
Compressed
representations for web

and social graphs
Cecilia Hernandez and Gonzalo Navarro

Presented by Helen Xu
6.886

April 6, 2018

Web graphs and social
networks

Web graphs represent the link structure of the Web usually as
directed graphs.

Social networks represented relationships among social
entities (undirected or directed)

Web graphs and social networks are growing fast.
It was recently estimated that the Web was over 7.8 billion
pages (around 200 billion edges).

Facebook has over 950 million users.

How do we manage large
graphs?

Streaming techniques use main memory and avoid random
access to disk [DFR06].

External memory algorithms use memory layouts to exploit
locality to reduce I/O cost [V01].

Distributed memory may impose synchronization and
communication costs similar to those of the external memory
approach [SV11].

How do we manage large
graphs?

Streaming techniques use main memory and avoid random
access to disk [DFR06].

External memory algorithms use memory layouts to exploit
locality to reduce I/O cost [V01].

Distributed memory may impose synchronization and
communication costs similar to those of the external memory
approach [SV11].

Compressed data structures reduce
memory and are often still faster than
I/O.

Contributions
1. Extend a technique for detecting bicliques to detect “dense
subgraphs” [BC08].

2. Apply “virtual node mining” to replace edges of the
dense subgraph and improve Web graph representation [BC08].

3. Use a bidirectional representation (k2-tree) for an
improved representation.

4. Introduce a new compressed data structure to represent
dense subgraphs that does not use virtual nodes.

Compressed representations for
Web and social graphs

The WebGraph framework exploits power-law distributions,
similarity, and locality using URL node ordering [BV04].

Virtual Node Mining (VNM) groups sets of pages that share
the same outlinks, which define complete bipartite subgraphs
(bicliques) [BC08].

The k2tree exploits the sparseness and clustering of the
adjacency matrix and supports in/out neighbor queries [BLN09].

And many more! Most can support out-neighbor queries but not
necessarily in-neighbor queries.

Bitmaps

Given a bitmap B[1,n],

rank(b, i) counts the number of times bit b appears in the prefix
B[1, i].

select(b, i) returns the position of the i-th occurence of bit b in B
(n+1 if not found)

access(i) retrieves the value B[i]

There exists a compressed bitmap with constant operation
times with space nH0(B) + o(n) bits where H0(B) ~ lg n [RRR02]

Compact data structures for
sequences

Bitmaps can be extended to compact data structures fo
sequences S[1, n] over an alphabet of size s.

Wavelet trees (WT) supports rank/select/acess in O(log(s))
time with nH0(S) + o(n)log(s) bits [GGV03].

This paper uses the version for large alphabets that saves
extra space O(s log(n)) [FG08].

Contributions
1. Extend a technique for detecting bicliques to detect “dense
subgraphs” [BC08].

2. Apply “virtual node mining” to replace edges of the
dense subgraph and improve Web graph representation [BC08].

3. Use a bidirectional representation (k2-tree) for an
improved representation.

4. Introduce a new compressed data structure to represent
dense subgraphs that does not use virtual nodes.

Dense subgraph discovery
A Web graph is a directed graph G = (V, E).

For an edge e = (u, v), we say that u is the source and v is the
center of e.

Web graphs have “dense communities” (a group of pages
related to a common interest) characterized by dense directed
bipartite subgraphs [RRT19, DGP07].

A dense subgraph H(S, C) of graph G = (V, E) is a graph
G’(S U C, S x C) where S, C ⊆V.

Algorithm for dense subgraph
discovery

1. Clustering-1 - build hashed matrix representing G

2. Clustering-2 - build clusters

3. Mining-1 - reorder cluster edges

4. Mining-2 - discover dense subgraphs and replacing

Total runtime = O(|E| log |E|)

Example: dense subgraph
discovery

Evaluation: dense subgraph
discovery

Evaluation: clique discovery

Evaluation: Markov Cluster
Process

Evaluation: Runtime
Comparison

Summary of evaluation
Relative error values are low in this hashing approach,
whereas the error grows with MCL when the graph contains
smaller of fewer cliques.

This clustering algorithm has high discovery rates (over 93%)
for various graph structures, while MCL is sensitive to the
number and size of cliques (and is less effective for fewer or
smaller cliques)

MCL has scalability problems and performs poorly on sparse
graphs [MSAK11] and takes O(V3) time.

Contributions
1. Extend a technique for detecting bicliques to detect “dense
subgraphs” [BC08].

2. Apply “virtual node mining” to replace edges of the
dense subgraph and improve Web graph representation [BC08].

3. Use a bidirectional representation (k2-tree) for an
improved representation.

4. Introduce a new compressed data structure to represent
dense subgraphs that does not use virtual nodes.

Dense subgraph mining

while (new dense subgraphs found) {

 1. Use dense subgraph discovery from previous slides.

 2. Apply virtual nodes on original graph to factor out edges of
discovered dense subgraphs.

}

Use compression techniques and node orderings on the output
graph.

Evaluation: dense subgraph
mining

Dense subgraph mining

while (new dense subgraphs found) {

 1. Use dense subgraph discovery from previous slides.

 2. Apply virtual nodes on original graph to factor out edges of
discovered dense subgraphs.

}

Use compression techniques and node orderings on the output
graph.

Performance evaluation with
out-neighbor support

The authors compared DSM with the best alternatives BV
[BRSV11], AD [AD09], and GB [GB11].

Summary: space/time tradeoffs

Both BV and AD improved when combined with DSM. GB
dominates all the others besides the combination.

Contributions
1. Extend a technique for detecting bicliques to detect “dense
subgraphs” [BC08].

2. Apply “virtual node mining” to replace edges of the
dense subgraph and improve Web graph representation [BC08].

3. Use a bidirectional representation (k2-tree) for an
improved representation.

4. Introduce a new compressed data structure to represent
dense subgraphs that does not use virtual nodes.

Performance evaluation with
out/in-neighbor support

The authors combined the output of DSM with k2-trees, a
compression technique that supports out/in-neighbor queries
[BLN12]

Contributions
1. Extend a technique for detecting bicliques to detect “dense
subgraphs” [BC08].

2. Apply “virtual node mining” to replace edges of the
dense subgraph and improve Web graph representation [BC08].

3. Use a bidirectional representation (k2-tree) for an
improved representation.

4. Introduce a new compressed data structure to represent
dense subgraphs that does not use virtual nodes.

Compact data structure for
dense subgraphs

Extract dense subgraphs and represent them using compact
data structures based on bitmaps.

Results summary

Modest space gains on social networks and no space gains on
Web graphs.

This approach is dominated in space and time by previously
proposed compression techniques, but can answer various
mining queries (e.g. density) related to dense subgraphs
easily and without extra space.

Conclusions
Dense-subgraph-mining-based approaches provide the best
time while using little space out of techniques that provide in-
and out-neighbor queries.

When combined with k2trees, the result is the most space-
efficient representation of Web graphs.

The compression scheme presented is better for social
networks with out- and in-neighbor support.

