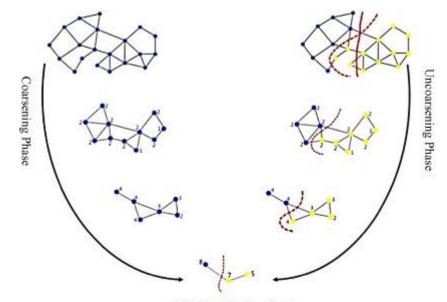
Multilevel Graph Partitioning

George Karypis and Vipin Kumar



Initial Partitioning Phase

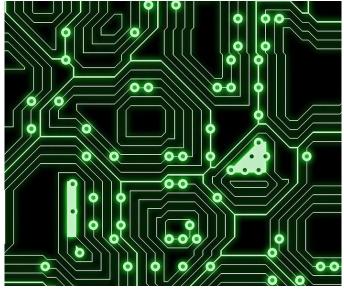
Adapted from Jmes Demmel's slide (UC-Berkely 2009) and Wasim Mohiuddin (2011)

Cover image from:

Wang, Wanyi, et al. "Polygonal Clustering Analysis Using Multilevel Graph-Partition." Transactions in GIS 19.5 (2015): 716-736.

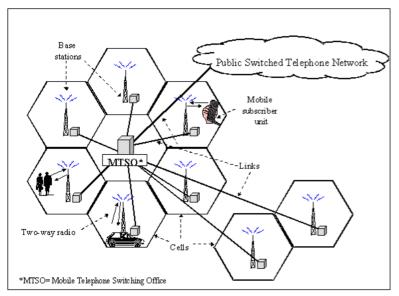
Presented by Yijiang Huang 4-11-2018

Introduction – Graph Partitioning is important!



VLSI design

 $N = \{$ units on chip $\}, E = \{$ wires $\}, W_E(j,k) =$ wire length



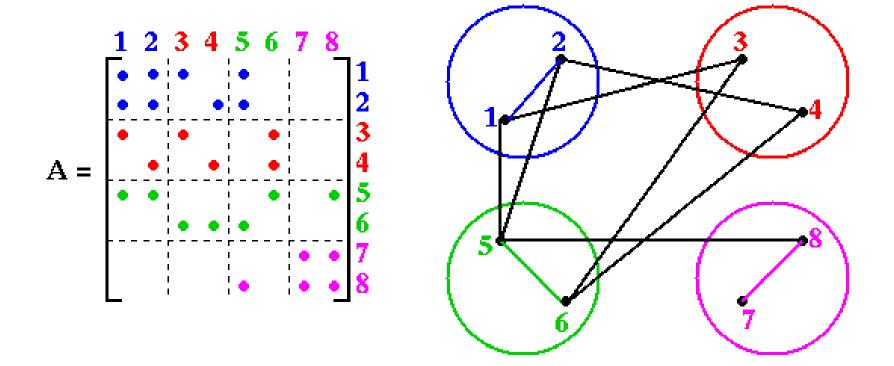
Telephone Network design

Original application, algorithm due to Kernighan

Load Balancing while Minimizing Communication

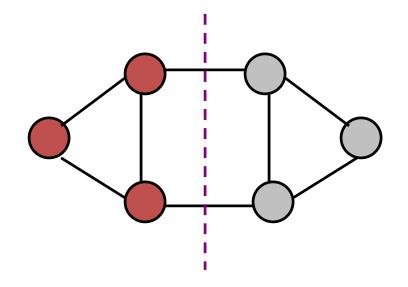
Sparse Matrix Vector Multiplication $y = y + A^*x$

Partitioning a Sparse Symmetric Matrix



Introduction

- Vertices are assigned a weight proportional to their task
- Edges are assigned weights that reflect the amount of data that needs to be exchanged



Introduction – Graph Partitioning is important!

Prefabricated Construction

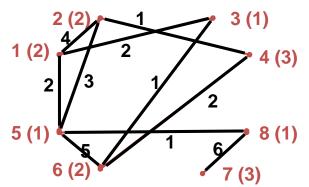
N = {Structural nodes}, E = {Steel elements}, W_E(j,k) = "onsite welding difficulty"

Chord, Antony Gormley, MIT 2015

- Introduction
- Definition of Graph Partitioning
- Literature Review
- Multilevel Partitioning Overview
- Phase 1: Coarsening phase
- Phase 2: Partitioning phase
- Phase 3: Uncoarsening phase
- Experimental Results

Problem Definition

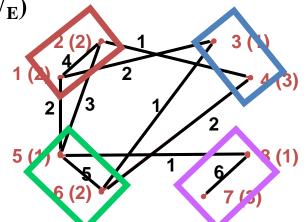
- Given a graph $G = (N, E, W_N, W_E)$
 - N = nodes (or vertices),
 - W_N = node weights
 - E = edges
 - W_E = edge weights



- Ex: N = {tasks}, W_N = {task costs}, edge (j,k) in E means task j sends $W_E(j,k)$ words to task k
- Choose a partition $N = N_1 U N_2 U \dots U N_P$ such that
 - The sum of the node weights in each N_j is "about the same"
 - The sum of all edge weights of edges connecting all different pairs N_{j} and N_{k} is minimized
- Ex: balance the work load, while minimizing communication
- Special case of $N = N_1 U N_2$: Graph Bisection

Problem Definition

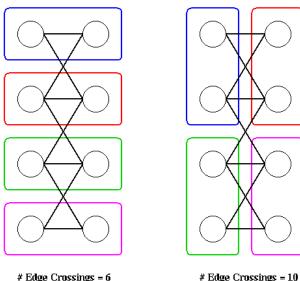
- Given a graph $G = (N, E, W_N, W_E)$
 - N = nodes (or vertices),
 - W_N = node weights
 - E = edges
 - W_E = edge weights



- Ex: N = {tasks}, W_N = {task costs}, edge (j,k) in E means task j sends $W_E(j,k)$ words to task k
- Choose a partition $N = N_1 U N_2 U \dots U N_P$ such that
 - The sum of the node weights in each N_j is "about the same"
 - The sum of all edge weights of edges connecting all different pairs $N_{j} \ and \ N_{k} \ is \ \mbox{minimized}$
- Ex: balance the work load, while minimizing communication
- Special case of $N = N_1 U N_2$: Graph Bisection

Cost of Graph Partitioning

- Many possible partitionings to search
- Just to divide in 2 parts there are: n choose n/2 = n!/((n/2)!)² ~ sqrt(2/(np))*2ⁿ possibilities



Sample Graph Partitionings

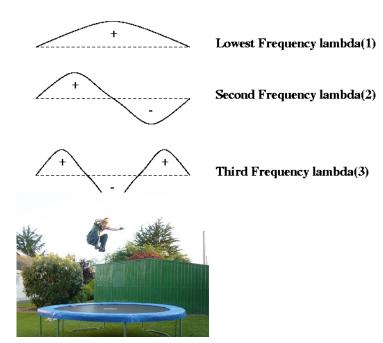
- Choosing optimal partitioning is NP-complete
- We need good heuristics

- Introduction
- Definition of Graph Partitioning
- Literature Review
- Multilevel Partitioning Overview
- Phase 1: Coarsening phase
- Phase 2: Partitioning phase
- Phase 3: Uncoarsening phase
- Experimental Results

Existing methods

Spectral Partitioning

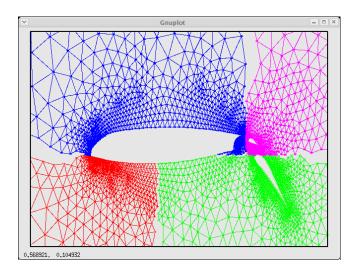
Modes of a Vibrating String



Intuition: planar ~ trampoline

Not requiring nodal coordinate Good partition Computation overhead

Geometric Partitioning



Successful in graphs with nodal coordinates

Existing methods

Multilevel Spectral Bisection [Barnard and Simon 1993]

Multilevel Graph Partition [Hendrickson and Leland 1995]

Fast and Good Multilevel Graph Partition [Karypis and Kumar 1998]

Main contribution

Compared to previous multilevel partition work, this paper:

- 1. Builds on [Hendrickson and Leland 1995] work, uses the **same** overall scheme but proposes different algorithms in each of the subcomponent in the scheme, does detailed **comparison**, and makes **improvements**.
- 2. Give a good analysis and insight on graph partitioning algorithm based on the presented comparison.

- Introduction
- Definition of Graph Partitioning
- Literature Review
- Multilevel Partitioning Overview
- Phase 1: Coarsening phase
- Phase 2: Partitioning phase
- Phase 3: Uncoarsening phase
- Experimental Results

If we want to partition G(N,E), but it is too big to do efficiently, what can we do?

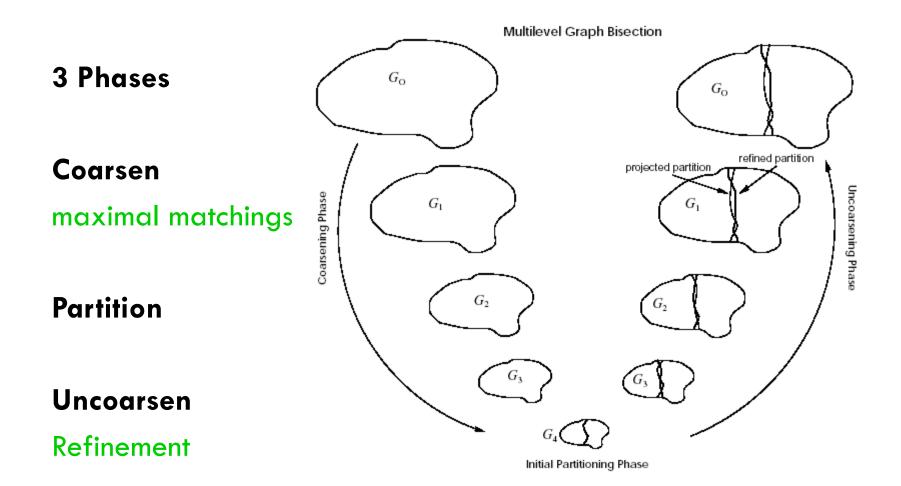
1) Replace G(N,E) by a **coarse approximation** $G_c(N_c,E_c)$, and partition G_c instead

2) Use partition of G_c to get a rough partitioning of G, and then iteratively **improve** it

What if G_c still too big?

Apply same idea recursively (recursive bisection)

Multilevel Partitioning - Overview



Existing methods

Coarsening **Initial Parition** Uncoarsening Multilevel Graph Partition [Hendrickson and Leland 1995] Random Matching(RM) Spectral Bisection Kernighan-Lin (KL) Fast and Good Multilevel Graph Partition [Karypis and Kumar 1998] **RM** + heavy-edge heuristic Greedy-Graph growing Boundary KL

- Introduction
- Definition of Graph Partitioning
- Literature Review
- Multilevel Partitioning Overview
- Phase 1: Coarsening phase
- Phase 2: Partitioning phase
- Phase 3: Uncoarsening phase
- Experimental Results

Different Ways to Coarsen

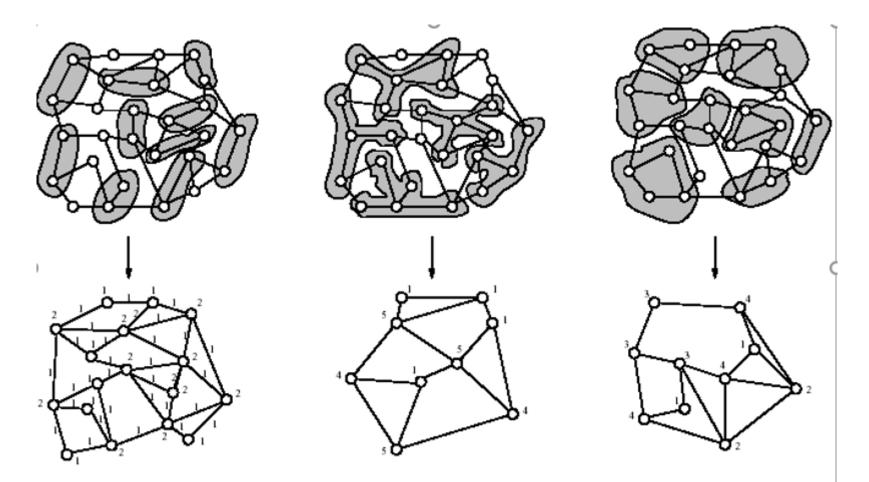


Figure 2: Different ways to coarsen a graph.

Coarsening methods

A coarser graph can be obtained by collapsing adjacent vertices

Matching, Maximal Matching

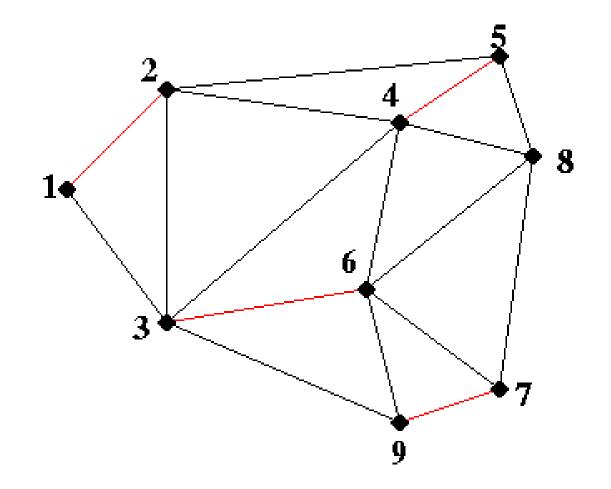
Different Ways to Coarsen Random Matching (RM)

- with Heavy Edge Matching (HEM)
- with Light Edge Matching (LEM)
- with Heavy Clique Matching (HCM)

Coarsening phase Maximal Matching

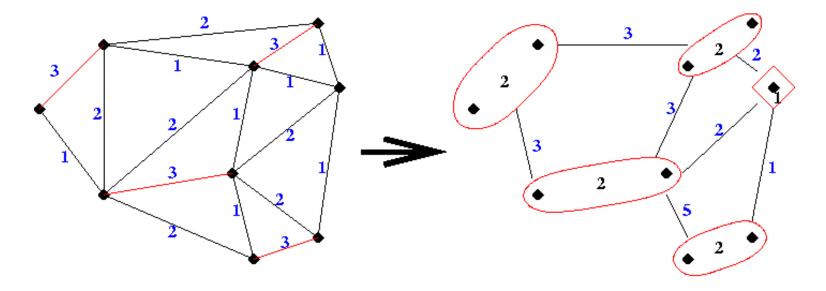
- *Definition*: A matching of a graph G(N,E) is a subset E_m of E such that no two edges in E_m share an endpoint
- Definition: A maximal matching of a graph G(N,E) is a matching E_m to which no more edges can be added and remain a matching
- A simple greedy algorithm computes a maximal matching:

Example of matching



Example of Coarsening

How to coarsen a graph using a maximal matching



- $\mathbf{G} = (\mathbf{N}, \mathbf{E})$
- E_m is shown in red
- Edge weights shown in blue
- Node weights are all one

- $\mathbf{G}_{\mathbf{c}} = (\mathbf{N}_{\mathbf{c}}, \mathbf{E}_{\mathbf{c}})$
- N_c is shown in red

Edge weights shown in blue

Node weights shown in black

- Introduction
- Definition of Graph Partitioning
- Literature Review
- Multilevel Partitioning Overview
- Phase 1: Coarsening phase
- Phase 2: Partitioning phase
- Phase 3: Uncoarsening phase
- Experimental Results

Partitioning Algorithms

Spectral Bisection (SB)

```
Kernighan-Lin (KL)
Fiduccia-Mattheyses (FM)
```

Graph Growing Algorithm (GGP)

Greedy Graph Growing Algorithm (GGGP)

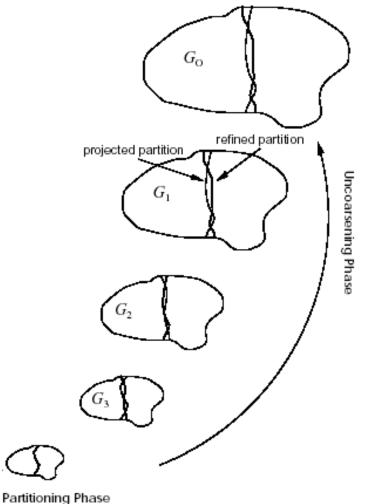
Kernighan/Lin

- Take a initial partition and iteratively improve it
 - Kernighan/Lin (1970), $cost = O(|N|^3)$ but easy to understand
 - Fiduccia/Mattheyses (1982), cost = O(|E|), much better, but more complicated
- Given $G = (N,E,W_E)$ and a partitioning N = A U B, where |A| = |B|
 - $T = cost(A,B) = S \{W(e) \text{ where } e \text{ connects nodes in } A \text{ and } B\}$
 - Find subsets X of A and Y of B with |X| = |Y|
 - Consider swapping X and Y if it decreases cost:
 - newA = (A X) U Y and newB = (B Y) U X
 - newT = cost(newA, newB) < T = cost(A,B)
- Need to compute new T efficiently for many possible X and Y, choose smallest (best)

- Introduction
- Definition of Graph Partitioning
- Literature Review
- Multilevel Partitioning Overview
- Phase 1: Coarsening phase
- Phase 2: Partitioning phase
- Phase 3: Uncoarsening phase
- Experimental Results

Phase 3: Uncoarsening phase

I Graph Bisection



"Unshrink"

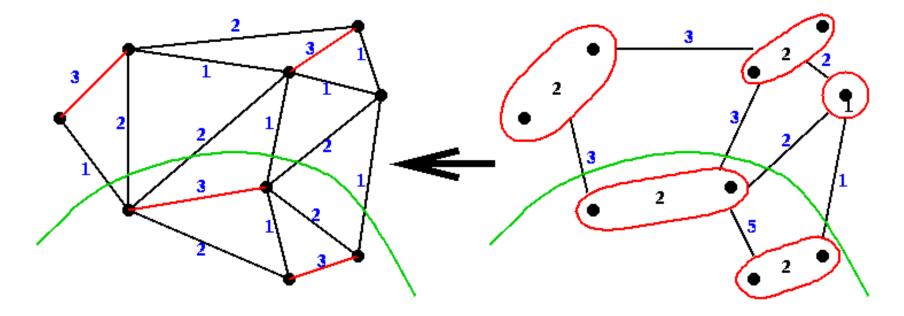
Refine edge cut (we have more degrees of freedom!)

Kernighan-Lin refinement: We have **good initial partition** from the uncoarsened graph. (so multiple trials!)

Only swap in boundary (Boundary-KL)

Phase 3: Uncoarsening phase

Converting a coarse partition to a fine partition



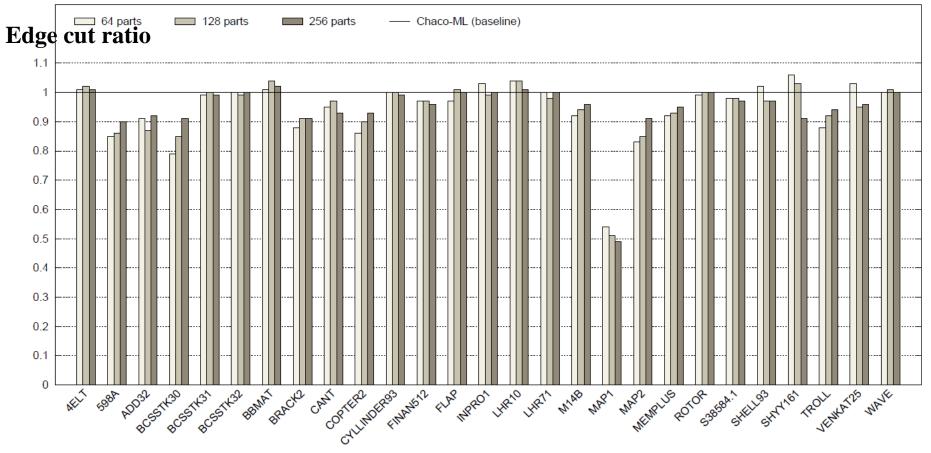
Partition shown in green

- Introduction
- Definition of Graph Partitioning
- Literature Review
- Multilevel Partitioning Overview
- Phase 1: Coarsening phase
- Phase 2: Partitioning phase
- Phase 3: Uncoarsening phase
- Experimental Results

This work (HEM + GGGP + BKL)

Multilevel Graph Partition [Hendrickson and Leland 1995] (RM + SB + KL)

Our Multilevel vs Chaco Multilevel (Chaco-ML)



Runtime ratio

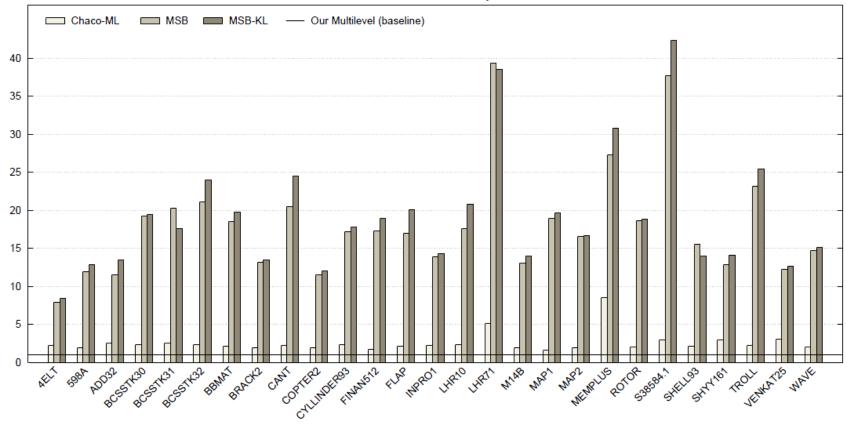


FIG. 6. The time required to find a 256-way partition for Chaco-ML, MSB, and MSB-KL relative to the time required by our multilevel algorithm.

	4	unber of T	ials continates	64 _5	calven Gobalv	en pun	ine pest	se of Parallelle	
Spectral Bisection	1	no	••••	0	••••				
Multilevel Spectral Bisection	1	no	••••	0	••••			Lo	
Mulitlevel Spectral Bisection-KL	1	no	•••••	••	••••			Lo	
Multilevel Partitioning	1	no	•••••	••	••••			Gl	
Levelized Nested Dissection	1	no	••	0	••			Ta	
	1	no	••	••	0			str	
Kernighan-Lin	10	no	•••0	••	•0			(
	50	no	••••	••	••			(ea	
Coordinate Nested Dissection	1	yes	•	0	•	•		im	
Inertial	1	yes	••	0	••				
Inertial-KL	1	yes	••••	••	••				
	1	yes	••	0	••				
Geometric Partitioning	10	yes	•••0	0	•••0 ••••				
	50	yes							
	1	yes	••••	••	••				
Geometric Partitioning-KL	10	yes	•••••	••	•••0				
	50	yes	*****	••	••••				

Local view: Localized refinement

Global view: Takes into account the general structure of the graph

(each "dot" represents 10% improvement)

Available Implementations

Multilevel Graph Partitioning (still developing!) METIS (www.cs.umn.edu/~metis) ParMETIS - **parallel version**

Multilevel Spectral Bisection

S. Barnard and H. Simon, "A fast multilevel implementation of recursive spectral bisection ...", Proc. 6th SIAM Conf. On Parallel Processing, 1993 Chaco (www.cs.sandia.gov/CRF/papers_chaco.html)

Hybrids possible

Ex: Using Kernighan/Lin to improve a partition from spectral bisection

References

Karypis, George, and Vipin Kumar. "A fast and high quality multilevel scheme for partitioning irregular graphs." *SIAM Journal on scientific Computing* 20, no. 1 (1998): 359-392.

Slide from James Demmel https://people.eecs.berkeley.edu/~demmel/cs267_Spr16/Lectures/lecture14_partition_jwd 16_4pp.pdf

Slide from Wasim Mohiuddin http://delab.csd.auth.gr/courses/c_mmdb/mmdb-2011-2012-metis.ppt