Greedy Sequential Maximal Independent Set and Matching are Parallel on Average

Julian Shun

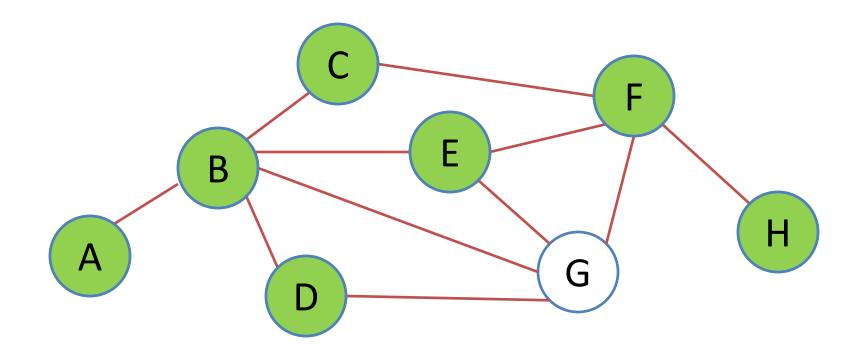
Joint work with Guy Blelloch and Jeremy Fineman (Paper in SPAA 2012)

Outline

- Introduction
 - Definitions and sequential algorithm for Maximal Independent Set
- Luby's Algorithm
- Parallel Greedy algorithm
- Analysis of Parallel Greedy algorithm
- Experiments

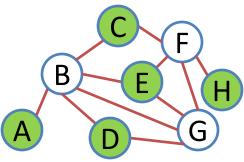
Maximal Independent Set (MIS)

- Undirected graph G = (V, E)
- Return a subset $U \subseteq V$ such that
 - 1. $U \bigcap N(U) = \emptyset$ (Independent set) 2. $\forall v \in V \setminus U$, $N(v) \bigcap U \neq \emptyset$ (maximal)



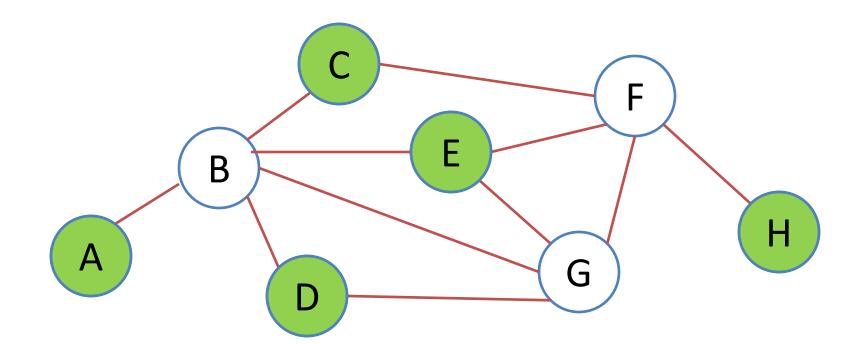
Motivation

- Why do we care about maximal independent sets (MIS)?
 - Used as a subroutine in many parallel algorithms to identify "independent" parts of graph that can be processed simultaneously
 - Map/graph coloring, scheduling, computational biology, distributed computing etc.



Sequential greedy algorithm

- MIS corresponding sequentially processing the vertices in order
 - This has been called the <u>lexicographically first</u> ordering

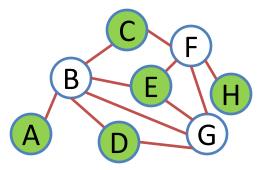


Outline

- Introduction
 - Definitions and sequential algorithm for Maximal Independent Set
- Luby's Algorithm
- Parallel Greedy algorithm
- Analysis of Parallel Greedy algorithm
- Experiments

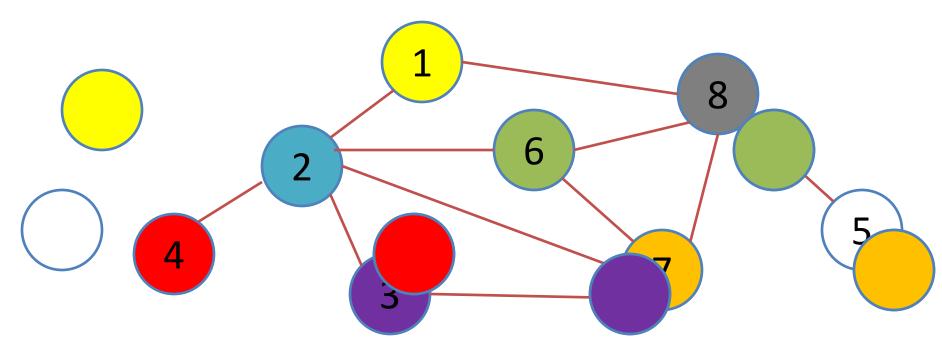
Luby's algorithm

- Each round:
 - assign random priorities to all vertices
 - vertices with a priority greater than all of its neighbors' priorities join the MIS
 - remove vertices in MIS and all of their neighbors
- Repeat this process until no vertices remain



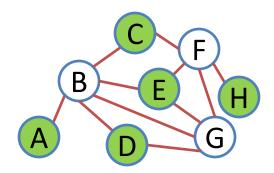
Luby's algorithm

- Each round:
 - assign random priorities to all vertices
 - vertices with a priority higher than all of its neighbors' priorities join the MIS (smaller number → higher priority!)
 - remove vertices in MIS and all of their neighbors
- Repeat this process until no vertices remain

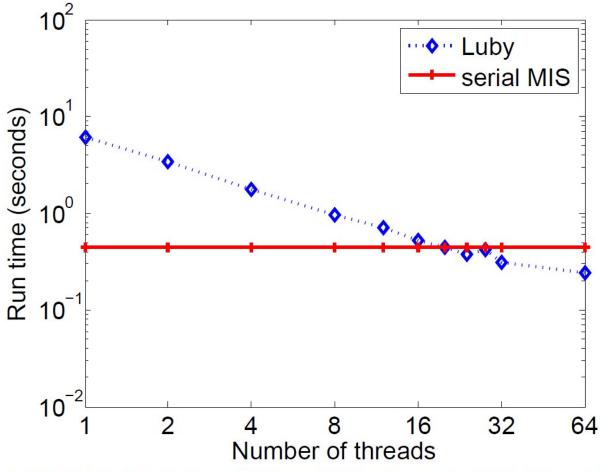


Luby's algorithm

- Requires O(log m) depth and O(m log m) work
- Can be made to run in O(log² m) depth and O(m) work
 - Pack vertices/edges each iteration



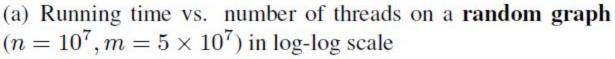
Luby vs. Sequential greedy

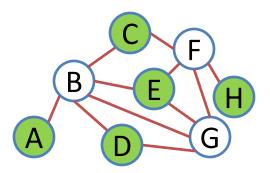


• Since sequential greedy implementation is so simple, it is hard for a parallel implementation to beat it

 Luby wins after 16 threads

 Note: Luby does not return the same answer as sequential





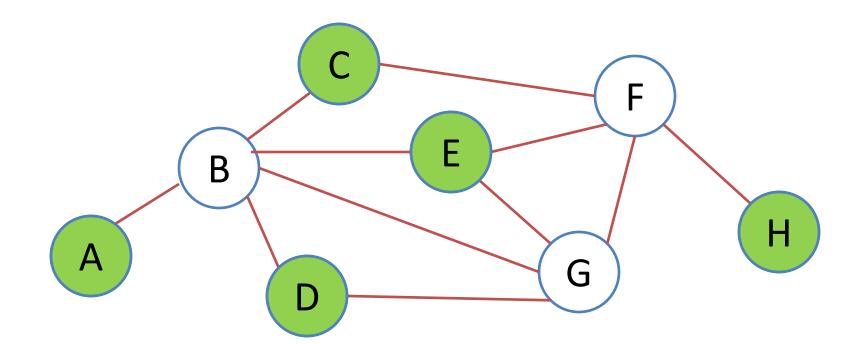
Outline

- Introduction
 - Definitions and sequential algorithm for Maximal Independent Set
- Luby's Algorithm
- Parallel Greedy algorithm

• Experiments

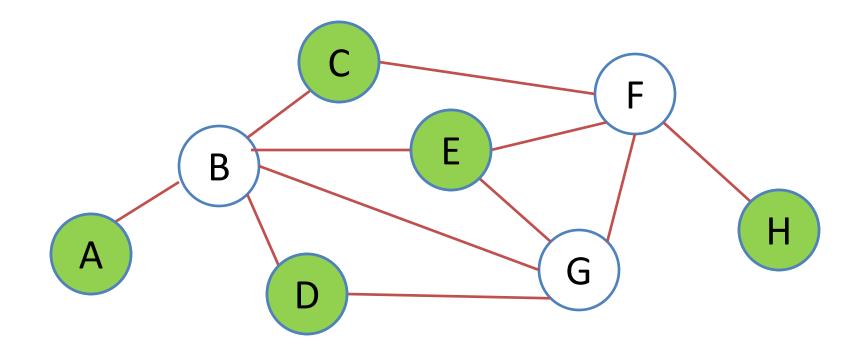
Sequential greedy algorithm

- MIS corresponding sequentially processing the vertices in order
 - This has been called the <u>lexicographically first</u> ordering



"Sequential" greedy algorithm

 Note that some vertices may be processed in parallel



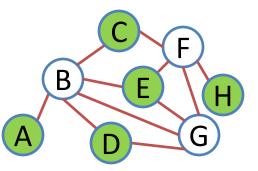
Parallel-Greedy vs. Luby's algorithm

Luby

Parallel-Greedy

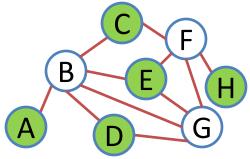
- Randomly order the vertices
- While vertices remain:
 - In parallel: vertices with higher priority than all of their neighbors join the MIS
 - Remove vertices in MIS and all of their neighbors from the graph

How many iterations does Parallel-Greedy take?



Parallel-Greedy

- How many iterations does this algorithm take?
 - For an arbitrary ordering, it could take O(n) iterations
 - Example: A B C D E
 - What about for a random ordering?
 - This talk: we show that the number of iterations is polylogarithmic



Related Work for Parallel-Greedy

- For arbitrary graphs and arbitrary orderings, this problem was proved to be P-complete (Cook '85)
- For uniform random graphs, this problem was shown to have polylog depth (Coppersmith et al. '89 showed a depth of O(log² n); Calkin and Frieze '90 improved the depth to O(log n))

В

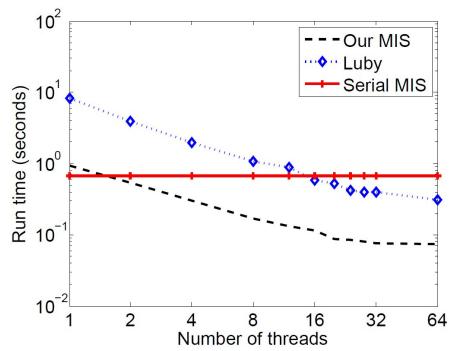
Ε

Η

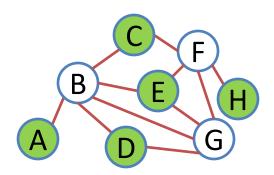
- This talk: for arbitrary graphs and random orderings, this problem has O(log² n) depth
- Depth recently improved to Ø(log n)
 [Fischer and Noever, SODA 2018]

Practical Benefits

- Performance, fast runtime (by using prefixes)
- Guarantees the same result as the sequential algorithm's output every time
 Such <u>determinism</u> allows for 10⁻¹
 - Such <u>determinism</u> allows for ease of debugging, verification of correctness, reasoning about code, etc.



(b) Running time vs. number of threads on a rMat graph $(n = 2^{24}, m = 5 \times 10^7)$ in log-log scale



Outline

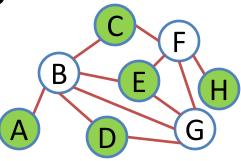
- Introduction
 - Definitions and sequential algorithm for Maximal Independent Set
- Luby's Algorithm
- Parallel Greedy algorithm
- Analysis of Parallel Greedy algorithm
 - Experiments

Analysis

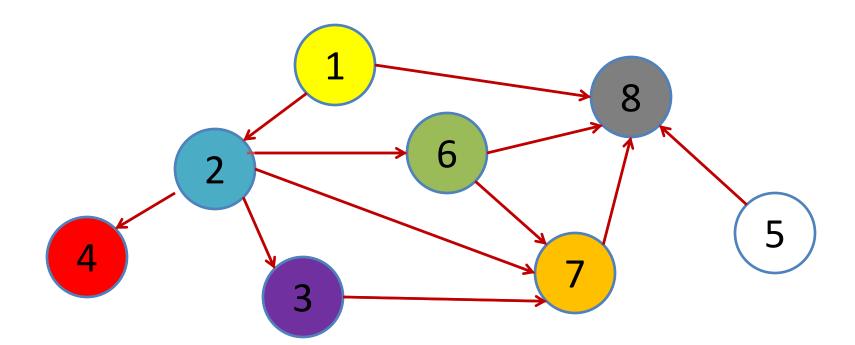
Luby's MIS Algorithm		Parallel-Greedy Algorithm	
Work	Depth	Work	Depth
O(m log m)	O(log m)	O(m log ² m)	O(log ² m)
O(m)	O(log ² m)	O(m)	O(log ³ m)

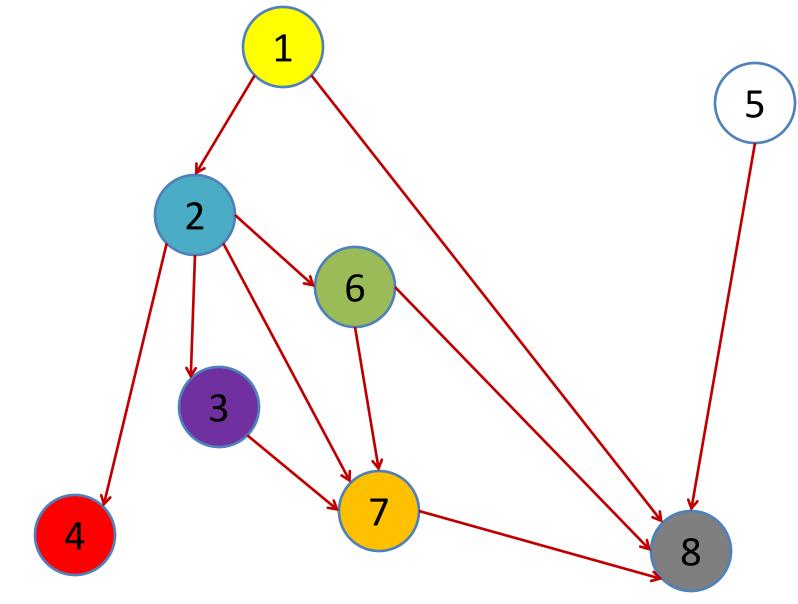
- Luby's analysis relies on the iterations being independent since ordering is regenerated per iteration
- For Parallel-Greedy, ordering is generated just once!
 - Requires other analysis techniques

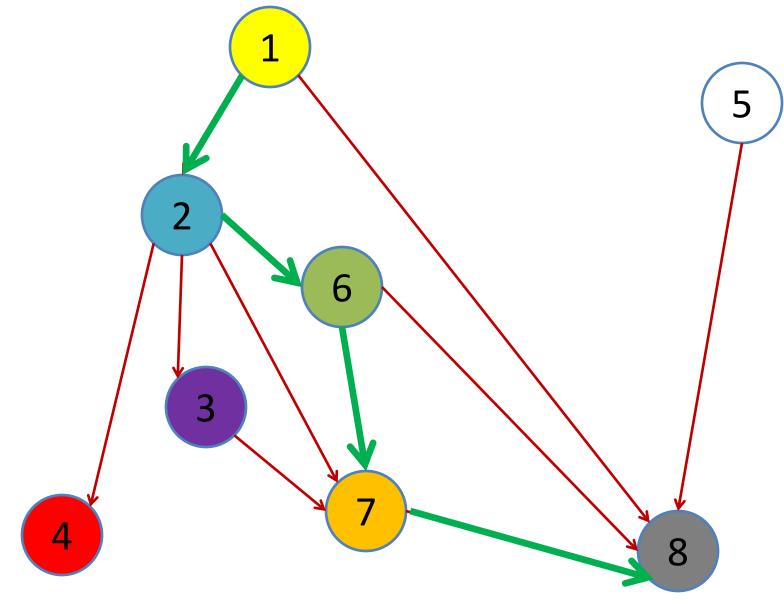
- For some set of vertices V, the <u>priority-DAG</u> is the vertex-induced subgraph of V, where each edge is directed from its higher priority endpoint to its lower priority endpoint
- The <u>dependence length</u> of a pDAG is the number of steps of Parallel-Greedy required to process the graph to completion
 - This is also the depth of a call to Parallel-Greedy



- Another way to view parallel algorithm is to repeat the following until no vertices remain:
 - Put all "roots" in MIS, remove roots, all neighbors of roots, and any incident edges







- The dependence length is upper bounded by the longest directed path in the pDAG, but could be much less
 - Ex: A complete graph has a directed path of length O(n) but the dependence length is O(1)

Prefix-based MIS algorithm

- Need to show:
 Path length = O(n)
 - Longest path in prefixes' pDAGs is small
 - Number of prefixes required is smallⁿ

- Tongetilewodependence(lengths, we must analyze a prefix-based version of Parallel-Greedy
 - Only slower than fully parallel version

С

E

F

Η

Prefix-based MIS algorithm

- Randomly order the vertices
- While vertices remain:
 - Choose a <u>prefix</u> parameter δ (a fraction)
 - Take the δn highest priority vertices in prefix
 - Run Parallel-Greedy until completion on induced subgraph of prefix vertices
 - Remove prefix vertices and neighbors of C **MIS from graph** В

F

Η

Ε

Number of rounds is small

- Randomly order the vertices
- While vertices remain:
 - Choose a <u>prefix</u> parameter δ
 - Take the $\delta |V|$ highest priority vertices in prefix
 - Run Parallel-Greedy until completion on induced subgraph of prefix vertices
 - Remove prefix vertices and neighbors of MIS from graph
- Proof: Consider sequential process of randomly picking • Averex, addition of the process of randomly picking • Averex, addition of the process of randomly picking • Averex, addition of the probability of the probability. • A probability of the probability of the probability. • A probability of the probability of the probability. • A probability of the probability

В

E

Η

• Take union bound over all vertices

pDAG of each prefix is shallow

- Theorem: For a δ -prefix where $\delta = O(2^i \log(n)/\Delta)$, longest path in pDAG is length $O(\log n)$ w.h.p.
- Proof (sketch):
 - Number of possible k-length paths is at most d^k.
 - Probability of the path existing entirely in the prefix is $\delta^{k}.$
 - Probability that the path is directed is 1/k!

• Union bound:
$$n\left(\frac{d^k\delta^k}{k!}\right) \le n\left(\frac{ed\delta}{k}\right)^k = n\left(\frac{e\log n}{k}\right)^k = \frac{1}{n^c}$$

• Plug in $\delta = O(2^i \log(n)/\Delta)$ and $d = \Delta/2^i$ from before and k = O(log n) yields high probability.

Prefix-based MIS algorithm

- We showed that the dependence length of the prefix's pDAG is small O(log n) w.h.p.
- We also showed that the number of prefixes taken until all vertices are removed is small
 O(log Δ) w.h.p.
- Hence the depth of the whole algorithm is small

F

Η

E

В

 $O(\log n) \times O(\log \Delta) = O(\log^2 n)$ w.h.p.

Achieving linear work

- Straightforward implementation will require O(m) work per layer of each pDAG, giving O(m log² n) total work
- Linear-work implementation: For each pDAG, keep an array of roots
 - Each vertex has incoming edges in an array, and a pointer initially to the start of the array
 - In any round if a vertex has an edge deleted, it checks whether all of its incoming edges are deleted (and if so it becomes a root)

В

E

H

Achieving linear work

- 1) For each pDAG, keep an array of roots
- 2) Checking
 - In any round if a vertex has an edge deleted, it marks all deleted edges, and checks whether all of its incoming edges are deleted
 - We examine edges in powers of 2: first examine one parent, then two, then four...
 - If we see an incoming edge not deleted, we stop and charge the work of checking to all previous edges (within a factor of 2)

F

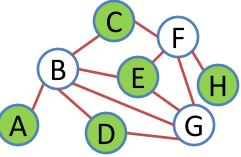
Η

Ε

В

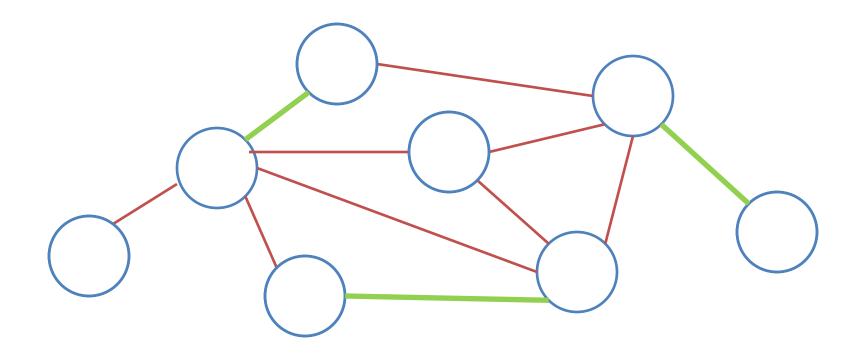
Achieving linear work

- 3) When a vertex is added to MIS it deletes all neighbors and checks all neighbors' neighbors, adding them to array of roots if necessary
 - Eliminate duplicates by using concurrent writes and packing
- Total cost of checks is O(m). Checking and packing requires O(log m) additional depth.
- This gives O(m) work and O(log³ m) depth overall



Maximal Matching (MM)

• Given an undirected graph G = (V, E), return a subset $E' \subseteq E$ such that no edges in E' share an endpoint and all edges in $E \setminus E'$ have a neighboring edge in E'



Maximal Matching

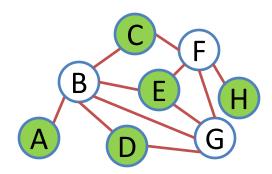
- By using same analysis as MIS, implicitly processing the line graph, we get a depth of O(log² m) w.h.p.
 - Line graph G': vertices in G' correspond to edges in G, and an edge exists between two vertices in G' if and only if the corresponding edges in G share an endpoint
- We can achieve linear work with an extra factor of O(log m) in the depth.
- This gives O(m) work and O(log³ m) depth overall.

Outline

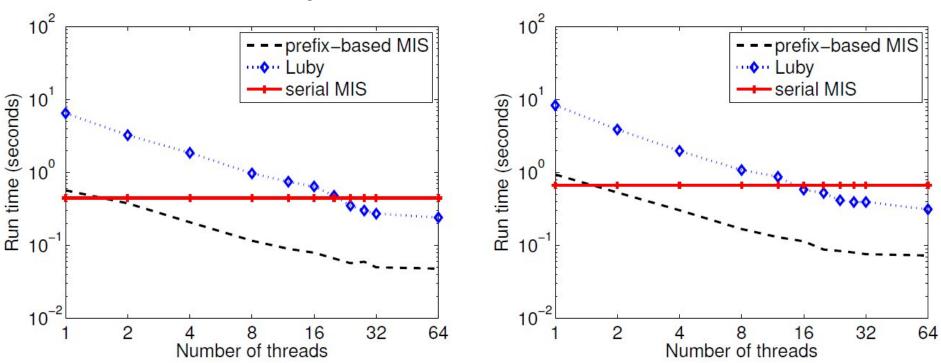
- Introduction
 - Definitions and sequential algorithm for Maximal Independent Set
- Luby's Algorithm
- Parallel Greedy algorithm
- Analysis of Parallel Greedy algorithm
- Experiments

Implementations

- Implemented using a fixed prefix size
 - Motivated theoretically
 - Reduces redundant work and improves running time
 - Technique of using prefixes also applied to other deterministic algorithms [Blelloch, Fineman, Gibbons, Shun, PPoPP 2012]



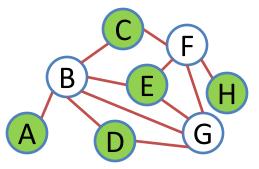
Experiments (MIS)



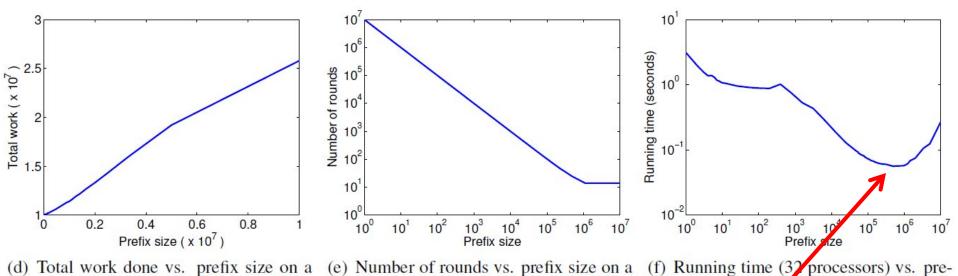
(a) Running time vs. number of threads on a random graph (b) Running time vs. number of threads on a rMat graph (n = $(n = 10^7, m = 5 \times 10^7)$ in log-log scale

 $2^{24}, m = 5 \times 10^7$) in log-log scale

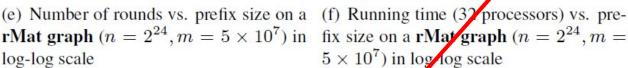
- 32-core Intel Nehalem with hyperthreading
- Used an "optimal" prefix size
- prefix-based MIS 3x to 8x faster than Luby's MIS



Experiments (MIS)



rMat graph $(n = 2^{24}, m = 5 \times 10^7)$



 5×10^7) in log log scale

В

F

Η

- Work increases with larger prefix size (more redundant work)
- Number of rounds decreases with larger prefix size (more parallelism)
- There is some optimal prefix size which results in the lowest running time

Conclusions

- Sequential greedy MIS algorithm on arbitrary graphs for random orderings is actually parallel
- With some modification we obtain similar results for greedy maximal matching
- Has practical implications such as giving faster implementations and guaranteeing determinism (same solution as sequential)

F

Η

E

В