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Introduction – Graph Partitioning is important!

VLSI design Telephone Network design

N = {units on chip},  E = {wires}, 

WE(j,k) = wire length

Original application, algorithm due to 

Kernighan

Load Balancing while Minimizing 

Communication
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Sparse Matrix Vector Multiplication y = y +A*x
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Introduction

• Vertices are assigned a weight proportional to their task

• Edges are assigned weights that reflect the amount of data 

that needs to be exchanged
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Introduction – Graph Partitioning is important!

Prefabricated Construction

N = {Structural nodes},  

E = {Steel elements}, 

WE(j,k) = “onsite welding difficulty”

Chord, Antony Gormley, MIT 2015
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Outlines

- Introduction

- Definition of Graph Partitioning

- Literature Review

- Multilevel Partitioning - Overview

- Phase 1: Coarsening phase

- Phase 2: Partitioning phase

- Phase 3: Uncoarsening phase

- Experimental Results
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Problem Definition

• Given a graph G = (N, E, WN, WE)

– N = nodes (or vertices),

– WN = node weights

– E = edges

– WE = edge weights

• Ex: N = {tasks}, WN = {task costs}, edge (j,k) in E means task j sends 

WE(j,k) words to task k

• Choose a partition N = N1 U N2 U … U NP such that

– The sum of the node weights in each Nj is “about the same”

– The sum of all edge weights of edges connecting all different pairs Nj

and Nk is minimized

• Ex: balance the work load, while minimizing communication

• Special case of N = N1 U N2:   Graph Bisection
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Cost of Graph Partitioning

• Many possible partitionings

to search

• Just to divide in 2 parts there are: 

n choose n/2 = n!/((n/2)!)2 ~ 

sqrt(2/(np))*2n possibilities

• Choosing optimal partitioning is NP-complete

• We need good heuristics
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Existing methods

Spectral Partitioning Geometric Partitioning

Successful in graphs with nodal 

coordinates
Intuition: planar ~ trampoline

Not requiring nodal coordinate

Good partition

Computation overhead
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Existing methods

Multilevel Spectral Bisection [Barnard and Simon 1993]

Multilevel Graph Partition [Hendrickson and Leland 1995]

Fast and Good

Multilevel Graph Partition [Karypis and Kumar 1998]
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Main contribution

Compared to previous multilevel partition work, this paper:

1. Builds on [Hendrickson and Leland 1995] work, uses the same

overall scheme but proposes different algorithms in each of the 

subcomponent in the scheme, does detailed comparison, and 

makes improvements.

2. Give a good analysis and insight on graph partitioning 

algorithm based on the presented comparison.



6.886 – Multilevel Graph Partitioning – yijiangh@mit.edu 14 / 35

Outlines

- Introduction

- Definition of Graph Partitioning

- Literature Review

- Multilevel Partitioning - Overview

- Phase 1: Coarsening phase

- Phase 2: Partitioning phase

- Phase 3: Uncoarsening phase

- Experimental Results



6.886 – Multilevel Graph Partitioning – yijiangh@mit.edu 15 / 35

Multilevel Partitioning - Overview

If we want to partition G(N,E), but it is too big to do efficiently, 

what can we do?

1) Replace G(N,E) by a coarse approximation Gc(Nc,Ec), 

and partition Gc instead

2) Use partition of Gc to get a rough partitioning of G, and 

then iteratively improve it

What if Gc still too big?

Apply same idea recursively (recursive bisection)
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Multilevel Partitioning - Overview

3 Phases

Coarsen

maximal matchings

Partition

Uncoarsen

Refinement
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Existing methods

Multilevel Graph Partition [Hendrickson and Leland 1995]

Fast and Good

Multilevel Graph Partition [Karypis and Kumar 1998]

Coarsening Initial Parition Uncoarsening

Random Matching(RM)   Spectral Bisection             Kernighan-Lin (KL)

RM + heavy-edge heuristic  Greedy-Graph growing    Boundary KL
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Different Ways to Coarsen
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Coarsening methods

A coarser graph can be obtained by collapsing 
adjacent vertices

Matching, Maximal Matching

Different Ways to Coarsen
Random Matching (RM)
- with Heavy Edge Matching (HEM)
- with Light Edge Matching (LEM)
- with Heavy Clique Matching (HCM)
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03/09/2009CS267 Lecture 1321

Coarsening phase Maximal Matching

• Definition: A matching of a graph G(N,E) is a subset Em of E 

such that no two edges in Em share an endpoint

• Definition: A maximal matching of a graph G(N,E) is a 

matching Em to which no more edges can be added and remain 

a matching

• A simple greedy algorithm computes a maximal matching:

let Em be empty

mark all nodes in N as unmatched

for i = 1 to |N|      … visit the nodes in any order (random)

if i has not been matched

mark i as matched

if there is an edge e=(i,j)  where j is also unmatched, 

add e to Em

mark j as matched

endif

endif

endfor
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Example of matching
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Example of Coarsening
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Partitioning Algorithms

Spectral Bisection (SB)

Kernighan-Lin (KL)

Fiduccia-Mattheyses (FM)

Graph Growing Algorithm (GGP)

Greedy Graph Growing Algorithm 

(GGGP)
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Kernighan/Lin

• Take a initial partition and iteratively improve it

– Kernighan/Lin (1970), cost = O(|N|3) but easy to understand

– Fiduccia/Mattheyses (1982), cost = O(|E|), much better, but more 

complicated

• Given G = (N,E,WE) and a partitioning N = A U B, where |A| 

= |B|

– T = cost(A,B) = S {W(e) where e connects nodes in A and B}

– Find subsets X of A and Y of B with |X| = |Y|

– Consider swapping X and Y if it decreases cost:

• newA = (A – X) U Y    and    newB = (B – Y) U X

• newT = cost(newA , newB) < T = cost(A,B)

• Need to compute new T efficiently for many possible X and 

Y, choose smallest (best)
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Phase 3: Uncoarsening phase

“Unshrink”

Refine edge cut

(we have more degrees of 

freedom!)

Kernighan-Lin refinement:

We have good initial partition from the 

uncoarsened graph. (so multiple trials!)

Only swap in boundary (Boundary-KL)
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Phase 3: Uncoarsening phase
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Edge cut ratio

Multilevel Graph Partition [Hendrickson and 

Leland 1995] (RM + SB + KL)
This work (HEM + GGGP + BKL)
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Runtime ratio
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Local view:

Localized refinement

Global view:

Takes into account the general 

structure of the graph

(each “dot” represents 10% 

improvement)
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Available Implementations

Multilevel Graph Partitioning (still developing!)

METIS (www.cs.umn.edu/~metis)

ParMETIS - parallel version

Multilevel Spectral Bisection

S. Barnard and H. Simon, “A fast multilevel implementation of recursive spectral 

bisection …”, Proc. 6th SIAM Conf. On Parallel Processing, 1993

Chaco (www.cs.sandia.gov/CRF/papers_chaco.html)

Hybrids possible 

Ex: Using Kernighan/Lin to improve a partition from spectral bisection
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