
Speedup Graph
Processing by
Graph Ordering

Presented by: Bishesh Khadka
MIT 6.886 - Graph Analytics

Hao Wei, Jeffrey Xu Yu, Can Lu, Xuemin Lin

Motivation

● Graphs are important
● CPU cache performance is key issue in efficiency in DBS

Motivation

● Graphs are important

● CPU cache performance is key issue in efficiency in DBS

○ Cache stalls take a large proportion of time

● Can better locality via ordering help?

○ Store frequently accessed nodes close in memory

● How can a generalized solution reduce cache stall rates?

Graph Access Patterns

● Most common access pattern:

○

● Locality between neighboring nodes are important

● Locality among sibling nodes even more important

○

● Let “closeness” heuristic be S(u, v) = S_s(u, v) + S_n(u, v)

Graph Partitioning isn’t sufficient

● Real graphs have poor edge cuts b/c

power law degree distributions

○ Nodes w/ high degrees

● Fixed sized caches

○ What partition size?

● Data alignment

Assume a cache line holds 3
nodes

Graph Ordering does better

● Optimal permutation ᷪ among

● Frequently accessed nodes within

window w

● Reorder graph id’s

● Sort in all adj. lists

Graph Ordering does better cont’d

● Locality is continuous for any sliding

window

○ Assumes little of data alignment

● Considers sibling and neighbor

locality

Problem Statement

● Find the optimal permutation ᷪ that maximizes aggregate

locality defined by F(ᷪ) for all sliding windows of size w

●

Key Contributions

● Locality scoring function

● Prove NP-hardness of graph ordering

○ Graph ordering is a variant of maximum TSP

■ Maximize reward for sliding windows w

● Propose two algorithms for graph ordering

○ GO

○ GO-PQ

● Evaluation of improved efficiency

GO algorithm

GO algorithm

● Greedily maximize F(ᷪ) by inserting v with the largest

aggregate S() in previous window w

● Randomly select starting node

● Redundantly computes eq. 4 w-times for same pair (v_j,

v) while in same window

● Scans through even nodes w/o neighbor/sibling

relationships

Eq. 4

Fgo is GO result
Fw is upper
bound of optimal
locality score

GO-PQ algorithm

GO-PQ algorithm

● Similar to GO

● Uses PQ to maintain sliding window

● Q[v] = k_v as computed by Eq. 4

● When V_e joins, v in W increment

their keys if there is a neighbor

and/or sibling relation

● V_b leaves, v w/ relations

decrements key

● Pops largest key as V_b

Eq. 4

Time complexities

Evaluation

Evaluation

Evaluation

Evaluation

● Applying Gorder to
distributed graph
systems is
complicated b/c
unclear how graph
partitioning
happens

Conclusion

● CPU stalling is important barrier to efficiency
● This paper presents a generalized optimization for graph

algorithms with the common access pattern
○

●

References

● Hao Wei, Jeffrey Xu Yu, Can Lu, Xuemin Lin

Speedup Graph Processing by Graph Ordering

