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WebGraph
● The Web graph is gigantic

○ >3 billion nodes, >50 billion arcs at time of publication

● How do we compress the Web?

● Have to deal with both the web and its transpose
○ Transpose = graph with the same nodes, but direction of all arcs are reversed
○ Useful in several ranking algorithms



Properties of the Web graph
● Locality

○ Most links direct to another page in the same host
○ The source URL and target URL are close together lexicographically

● Similarity
○ Pages close to each other have many common successors
○ Many links are copied from one page to another in the same host



Properties of the Web graph
● Similarity is very concentrated

○ Either two lists have nothing in common, or they share large parts of their successor lists
● Consecutivity is common

○ Many links within a page are consecutive (with respect to lexicographic order)
○ Most pages contain sets of navigational links that point to a fixed level of the hierarchy
○ In the tranposed graph, important pages (ie home page) are pointed to by most pages

● Consecutivity is the dual of distance-one similarity
○ If two consecutive pages have very similar successor lists, then the tranposed Web graph has large 

intervals
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Gaps in Increasing Sequences of Successors



Compression, Part I
AKA, an exercise in abusing every 
conceivable compression tactic you can 
think of

● Naive representation - adjacency lists
● Using gaps - instead of storing the 

successors, store the differences 
between adjacent successors

○ The first element might be negative; to avoid 
this, use the map



Compression, Part II
● Reference compression - instead of 

showing the adjacency list S(x) 
directly, say it is a modified version 
of some previous list S(y) [the 
reference list]

○ Uses a sequence of bits to indicate which 
successors in S(y) are also in S(x) or not

○ Also contains a list of extra nodes for any 
pages in S(x) that are not in S(y)

● The reference number r = x - y
○ Assume there is a fixed window size W, 

and r is chosen as the value between  0 
and W that gives the best compression



Compression, Part III
● Differential compression - the copy 

list is seen as an alternating 
sequence of 1- and 0-blocks, where 
we specify the length of each block

○ Preceded by a block count telling the 
number of blocks

○ First block is a 1-block (so say first block 
has length 0 if we start with 0-block)

○ All block lengths are decremented by 1 
(except the first block)

○ Omit the last block length because its 
value can be inferred

● This allows us to code a link in less 
than one bit!



Compression, Part IV
● Intervals - each list of extra nodes compressed as a list of integer intervals + a list of residuals

○ Only care about an interval if its length is above a threshold Lmin
○ Each interval represented by its left extreme and its length
○ Left extremes compressed using difference b/w left extreme + previous right extreme minus 2
○ Interval lengths decremented by threshold Lmin



Compression, Part V

● Note this is self-delimiting (except list of residuals)
● Each of these ideas abusing similarity + consecutivity



Reference Counting
● Recall node x will refer to some node y in the past window size W

○ To access the adjacency list of node x, we have to decompress the adjacency list of node y

● Sequential accesses = everything fine
● Random accesses = problem

○ X -> y -> z -> ... 
○ Leads to a reference chain - could be arbitrarily long, leading to massive slowdown

● Put a limit to the length of reference chains - R, the max reference count
○ When looking for references, consider all nodes x-1, …, x-W that do not produce reference 

chains longer than R
○ Larger R = better compression, longer random access times



Reference Counting



Offset Array
● Need to keep an auxiliary vector of offsets

○ Offsets expressed as bit-displacements for flexibility and scalability

● Problem: We have a limited amount of central memory, can’t store the 
entire offset array when doing random accesses

● Solution: Load the offset array partially - only keep the offsets of nodes J, 
2J, 3J, … for a parameter J [the jump]

○ J not a compression parameter, only fixed when reading the graph into memory
○ Larger J = smaller memory usage, longer random access times

● Subproblem: skipping over an adjacency list is nontrivial
○ Solution: Load adjacency lists into memory as blocks of J lists each. Store the J outdegrees 

at the beginning of each block.
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Lazy Iteration
● Problem: Computing referenced lists is pretty expensive
● Solution: Don’t do it unless you need to!
● WebGraph enumerates successors using lazy iterators

○ Each time an iterator is required to produce a new successor, check whether it can do it 
using local data (intervals + residuals) - if not, then pass the request to the iterator of the 
reference node

● No list is ever expanded into memory
○ The only state kept by the recursive stack is intervals + blocks

● Drastically improves performance
○ R = ∞ is fastest sequential access time - main cost is memory access + higher compression 

speeds it up



Lazy Iteration



Conclusion
● The Web graph has high locality, similarity, and consecutivity

○ Abuse these to have nice compression schemes

● Limit the size of the reference chain + do lazy iteration to speed up 
performance

● WebGraph achieves compression ratios about 2x the best results in the 
LINK database


