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\ Motivation

e Graphs are important
e CPU cache performance is key issue in efficiency in DBS
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Motivation

e Graphs are important

e CPU cache performance is key issue in efficiency in DBS
o Cache stalls take a large proportion of time

e Can better locality via ordering help?
o Store frequently accessed nodes close in memory

e How can ageneralized solution reduce cache stall rates?



Graph Access Patterns

e Most common access pattern:

1: for each node v € Np(u) do

©) 2:  the program segment to compute/access v

e Locality between neighboring nodes are important

e Locality among sibling nodes even more important

Sl (°) > do(u)

e Let“closeness” heuristic be S(u,v) =S s(u,v) +S_n(u, v)



Graph Partitioning isn't sufficient

e Real graphs have poor edge cuts b/c
power law degree distributions
o Nodesw/ high degrees Assume a cache line holds 3
e Fixedsized caches o)
o What partition size? @«Qif
ey O &

e Dataalignment

(a) Minimize Edge-Cuts (b) Graph Partition

Figure 3: By Graph Partitioning



Graph Ordering does better

e Optimal permutation ¢ among

e Frequently accessed nodes within
window w

e Reorder graphid’s

e Sortinall adj. lists

(a) Maximize F'(¢) (b) Partition Representation

Figure 4: By Graph Ordering




\ Graph Ordering does better cont'd

e Locality is continuous for any sliding
window

o Assumes little of data alignment

e Considerssibling and neighbor

locality

(a) Maximize F'(¢) (b) Partition Representation

Figure 4: By Graph Ordering




\ Problem Statement

e Findthe optimal permutation ¢ that maximizes aggregate

locality defined by F(¢) for all sliding windows of size w

Z S(u,v)

0<d(v)—¢(u)<w

' D Sl

=1 j=max{l,i—w}




Key Contributions

e Locality scoring function
e Prove NP-hardness of graph ordering
o Graph orderingis a variant of maximum TSP
m Maximize reward for sliding windows w
e Propose two algorithms for graph ordering
o GO
o GO-PQ

e Evaluation of improved efficiency



GO algorithm
\ Algorithm 1 GO (G, w, S(-,+))

1: select a node v as the start node, P[1] < v;
2: Vr + V(G) \ {v}, i + 2;
: while 2 < n do
VUmazxz < @, kmaxz < —00;

for each node v € Vi do
i—1

j=max{l,i—w}
Umazx < U, Emaz < kv;
B sl <t 4 ¢

3
4
5
6: ky Y. S(P[j],v);
7
8
9:
10: Vi + Ve \ {vmaez};




GO algorithm

e Greedily maximize F(¢) by inserting v with the largest
aggregate S() in previous window w

e Randomly select starting node

e Redundantly computes eq. 4 w-times for same pair (v_j,
v) while in same window

e Scans through even nodes w/o neighbor/sibling

relationships w=7
Fgo is GO result [Facebook | 149,073 172,526 231,710] 275,974 308,091| 373,685
Fw is upper AirTraffic 2,420 3,468 2,993 4,697 3,465 5,545

bound of optimal _
locality score Table 1: Fy, and F',




GO-PQ algorithm

Algorithm 2 GO-PQ (G, w, S(-,-))

: for each node v € V(G) do
:  insert v into Q such that key(v) < 0;
: select a node v as the start node, P[1] < v, delete v from Q;
T 2
: whilez < ndo
ve + P[i—1];
for each node u € N (ve) do
if u € Q then Q.incKey(u);
for each node u € N;(v.) do
if u € Q then Q.incKey(u);
for each node v € N (u) do
if v € Q then Q.incKey(v);
if i > w + 1 then
vy < Pli —w —1];
for each node u € N (vp) do
if u € Q then Q.decKey(u);
for each node © € Ny(v) do
if u € O then Q.decKey(u);
for each node v € N (u) do
if v € Q then Q.decKey(v);
Vmaz  2.pop();
P[i] < vmaz,t < 1+ 1;




\ GO-PQ algorithm
e Similarto GO a4
e Uses PQ to maintain sliding window
e Q[v]=k vascomputedbyEq.4

e WhenV _ejoins,vin W increment o

their keys if there is a neighbor L NN
and/or sibling relation B\

\%%

e V bleaves,vw/relations
decrements key

e PopslargestkeyasV_b



\ Time complexities

Theorem 3.2: The GO Algorithm 1 is in O(w - dmaz n? ), where
dmaz denotes the maximum in-degree of the graph G.

Theorem 3.3: The time complexity of the GO-PQ algorithm is
O(p - > ,ev(do(w)? +n - @), where i denotes the time com-
plexity for the updates (incKey(-) and decKey(-)) and o denotes
the time complexity for finding the max node (pop()).




Evaluation
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Evaluation

Order | Litef | Llmr | D3of | L3+ | Cachonr ]

Table 3: Cache Statistics by PR over Flickr (M = Millions)




Evaluation

Order | NQ BFS| DFS| ScC|_SP] PR DS Keore | Diam ]
RCM___ | 616|144 75| 87| 89| 440 82| 175] 117
DegSort | 593 | 187 80| 121 166 55.1] 210 169 155
Gorder | 40.0| 124 46| 72108 315] 169] 145] 95

Table 7: L1 Cache Miss Ratio on sd1-arc (in percentage %)




Evaluation

e Applying Gorder to s
distributed graph [
Systems IS 10 Pokec Flickr Lived wiki G+ pld twitter sdi1

complicated b/c Figure 12: PageRank (4 threads)
unclear how graph . 15
partitioning
happens
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(a) GraphChi (b) PowerGraph
Figure 13: PageRank on Graph Systems




Conclusion

e CPUstallingisimportant barrier to efficiency
e This paper presents a generalized optimization for graph
algorithms with the common access pattern

O 1: for each node v € Np(u) do

2:  the program segment to compute/access v
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