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Maximal Independent Set (MIS)
• Undirected graph G = (V, E) 
• Return a subset             such that

1. (Independent set)
2. (maximal) 
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Motivation
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• Why do we care about maximal independent 
sets (MIS)?

• Used as a subroutine in many parallel 
algorithms to identify “independent” parts 
of graph that can be processed 
simultaneously

• Map/graph coloring, scheduling, 
computational biology, distributed 
computing etc.



Sequential greedy algorithm
• MIS corresponding sequentially processing the 

vertices in order
– This has been called the lexicographically first 

ordering
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Luby’s algorithm

B
F

GA

C

E

D
H

• Each round: 
• assign random priorities to all vertices
• vertices with a priority greater than all of its 

neighbors’ priorities join the MIS
• remove vertices in MIS and all of their 

neighbors
• Repeat this process until no vertices remain



Luby’s algorithm
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• Each round: 
• assign random priorities to all vertices
• vertices with a priority higher than all of its neighbors’ 

priorities join the MIS (smaller number à higher priority!)
• remove vertices in MIS and all of their neighbors

• Repeat this process until no vertices remain
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Luby’s algorithm
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• Requires O(log m) depth and O(m log m) work
• Can be made to run in O(log2 m) depth and O(m) 

work
• Pack vertices/edges each iteration



Luby vs. Sequential greedy
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• Since sequential  greedy 
implementation is so 
simple, it is hard for a 
parallel implementation 
to beat it
• Luby wins after 16 
threads
• Note: Luby does not 
return the same answer 
as sequential
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Sequential greedy algorithm
• MIS corresponding sequentially processing the 

vertices in order
– This has been called the lexicographically first 

ordering
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“Sequential” greedy algorithm
• Note that some vertices may be processed in 

parallel
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Parallel-Greedy vs. Luby’s algorithm
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• In parallel: vertices with 
higher priority than all of 
their neighbors join the MIS

• Remove vertices in MIS and 
all of their neighbors from 
the graph

• In parallel: vertices with 
higher priority than all of 
their neighbors join the MIS

• Remove vertices in MIS and 
all of their neighbors from 
the graph

• While vertices remain:

• Randomly order the vertices• Randomly order the vertices

• While vertices remain:

Parallel-Greedy Luby

How many iterations does Parallel-Greedy take?



Parallel-Greedy
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• How many iterations does this algorithm take?
• For an arbitrary ordering, it could take O(n) 

iterations
• Example:

• What about for a random ordering?
• This talk: we show that the number of 

iterations is polylogarithmic
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Related Work for Parallel-Greedy
• For arbitrary graphs and arbitrary orderings, this 

problem was proved to be P-complete  (Cook ‘85)
• For uniform random graphs, this problem was 

shown to have polylog depth (Coppersmith et al. 
’89 showed a depth of O(log2 n); Calkin and Frieze 
‘90 improved the depth to O(log n))

• This talk: for arbitrary graphs and random 
orderings, this problem has O(log2 n) depth

• Depth recently improved to !(log n)
[Fischer and Noever, SODA 2018] B
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Practical Benefits
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• Performance, fast runtime (by 
using prefixes)

• Guarantees the same result as 
the sequential algorithm’s 
output every time
• Such determinism allows for 

ease of debugging, 
verification of correctness, 
reasoning about code, etc.
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Analysis

• Luby’s analysis relies on the iterations being 
independent since ordering is regenerated per 
iteration

• For Parallel-Greedy, ordering is generated just 
once!
• Requires other analysis techniques

Luby’s MIS Algorithm Parallel-Greedy Algorithm
Work Depth Work Depth
O(m log m) O(log m) O(m log2 m) O(log2 m)
O(m) O(log2 m) O(m) O(log3 m)



Priority-Directed Acyclic Graph (pDAG)
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• For some set of vertices V, the priority-DAG is 
the vertex-induced subgraph of V, where each 
edge is directed from its higher priority
endpoint to its lower priority endpoint

• The dependence length of a pDAG is the 
number of steps of Parallel-Greedy required to 
process the graph to completion
• This is also the depth of a call to                   

Parallel-Greedy



Priority-Directed Acyclic Graph (pDAG)

4
3

2

1

6
8

7
5

• Another way to view parallel algorithm is to 
repeat the following until no vertices remain:
• Put all “roots” in MIS, remove roots, all 

neighbors of roots, and any incident edges



Priority-Directed Acyclic Graph (pDAG)
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Priority-Directed Acyclic Graph (pDAG)
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Priority-Directed Acyclic Graph (pDAG)
• The dependence length is upper bounded by 

the longest directed path in the pDAG, but 
could be much less
• Ex: A complete graph has a directed path of 

length O(n) but the dependence length is 
O(1)



Prefix-based MIS algorithm
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1  2  3  4  …  n

Path length = O(n)

1  2  3  4  …  n

Path length = O(log n)

Max degree = Δ

Path length = O(log n)

Max degree = Δ/2 ……

……• To get low dependence lengths, we must 
analyze a prefix-based version of           
Parallel-Greedy

• Only slower than fully parallel version

• Need to show:

• Longest path in prefixes’ pDAGs is small

• Number of prefixes required is small



Prefix-based MIS algorithm
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• Randomly order the vertices
• While vertices remain: 
• Choose a prefix parameter δ (a fraction)
• Take the δn highest priority vertices in 

prefix
• Run Parallel-Greedy until completion on 

induced subgraph of prefix vertices
• Remove prefix vertices and neighbors of 

MIS from graph



Number of rounds is small
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• Randomly order the vertices
• While vertices remain: 

• Choose a prefix parameter δ
• Take the δ|V| highest priority vertices in prefix
• Run Parallel-Greedy until completion on induced subgraph of prefix 

vertices
• Remove prefix vertices and neighbors of MIS from graph

• Theorem: Set δ=O(2i log(n)/Δ) for the i‘th round 
(Δ = max degree in original graph). Then all 
remaining vertices after the i‘th round have 
degree at most Δ/2i with high probability. 

• Proof: Consider sequential process of randomly picking 
a vertex, adding it to MIS and removing its neighbors.
• Probability a vertex of degree ≥ d is still around after 

δn steps is at most

1 − #
$

%$
< '() *+ $ = -

$.
• Take union bound over all vertices

• We only need to pick prefixes for log Δ rounds, 
where Δ is the maximum degree in original 
graph



pDAG of each prefix is shallow
• Theorem: For a δ-prefix where δ = O(2i log(n)/Δ), 

longest path in pDAG is length O(log n) w.h.p.
• Proof (sketch): 
• Number of possible k-length paths is at most dk. 
• Probability of the path existing entirely in the 

prefix is δk. 
• Probability that the path is directed is 1/k!

• Union bound:

• Plug in δ=O(2i log(n)/Δ) and d = Δ/2i  from before 
and k = O(log n) yields high probability.

! "#$#
%! ≤ ! ("$

%
#
= ! ( log !
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Prefix-based MIS algorithm
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• We showed that the dependence length of the 
prefix’s pDAG is small

• We also showed that the number of prefixes 
taken until all vertices are removed is small 

• Hence the depth of the whole algorithm is 
small

O(log n) w.h.p.

O(log n) x O(log Δ) = O(log2 n) w.h.p.

O(log Δ) w.h.p.



Achieving linear work
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• Straightforward implementation will require O(m) 
work per layer of each pDAG, giving O(m log2 n) 
total work

• Linear-work implementation: For each pDAG, 
keep an array of roots
• Each vertex has incoming edges in an array, 

and a pointer initially to the start of the array
• In any round if a vertex has an edge deleted, it 

checks whether all of its incoming edges are 
deleted (and if so it becomes a root)



Achieving linear work
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• 1) For each pDAG, keep an array of roots
• 2) Checking
• In any round if a vertex has an edge deleted, it 

marks all deleted edges, and checks whether 
all of its incoming edges are deleted

• We examine edges in powers of 2: first 
examine one parent, then two, then four…

• If we see an incoming edge not deleted, we 
stop and charge the work of checking to all 
previous edges (within a factor of 2)



Achieving linear work
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• 3) When a vertex is added to MIS it deletes all 
neighbors and checks all neighbors’ neighbors, 
adding them to array of roots if necessary
• Eliminate duplicates by using concurrent 

writes and packing
• Total cost of checks is O(m). Checking and 

packing requires O(log m) additional depth.
• This gives O(m) work and O(log3 m) depth 

overall



Maximal Matching (MM)
• Given an undirected graph G = (V, E), return a 

subset                 such that no edges in       
share an endpoint and all edges in              
have a neighboring edge in 
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Maximal Matching
• By using same analysis as MIS, implicitly 

processing the line graph, we get a depth of 
O(log2 m) w.h.p.
• Line graph G’: vertices in G’ correspond to edges 

in G, and an edge exists between two vertices in 
G’ if and only if the corresponding edges in G 
share an endpoint

• We can achieve linear work with an extra 
factor of O(log m) in the depth.

• This gives O(m) work and O(log3 m) depth 
overall.
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Implementations
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• Implemented using a fixed prefix size
• Motivated theoretically
• Reduces redundant work and improves running 

time
• Technique of using prefixes also applied to 

other deterministic algorithms [Blelloch, 
Fineman, Gibbons, Shun, PPoPP 2012]



Experiments (MIS)
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• 32-core Intel Nehalem with hyperthreading
• Used an “optimal” prefix size
• prefix-based MIS 3x to 8x faster than Luby’s MIS



Experiments (MIS)
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•Work increases with larger prefix size (more 
redundant work)
• Number of rounds decreases with larger 
prefix size (more parallelism)
• There is some optimal prefix size which 
results in the lowest running time



Conclusions
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• Sequential greedy MIS algorithm on arbitrary 
graphs for random orderings is actually 
parallel

• With some modification we obtain similar 
results for greedy maximal matching

• Has practical implications such as giving faster 
implementations and guaranteeing 
determinism (same solution as sequential)


