Compressed
representations for web
and social graphs

Cecilia Hernandez and Gonzalo Navarro
Presented by Helen Xu
6.886
April 6, 2018

Web graphs and social
networks

Web graphs represent the link structure of the Web usually as
directed graphs.

Social networks represented relationships among social
entities (undirected or directed)

Web graphs and social networks are growing fast.
It was recently estimated that the Web was over 7.8 billion
pages (around 200 billion edges).

Facebook has over 950 million users.

How do we manage large
graphs?

Streaming techniques use main memory and avoid random
access to disk [DFRos].

External memory algorithms use memory layouts to exploit
locality to reduce I/O cost [vo1].

Distributed memory may impose synchronization and
communication costs similar to those of the external memory
approach [SVi1].

How do we manage large
graphs?

Streaming techniques use main memory and avoid random
access to disk [DFRos].

External memory algorithms use memory layouts to exploit
locality to reduce I/O cost [vo1].

Distributed memory may impose synchronization and
communication costs similar to those of the external memory
approach [SVi1].

Compressed data structures reduce

memory and are often still faster than
/0.

Contributions

1. Extend a technique for detecting bicliques to detect “dense
subgraphs” [BCO03].

2. Apply “virtual node mining” to replace edges of the
dense subgraph and improve Web graph representation [BC08].

3. Use a bidirectional representation (k2-tree) for an
Improved representation.

4. Introduce a new compressed data structure to represent
dense subgraphs that does not use virtual nodes.

Compressed representations for
Web and social graphs

The WebGraph framework exploits power-law distributions,
similarity, and locality using URL node ordering [BV04].

Virtual Node Mining (VNM) groups sets of pages that share
the same outlinks, which define complete bipartite subgraphs
(bicliques) [BCog].

The k2tree exploits the sparseness and clustering of the
adjacency matrix and supports in/out neighbor queries [BLN09].

And many more! Most can support out-neighbor queries but not
necessarily in-neighbor queries.

Bitmaps

Given a bitmap BJ[1,n],

rank(b, i) counts the number of times bit b appears in the prefix
B[1, i].

select(b, 1) returns the position of the i-th occurence of bit b in B
(n+1 if not found)

access(i) retrieves the value BJi]

There exists a compressed bitmap with constant operation
times with space nHo(B) + o(n) bits where Ho(B) ~ Ig n [RRR02]

Compact data structures for
sequences

Bitmaps can be extended to compact data structures fo
sequences S[1, n] over an alphabet of size s.

Wavelet trees (WT) supports rank/select/acess in O(log(s))
time with nHo(S) + o(n)log(s) bits [GGVo03].

This paper uses the version for large alphabets that saves
extra space O(s log(n)) [FGos].

Contributions

»1. Extend a technigue for detecting bicliques to detect “dense
subgraphs” [BCO03].

2. Apply “virtual node mining” to replace edges of the
dense subgraph and improve Web graph representation [BC08].

3. Use a bidirectional representation (k2-tree) for an
Improved representation.

4. Introduce a new compressed data structure to represent
dense subgraphs that does not use virtual nodes.

Dense subgraph discovery

A Web graph is a directed graph G = (V, E).

For an edge e = (u, v), we say that u is the source and v is the
center of e.

Web graphs have “dense communities” (a group of pages
related to a common interest) characterized by dense directed
bipartite subgraphs [RRT19, DGPO07].

A dense subgraph H(S, C) of graph G = (V, E) is a graph
G(SUC,SxC)where S, C cVW.

Algorithm for dense subgraph
discovery

1. Clustering-1 - build hashed matrix representing G
2. Clustering-2 - build clusters

3. Mining-1 - reorder cluster edges

4. Mining-2 - discover dense subgraphs and replacing

Total runtime = O(IEI log |EI)

Example: dense subgraph
discovery

Step 1 Step 3 Cluster 1

Edge Freq.

1:7 1: 1 78 2 3
1: 12378 ﬁg 2:5 2: 17823
2: 12378 3:5 3: 17823
31237 8 A B 4: 2 —»5: 17823
512357 8 A B 5:1 6: 17823
6: 123678 b——p AB 6:1 7: 17 8 4
8: 1478 A B 8:7
10: 1 10 11 15
15: 1 10 11 15 B E -) ~ Step 4 Cluster 1

BE {1,2,3,5.6}
L J
4 * N
7
Step 2 {1,2,3,5,6}
\ 4 s : ~
10: 1 10 11 15
1: 1 2 3 7 8 15: 1 10 11 15 \{1'2'3'5'6})
2: 12378
3: 1237 8 CIUSterz ~ 5 ~ S=(7 8)
5123578
6: 1236 7 8 {1,2,3,5,6} C=(178 4)
7: 147 8 ~ 7 7
8: 1478 r D
3 S=(12356)

cluster 1 L{1,2,3,5,6}J C=(17823)

Evaluation: dense subgraph

discovery

Table 1 Compression metrics using different P values with eu-2005

P # Cliques |Cliques| # Bicliques Edges Nodes Ratio
2 33,482 248,964 58,467 17,208,908 2,357,455 7.30
4 34,237 246,022 60,226 17,199,357 2,426,753 7.08
8 34,863 245,848 60,934 17,205,357 2,524,240 6.81

Evaluation: cligue discovery

Table 2 Synthetic clique graphs with different number of nodes (Nodes), edges (Edges), maximum clique
size (M C), and total number of vertices participating in cliques (R)

Name Nodes Edges d MC R avg size
PL 999,993 9,994,044 9.99 0 0 -
V16 65,536 610,500 9.31 15 6,548 9.5
V16 65,536 1,276,810 19.48 30 3,785 17.09
V16 65,536 2,161,482 32.98 50 2,398 27.21
V16 65,536 4,329,790 66.06 100 1,263 51.83
V17 131,072 1,214,986 9.26 15 13,130 0.48
V17 131,072 2,542,586 19.39 30 7,589 17.05
V17 131,072 4,309,368 32.87 50 4,790 27.23
V17 131,072 8,739,056 66.67 100 2,495 52.95
V20 1,048,576 9,730,142 9.76 15 104,861 9.50
V20 1,048,576 20,293,364 19.60 30 60,822 17.02
V20 1,048,576 34,344,134 32.90 50 38,544 27.07
V20 1,048,576 69,324,658 66.18 100 20,102 52.10

Column d gives the average number of edges per node, and the last column is the average clique size

Evaluation: Markov Cluster
Process

Synthetic graph histograms V17 MC100 Average Relative Error
100000 PL + 02 PL-V16-OUR —4—
V17-MC100 > PL-V17-OUR ==+3=-
* w X PL-V17-MC100 Et\éz‘%%%? S
V17- -
2 10000 0.15 - Pt-vzomct ~-<.>
a
= 1000 ¢ £
8 © 0.1 n B
QO o
Qo 100 ¢ o
>
10 + 0.05
+
1 — 0
1 10 100 1000 10000 0
degree Maximum Clique Size

Fig. 3 Outdegree histograms (/eft) and average relative error (right) in synthetic graphs

Evaluation: Runtime
Comparison

Table 4 Time required per retrieved clique of different sizes

Name MC |A| avg rms |AIM avgM tmsM ptmsM
PL-V16 15 6.501 9.00 236.1 5,810 7.96 4,359.2 1,938.5
PL-V16 30 3,766 16.53 336.4 3,596 15.18 7,877.3 3,12

PL-V16 50 2,389 26.58 305.1 2,331 25.40 11,190.4 5.089.2
PL-V16 100 1,261 51.08 590.0 1,242 50.80 19,839.7 9.363.1
PL-V17 15 13,071 9.00 120.5 12,032 8.30 2.048.4 977.9
PL-V17 30 7,565 16.53 129.8 7,321 15.83 3.226.3 1,612.3
PL-V17 50 4.776 26.70 203.1 4,706 26.21 4,886.3 2,394.1
PL-V17 100 2,492 51.85 318.2 2,481 51.89 10,153.5 4.446.1
PL-V20 15 104,771 9.06 103.1 103,437 9.31 580.2 103.6
PL-V20 30 60,773 16.56 150.3 60,614 16.97 614.6 152.4
PL-V20 50 38,524 26.62 155.4 38,473 27.09 639.7 248.2
PL-V20 100 20,095 51.62 178.6 20,097 52.11 1,371.1 505.7

Summary of evaluation

Relative error values are low in this hashing approach,
whereas the error grows with MCL when the graph contains
smaller of fewer cliques.

This clustering algorithm has high discovery rates (over 93%)
for various graph structures, while MCL is sensitive to the
number and size of cliques (and is less effective for fewer or
smaller cligues)

MCL has scalability problems and performs poorly on sparse
graphs [MSAK11] and takes O(V3) time.

Contributions

1. Extend a technique for detecting bicliques to detect “dense
subgraphs” [BCO03].

» 2. Apply “virtual node mining” to replace edges of the
dense subgraph and improve Web graph representation [BC08].

3. Use a bidirectional representation (k2-tree) for an
Improved representation.

4. Introduce a new compressed data structure to represent
dense subgraphs that does not use virtual nodes.

Dense subgraph mining

while (new dense subgraphs found) {
1. Use dense subgraph discovery from previous slides.

2. Apply virtual nodes on original graph to factor out edges of
discovered dense subgraphs.

}

Use compression techniques and node orderings on the output
graph.

Evaluation: dense subgraph

mining

Table 8 Main statistics on the DSM reduced graphs

Dataset T |V 3| | E3| d3 |E2|/|E3| |VN| ET (min)
eu-2005 10 1,042,260 3,516,473 337 5.32 179,596 3.45

5 1,019,699 3,776,194 3.70 4.96 157,035 245
indochina-2004 10 8,079,568 21,313,402 2.63 8.99 664,703 35.0

5 8,030,729 22,186,260 276 8.63 615,864 243
uk-2002 10 19,842,886 54,391,059 274 5.37 1,322,400 65.8

5 19.767.439 56,329,408 2.84 5.18 1,246,953 442
arabic-2005 10 26,193,219 74,071,714 2.82 8.52 3,449,139 185.1

5 25,805,521 78,919,645 3.05 7.99 3,061,441 130.3

Dense subgraph mining

while (new dense subgraphs found) {
1. Use dense subgraph discovery from previous slides.

2. Apply virtual nodes on original graph to factor out edges of
discovered dense subgraphs.

}

Use compression techniques and node orderings on the output
graph.

Performance evaluation with
out-neighbor support

The authors compared DSM with the best alternatives BV
[BRSV11], AD [AD09], and GB [GB11].

Table 9 Compression performance inbpe, with support for out-neighbor queries

Dataset eu-2005 indochina-2004 uk-2002 arabic-2005
BV1100w7 3.74 1.50 2.38 1.79
ADg 3.64 1.60 2.64 2.26
GB2g 1.83 1.09 1.76 1.35
DSM+ESx-T10+BV 3.06 1.48 2.68 2.06
DSM-ESx-T5+ADy4 2.44 1.18 2.05 1.56
DSM-ESx-T5+ADg 2.30 1.06 1.87 1.45
DSM-ESx-T10+AD4 2.32 1.14 2.01 1.51
DSM-ESx-T10+ADg 2.20 1.03 1.83 1.40

The best-performing one per graph is in bold and the second best in italics

Summary: space/time tradeoffs

Both BV and AD improved when combined with DSM. GB
dominates all the others besides the combination.

UK-2002 ARABIC-2005
6 Y 6 BV ——
AD -3~ AD -3~
GB * GB *
5 | DSM-ES15-T10+AD 8 | 5 |4 DSM-ES10-T10+AD —3—]
K2part W Kpart W
— D —
S 4t gt > 4t
© © X
ko, | k) x4
ER S 3o
() ()
€ o X € o
1 B 1|8
. - X o ~m X
0 — 0 . =
3 3.5 4 45 5 5.5 6 6.5 2.5 3 3.5 4 45 5 55
space bpe space bpe

Fig. 6 Space/time efficiency with out/in-neighbor queries

Contributions

1. Extend a technique for detecting bicliques to detect “dense
subgraphs” [BCO03].

2. Apply “virtual node mining” to replace edges of the
dense subgraph and improve Web graph representation [BC08].

» 3. Use a bidirectional representation (k2-tree) for an
Improved representation.

4. Introduce a new compressed data structure to represent
dense subgraphs that does not use virtual nodes.

Performance evaluation with

out/in-neighbor support

The authors combined the output of DSM with k2-trees, a

compression technique that supports out/in-neighbor queries

[BLN12]

Table 10 Compression performance when combining with k2trees

Dataset eu-2005 indochina-2004 uk-2002 arabic-2005
k2treeNAT 3.45 1.35 2.77 2.47
k2treeBFS 3.22 1.23 2.04 1.67
DSM-ESI10-T5 + k2treeNAT 2.76 1.36 2.40 1.76
DSM-ES10-T10 + k2treeNAT 2.71 1.34 2.40 1.76
DSM-ESI15-T5 + k2treeNAT 2.65 1.27 2.28 1.67
DSM-ESI5-T10 + k2treeNAT 2.59 1.27 2.27 1.66
DSM-ES100-T5 + k2treeNAT 2.56 1.16 2.13 1.52
DSM-ES100-T10 + k2treeNAT 2.48 1.14 2.08 1.47
DSM-ESI10-T5 + k2treeBFS 2.21 0.90 1.56 1.12
DSM-ES10-T10 + k2treeBES 2.11 0.87 1.53 1.08
DSM-ESI15-T5 + k2treeBFS 2.11 0.87 1.54 1.14
DSM-ES15-T10 + k2treeBES 2.21 0.89 1.57 1.08
DSM-ES100-T5 + k2treeBFS 2.54 0.95 1.67 1.21
DSM-ES100-T10 + k2treeBFS 2.45 0.93 1.64 1.18

Contributions

1. Extend a technique for detecting bicliques to detect “dense
subgraphs” [BCO03].

2. Apply “virtual node mining” to replace edges of the
dense subgraph and improve Web graph representation [BC08].

3. Use a bidirectional representation (k2-tree) for an
Improved representation.

»4. Introduce a new compressed data structure to represent
dense subgraphs that does not use virtual nodes.

Compact data structure for
dense subgraphs

Extract dense subgraphs and represent them using compact
data structures based on bitmaps.

(a) Pattern extraction (b) Our compressed representation

Algorithm 1: Construction of X and B
Input graph (sorted lists)

Input: Subsets Sy,..., Sy and Cy, ..., Cn S

Output: Sequence X and Bitmap B 1: 1237 8 C
X « & 2:12378 N TN
B « &; 3: 123738 56 12| 12378
fori < Oto N do 5:1 23578
L« S —Cj: 6: 123678
M < 3 NG s x|56/12378
t
R« Cj— 5 pattern remaining
X<« X:L:M:R; 1: 1237 8 5:5 5
B < B : 10/L110/MI10lRI . 2:12378]|]6:6 1001000100
end 312378
return X, B; 50123738
6: 1 237 8

Results summary

Modest space gains on social networks and no space gains on
Web graphs.

This approach is dominated in space and time by previously
proposed compression techniques, but can answer various
mining queries (e.g. density) related to dense subgraphs
easily and without extra space.

Conclusions

Dense-subgraph-mining-based approaches provide the best
time while using little space out of technigues that provide in-
and out-neighbor queries.

When combined with k2trees, the result is the most space-
efficient representation of Web graphs.

The compression scheme presented is better for social
networks with out- and in-neighbor support.

