | e chain | Bits/node |           |       | Bits/link |      |       |  |  |  |
|          | W = 1                             | W=3        | W = 7   | W = 1     | W=3       | W = 7 | W = 1     | W=3  | W = 7 |  |  |  |
| $\infty$ | 85.27                             | 118.56     | 119.65  | 30.99     | 27.79     | 26.57 | 3.59      | 3.22 | 3.08  |  |  |  |
| 3        | 0.79                              | 1.10       | 1.32    | 38.46     | 33.86     | 32.29 | 4.46      | 3.92 | 3.74  |  |  |  |
| 1        | 0.28                              | 0.43       | 0.51    | 46.63     | 38.80     | 36.02 | 5.40      | 4.49 | 4.17  |  |  |  |
|          |                                   |            |         | Tr        | anpose    |       |           |      |       |  |  |  |
| $\infty$ | 27.49                             | 30.69      | 31.60   | 27.86     | 25.97     | 24.96 | 3.23      | 3.01 | 2.89  |  |  |  |
| 3        | 0.76                              | 1.09       | 1.31    | 29.20     | 27.40     | 26.75 | 3.38      | 3.17 | 3.10  |  |  |  |
| 1        | 0.29                              | 0.46       | 0.54    | 31.09     | 29.00     | 28.35 | 3.60      | 3.36 | 3.28  |  |  |  |

Table 7: Experimental data about reference chains with  $L_{\min}=3$  and using  $\zeta_3$  for residuals. The .uk data were gathered using UbiCrawler; the WebBase data refer to the 1/2001 general crawl.

# Offset Array

- Need to keep an auxiliary vector of offsets
  - o Offsets expressed as bit-displacements for flexibility and scalability
- Problem: We have a limited amount of central memory, can't store the entire offset array when doing random accesses
- Solution: Load the offset array partially only keep the offsets of nodes J,
  2J, 3J, ... for a parameter J [the jump]
  - J not a compression parameter, only fixed when reading the graph into memory
  - Larger J = smaller memory usage, longer random access times
- Subproblem: skipping over an adjacency list is nontrivial
  - Solution: Load adjacency lists into memory as blocks of J lists each. Store the J outdegrees at the beginning of each block.

| J   2J   3J   3J |
|------------------|
|------------------|

## Lazy Iteration

- Problem: Computing referenced lists is pretty expensive
- Solution: Don't do it unless you need to!
- WebGraph enumerates successors using lazy iterators
  - Each time an iterator is required to produce a new successor, check whether it can do it using local data (intervals + residuals) - if not, then pass the request to the iterator of the reference node
- No list is ever expanded into memory
  - The only state kept by the recursive stack is intervals + blocks
- Drastically improves performance
  - R =  $\infty$  is fastest sequential access time main cost is memory access + higher compression speeds it up

# Lazy Iteration

|          | 18.5 Mpages, 300 Mlinks from .uk |      |             |           |      |                       |        |        |        |  |  |  |
|----------|----------------------------------|------|-------------|-----------|------|-----------------------|--------|--------|--------|--|--|--|
| R        | Graph size (MiB)                 | C    | Offset-arra | y size (M | liB) | Link access time (ns) |        |        |        |  |  |  |
|          |                                  | seq. | J=1         | J=2       | J=4  | seq.                  | J=1    | J=2    | J=4    |  |  |  |
| $\infty$ | 79.0                             |      |             |           |      | 198                   | 31 237 | 35 752 | 43 699 |  |  |  |
| 3        | 106.6                            | -    | 141.3       | 70.7      | 35.3 | 206                   | 611    | 753    | 886    |  |  |  |
| 1        | 122.9                            |      |             |           |      | 233                   | 442    | 491    | 605    |  |  |  |
|          | Transpose                        |      |             |           |      |                       |        |        |        |  |  |  |
| $\infty$ | 70.3                             |      |             |           |      | 150                   | 2 382  | 2873   | 2961   |  |  |  |
| 3        | 74.6                             | _    | 141.3       | 70.7      | 35.3 | 171                   | 342    | 424    | 516    |  |  |  |
| 1        | 78.8                             |      | 12          |           |      | 183                   | 234    | 312    | 374    |  |  |  |

Table 8: Experimental data about access time, obtained on 512 MiB 2.4 GHz Pentium for a 18.5 Mpages snapshot of the .uk domain.

#### Conclusion

- The Web graph has high locality, similarity, and consecutivity
  - Abuse these to have nice compression schemes
- Limit the size of the reference chain + do lazy iteration to speed up performance
- WebGraph achieves compression ratios about 2x the best results in the LINK database