Greedy Sequential Maximal
Independent Set and Matching are
Parallel on Average

Julian Shun

Joint work with

Guy Blelloch and Jeremy Fineman
(Paper in SPAA 2012)

Outline

Introduction -

— Definitions and sequential algorithm for Maximal
Independent Set

Luby’s Algorithm
Parallel Greedy algorithm
Analysis of Parallel Greedy algorithm

Experiments

Maximal Independent Set (MIS)
 Undirected graph G = (V, E)
* Return asubset U <V such that

1. U ﬂ NU)=0 (Independent set)
2.¥veV\U, N@) (JU=@ (maximal)

Motivation

* Why do we care about maximal independent
sets (MIS)?

* Used as a subroutine in many parallel
algorithms to identify “independent” parts
of graph that can be processed
simultaneously

* Map/graph coloring, scheduling,
computational biology, distributed

computing etc. o G
@'@ O
6 o

Sequential greedy algorithm

* MIS corresponding sequentially processing the
vertices in order

— This has been called the lexicographically first
ordering

Outline

Introduction

— Definitions and sequential algorithm for Maximal

Independent Set
Luby’s Algorithm
Parallel Greedy algorithm
Analysis of Parallel Greedy algorithm

Experiments

—

Luby’s algorithm

* Each round:
e assign random priorities to all vertices

e vertices with a priority greater than all of its
neighbors’ priorities join the MIS

e remove vertices in MIS and all of their
neighbors

* Repeat this process until no vertices remain

NG
o™
A ‘.}&‘@m

Luby’s algorithm

* Each round:
e assign random priorities to all vertices

e vertices with a priority higher than all of its neighbors’
priorities join the MIS (smaller number = higher priority!)

* remove vertices in MIS and all of their neighbors

* Repeat this process until no vertices remain

Luby’s algorithm

* Requires O(log m) depth and O(m log m) work

* Can be made to run in O(log? m) depth and O(m)
work

* Pack vertices/edges each iteration

NG
o™
A %&l@m

Luby vs. Sequential

10° ¢ . .
: g [| iy :
—+—serial MIS |]
’%\101& .
C g
3 L,
v o S Oy :
= _ > : : 9—4—3-0
— r o ‘‘‘‘‘‘‘‘‘ ¢
5
o 10 3 3
-2
10 | | |] |
1 2 4 8 16 32 64

(a) Running time vs. number of threads on a random graph

(n=10",m =

Number of threads

5 x 10") in log-log scale

greedy

* Since sequential greedy
implementation is so
simple, it is hard for a
parallel implementation
to beat it

* Luby wins after 16
threads

* Note: Luby does not
return the same answer
as sequential

@%gm

PANNSG

Outline

Introduction

— Definitions and sequential algorithm for Maximal

Independent Set
Luby’s Algorithm
Parallel Greedy algorithm
Analysis of Parallel Greedy algorithm

Experiments

—

Sequential greedy algorithm

* MIS corresponding sequentially processing the
vertices in order

— This has been called the lexicographically first
ordering

“Sequential” greedy algorithm

* Note that some vertices may be processed in
parallel

Parallel-Greedy vs. Luby’s algorithm

Parallel-Greedy Luby

e Randomly order the vertices

* While vertices remain:

* In parallel: vertices with
higher priority than all of
their neighbors join the MIS

e Remove vertices in MIS and
all of their neighbors from

the graph G G
How many iterations does Parallel-Greedy take? @ |. m
& 96

Parallel-Greedy

* How many iterations does this algorithm take?

* For an arbitrary ordering, it could take O(n)
iterations

* Example: A—@—0—0o—0O©

 What about for a random ordering?

 This talk: we show that the number of

iterations is polylogarithmic
A
B—@& @
6 ot

Related Work for Parallel-Greedy

For arbitrary graphs and arbitrary orderings, this
problem was proved to be P-complete (Cook ‘85)

For uniform random graphs, this problem was
shown to have polylog depth (Coppersmith et al.
’89 showed a depth of O(log? n); Calkin and Frieze
‘90 improved the depth to O(log n))

This talk: for arbitrary graphs and random
orderings, this problem has O(log? n) depth

Depth recently improved to @(log n) @Q

[Fischer and Noever, SODA 2018] (B —@ W
6 o

* Performance, fast runtime (by

Practical Benefits

using prefixes)

Guarantees the same result as

the sequential algorithm’s
output every time

* Such determinism allows for

ease of debugging,

verification of correctness,
reasoning about code, etc.

10 ‘ '
===Qur MIS
9 Luby]
—~ 10" —+— Serial MIS ||
n é.]
g T,
Q Wiy,
» o
~10 ~._ s 3
e " free e
& | TEeL QQ """"""" ,&
g S Tl d
110 3 -\--‘—————E
-2
10 | 1 1 | 1
1 2 4 8 16 32 64

Number of threads

(b) Running time vs. number of threads on a rMat graph (n =

bY. L S [
224 m =5 x 107) in log-log scale

NG
o™
& oy

Outline

Introduction

— Definitions and sequential algorithm for Maximal

Independent Set
Luby’s Algorithm
Parallel Greedy algorithm
Analysis of Parallel Greedy algorithm

Experiments

—

Analysis

Luby’s MIS Algorithm Parallel-Greedy Algorithm

O(mlogm) O(log m) O(m log? m) Of(log? m)
O(m) O(log? m) O(m) O(log3 m)

* Luby’s analysis relies on the iterations being
independent since ordering is regenerated per
iteration

* For Parallel-Greedy, ordering is generated just
once!

* Requires other analysis techniques

Priority-Directed Acyclic Graph (pDAG)

 For some set of vertices V, the priority-DAG is
the vertex-induced subgraph of V, where each
edge is directed from its higher priority
endpoint to its lower priority endpoint

 The dependence length of a pDAG is the
number of steps of Parallel-Greedy required to
process the graph to completion

* This is also the depth of a call to

©
Parallel-Greedy 'ﬁ
B—@ \®
6 o

Priority-Directed Acyclic Graph (pDAG)

* Another way to view parallel algorithm is to
repeat the following until no vertices remain:

e Put all “roots” in MIS, remove roots, all
neighbors of roots, and any incident edges

(1
6‘6 o

2

Priority-Directed Acyclic Graph (pDAG)

Priority-Directed Acyclic Graph (pDAG)

Priority-Directed Acyclic Graph (pDAG)

* The dependence length is upper bounded by
the longest directed path in the pDAG, but
could be much less

* Ex: A complete graph has a directed path of
length O(n) but the dependence length is
O(1)

Prefix-based MIS algorithm

Path length = O(n)
* Need to show:

e Lon thi ixes Gs issmall
o NU 1 %‘34... . . . n

11N

* Tengetdowogependencedengths, we must
analyz@ﬁ%&@%ﬁﬁ—\

Parallel&@rfeedy — .
’ amé{gée'(?ﬁfﬂu/%ggﬂ\ﬁ@\érallel version

Prefix-based MIS algorithm
 Randomly order the vertices
* While vertices remain:

* Choose a prefix parameter 6 (a fraction)

* Take the &n highest priority vertices in
prefix

* Run Parallel-Greedy until completion on
induced subgraph of prefix vertices

 Remove prefix vertices and neighbors of
MIS from graph &G

®
A ‘@‘&‘@m

Number of rounds is small

* Randomly order the vertices

* While vertices remain:

* Choose a prefix parameter 6
* Take the 6|V| highest priority vertices in prefix

* Run Parallel-Greedy until completion on induced subgraph of prefix
vertices

Remove prefix vertices and neighbors of MIS from graph

%ééﬁﬁﬁﬁa% 5%1%%@%%%‘5 BAR e

% M@SWH@@@%EI%%@U aafter

gﬂ‘mvﬁtlmafter the i‘th round have

degree at repst A/Z' with high probability.
R e L

n n¢
* Take union bound over all vertices

pDAG of each prefix is shallow

* Theorem: For a 6-prefix where 6 = O(2'log(n)/A),
longest path in pDAG is length O(log n) w.h.p.

* Proof (sketch):

Number of possible k-length paths is at most dk.

Probability of the path existing entirely in the
orefix is 6.
Probability that the path is directed is 1/k!

. arsk B (ed5)k_ elognk_l
Union bound: ™| =5 ="~ —n(2)—;

Plug in 6=0(2'log(n)/A) and d = A/2' from before
and k = O(log n) yields high probability.

Prefix-based MIS algorithm

 We showed that the dependence length of the
prefix’s pDAG is small O(log n) w.h.p.

 We also showed that the number of prefixes
taken until all vertices are removed is small

O(log A) w.h.p.

* Hence the depth of the whole algorithm is
small

O(log n) x O(log A) = O(log? n) w.h.p.

Achieving linear work

e Straightforward implementation will require O(m)
work per layer of each pDAG, giving O(m log? n)
total work

* Linear-work implementation: For each pDAG,
keep an array of roots

* Each vertex has incoming edges in an array,
and a pointer initially to the start of the array

* Inany round if a vertex has an edge deleted, it
checks whether all of its incoming edges are
deleted (and if so it becomes a root)

Achieving linear work
* 1) For each pDAG, keep an array of roots

e 2) Checking

* In any round if a vertex has an edge deleted, it
marks all deleted edges, and checks whether
all of its incoming edges are deleted

* We examine edges in powers of 2: first
examine one parent, then two, then four...

* |f we see an incoming edge not deleted, we
stop and charge the work of checking to all
previous edges (within a factor of 2)

Achieving linear work

* 3) When a vertex is added to MIS it deletes all
neighbors and checks all neighbors’ neighbors,
adding them to array of roots if necessary

* Eliminate duplicates by using concurrent
writes and packing

* Total cost of checks is O(m). Checking and
packing requires O(log m) additional depth.

* This gives O(m) work and O(log® m) depth

overall G G
@'@ O
6 o

Maximal Matching (MM)

* Given an undirected graph G = (V, E), return a
subset £'c E such that no edges in E'
share an endpoint and all edgesin E \ E'
have a neighboring edge in £’

ol e

Maximal Matching

* By using same analysis as MIS, implicitly
processing the line graph, we get a depth of
O(log? m) w.h.p.

* Line graph G’: vertices in G’ correspond to edges
in G, and an edge exists between two vertices in
G’ if and only if the corresponding edges in G
share an endpoint

* We can achieve linear work with an extra
factor of O(log m) in the depth.

* This gives O(m) work and O(log® m) depth
overall.

Outline

Introduction

— Definitions and sequential algorithm for Maximal

Independent Set
Luby’s Algorithm
Parallel Greedy algorithm
Analysis of Parallel Greedy algorithm

Experiments

—

Implementations

* Implemented using a fixed prefix size
* Motivated theoretically
* Reduces redundant work and improves running
time
* Technique of using prefixes also applied to

other deterministic algorithms [Blelloch,
Fineman, Gibbons, Shun, PPoPP 2012]

NG
o™
A ‘.}&‘@m

Experlments (IVIIS)

10 : - 10° ; . ' :
- -preflx based MIS - = =prefix-based MIS]

¢+ Luby ¢+ Luby
1 —+—serial MIS —+—serial MIS

-—h

—L
o
O

Run time (seconds)
=)
o
<
Run time (seconds)
o
o
T
1
»
o

—————

1 2 4 8 16 32 64 1 2 4 8 16 32 64
Number of threads Number of threads

(a) Running time vs. number of threads on a random graph (b) Running time vs. number of threads on a rMat graph (n =
(n =10",m =5 x 10") in log-log scale 224 m =5 x 107) in log-log scale

* 32-core Intel Nehalem with hyperthreading
* Used an “optimal” prefix size

* prefix-based MIS 3x to 8x faster than Luby’s MIS \‘ GD

I”

Experiments (MIS

n
o

N

Total work (x 10/)

b
[¢]

1

0 02 04 06 08 1
Prefix size (x 107)

(d) Total work done vs. prefix size on a
rMat graph (n = 2?4, m =5 x 10")

* Work increases with larger prefix size (more

redundant work)

* Number of rounds decreases with larger
prefix size (more parallelism)
* There is some optimal prefix size which

10 : . - - . : 10’

—h
o
2]

o
]

Number of rounds
— —t —h —h
o o

w (N

o

Running time (seconds)

—_
o

—
o
o

10 10° 10° 10° 10
Prefix size

(e) Number of rounds vs. prefix size on a (f) Running time (3 /processors) vs. pre-

/ ¢ B B T > ’ f 024
rMat graph (n = 22%,m = 5 x 107) in fix size on a rMagfgraph (n = 2% m =
log-log scale 5 x 10") in logAog scale

results in the lowest running time 0O ‘@\@

Conclusions

e Sequential greedy MIS algorithm on arbitrary
graphs for random orderings is actually
parallel

e With some modification we obtain similar
results for greedy maximal matching

* Has practical implications such as giving faster
implementations and guaranteeing
determinism (same solution as sequential)

NG
o™
A ‘@‘&‘@m

