
Greedy Sequential Maximal
Independent Set and Matching are

Parallel on Average

Julian Shun

Joint work with
Guy Blelloch and Jeremy Fineman

(Paper in SPAA 2012)

Outline
• Introduction
– Definitions and sequential algorithm for Maximal

Independent Set
• Luby’s Algorithm
• Parallel Greedy algorithm
• Analysis of Parallel Greedy algorithm
• Experiments

Maximal Independent Set (MIS)
• Undirected graph G = (V, E)
• Return a subset such that

1. (Independent set)
2. (maximal)

A
D

B

C

E
F

G
H

B

F

A

C

E

D
H

ØUNU =)(!
VU Í

,\UVvÎ" ØUvN ¹!)(

Motivation

B
F

GA

C

E

D

H

• Why do we care about maximal independent
sets (MIS)?

• Used as a subroutine in many parallel
algorithms to identify “independent” parts
of graph that can be processed
simultaneously

• Map/graph coloring, scheduling,
computational biology, distributed
computing etc.

Sequential greedy algorithm
• MIS corresponding sequentially processing the

vertices in order
– This has been called the lexicographically first

ordering

A
D

B

C

E
F

G
HA

C

E

D
H

Outline
• Introduction
– Definitions and sequential algorithm for Maximal

Independent Set
• Luby’s Algorithm
• Parallel Greedy algorithm
• Analysis of Parallel Greedy algorithm
• Experiments

Luby’s algorithm

B
F

GA

C

E

D
H

• Each round:
• assign random priorities to all vertices
• vertices with a priority greater than all of its

neighbors’ priorities join the MIS
• remove vertices in MIS and all of their

neighbors
• Repeat this process until no vertices remain

Luby’s algorithm

4
3

2

1

6
8

7
5

• Each round:
• assign random priorities to all vertices
• vertices with a priority higher than all of its neighbors’

priorities join the MIS (smaller number à higher priority!)
• remove vertices in MIS and all of their neighbors

• Repeat this process until no vertices remain

2
3

4

1

Luby’s algorithm

B
F

GA

C

E

D
H

• Requires O(log m) depth and O(m log m) work
• Can be made to run in O(log2 m) depth and O(m)

work
• Pack vertices/edges each iteration

Luby vs. Sequential greedy

B
F

GA

C

E

D
H

• Since sequential greedy
implementation is so
simple, it is hard for a
parallel implementation
to beat it
• Luby wins after 16
threads
• Note: Luby does not
return the same answer
as sequential

Outline
• Introduction
– Definitions and sequential algorithm for Maximal

Independent Set
• Luby’s Algorithm
• Parallel Greedy algorithm
• Analysis of Parallel Greedy algorithm
• Experiments

Sequential greedy algorithm
• MIS corresponding sequentially processing the

vertices in order
– This has been called the lexicographically first

ordering

A
D

B

C

E
F

G
HA

C

E

D
H

“Sequential” greedy algorithm
• Note that some vertices may be processed in

parallel

A
D

B

C

E
F

G
HA

C

E

D
H

Parallel-Greedy vs. Luby’s algorithm

B
F

GA

C

E

D
H

• In parallel: vertices with
higher priority than all of
their neighbors join the MIS

• Remove vertices in MIS and
all of their neighbors from
the graph

• In parallel: vertices with
higher priority than all of
their neighbors join the MIS

• Remove vertices in MIS and
all of their neighbors from
the graph

• While vertices remain:

• Randomly order the vertices• Randomly order the vertices

• While vertices remain:

Parallel-Greedy Luby

How many iterations does Parallel-Greedy take?

Parallel-Greedy

B
F

GA

C

E

D
H

• How many iterations does this algorithm take?
• For an arbitrary ordering, it could take O(n)

iterations
• Example:

• What about for a random ordering?
• This talk: we show that the number of

iterations is polylogarithmic

BA C D E

Related Work for Parallel-Greedy
• For arbitrary graphs and arbitrary orderings, this

problem was proved to be P-complete (Cook ‘85)
• For uniform random graphs, this problem was

shown to have polylog depth (Coppersmith et al.
’89 showed a depth of O(log2 n); Calkin and Frieze
‘90 improved the depth to O(log n))

• This talk: for arbitrary graphs and random
orderings, this problem has O(log2 n) depth

• Depth recently improved to !(log n)
[Fischer and Noever, SODA 2018] B

F

GA

C

E

D
H

Practical Benefits

B
F

GA

C

E

D
H

• Performance, fast runtime (by
using prefixes)

• Guarantees the same result as
the sequential algorithm’s
output every time
• Such determinism allows for

ease of debugging,
verification of correctness,
reasoning about code, etc.

Outline
• Introduction
– Definitions and sequential algorithm for Maximal

Independent Set
• Luby’s Algorithm
• Parallel Greedy algorithm
• Analysis of Parallel Greedy algorithm
• Experiments

Analysis

• Luby’s analysis relies on the iterations being
independent since ordering is regenerated per
iteration

• For Parallel-Greedy, ordering is generated just
once!
• Requires other analysis techniques

Luby’s MIS Algorithm Parallel-Greedy Algorithm
Work Depth Work Depth
O(m log m) O(log m) O(m log2 m) O(log2 m)
O(m) O(log2 m) O(m) O(log3 m)

Priority-Directed Acyclic Graph (pDAG)

B
F

GA

C

E

D
H

• For some set of vertices V, the priority-DAG is
the vertex-induced subgraph of V, where each
edge is directed from its higher priority
endpoint to its lower priority endpoint

• The dependence length of a pDAG is the
number of steps of Parallel-Greedy required to
process the graph to completion
• This is also the depth of a call to

Parallel-Greedy

Priority-Directed Acyclic Graph (pDAG)

4
3

2

1

6
8

7
5

• Another way to view parallel algorithm is to
repeat the following until no vertices remain:
• Put all “roots” in MIS, remove roots, all

neighbors of roots, and any incident edges

Priority-Directed Acyclic Graph (pDAG)

4

3

2

1

6

8
7

5

Priority-Directed Acyclic Graph (pDAG)

4

3

2

1

6

8
7

5

Priority-Directed Acyclic Graph (pDAG)
• The dependence length is upper bounded by

the longest directed path in the pDAG, but
could be much less
• Ex: A complete graph has a directed path of

length O(n) but the dependence length is
O(1)

Prefix-based MIS algorithm

B
F

GA

C

E

D

H

1 2 3 4 … n

Path length = O(n)

1 2 3 4 … n

Path length = O(log n)

Max degree = Δ

Path length = O(log n)

Max degree = Δ/2 ……

……• To get low dependence lengths, we must
analyze a prefix-based version of
Parallel-Greedy

• Only slower than fully parallel version

• Need to show:

• Longest path in prefixes’ pDAGs is small

• Number of prefixes required is small

Prefix-based MIS algorithm

B
F

GA

C

E

D
H

• Randomly order the vertices
• While vertices remain:
• Choose a prefix parameter δ (a fraction)
• Take the δn highest priority vertices in

prefix
• Run Parallel-Greedy until completion on

induced subgraph of prefix vertices
• Remove prefix vertices and neighbors of

MIS from graph

Number of rounds is small

B
F

GA

C

E

D
H

• Randomly order the vertices
• While vertices remain:

• Choose a prefix parameter δ
• Take the δ|V| highest priority vertices in prefix
• Run Parallel-Greedy until completion on induced subgraph of prefix

vertices
• Remove prefix vertices and neighbors of MIS from graph

• Theorem: Set δ=O(2i log(n)/Δ) for the i‘th round
(Δ = max degree in original graph). Then all
remaining vertices after the i‘th round have
degree at most Δ/2i with high probability.

• Proof: Consider sequential process of randomly picking
a vertex, adding it to MIS and removing its neighbors.
• Probability a vertex of degree ≥ d is still around after

δn steps is at most

1 − #
$

%$
< '() *+ $ = -

$.
• Take union bound over all vertices

• We only need to pick prefixes for log Δ rounds,
where Δ is the maximum degree in original
graph

pDAG of each prefix is shallow
• Theorem: For a δ-prefix where δ = O(2i log(n)/Δ),

longest path in pDAG is length O(log n) w.h.p.
• Proof (sketch):
• Number of possible k-length paths is at most dk.
• Probability of the path existing entirely in the

prefix is δk.
• Probability that the path is directed is 1/k!

• Union bound:

• Plug in δ=O(2i log(n)/Δ) and d = Δ/2i from before
and k = O(log n) yields high probability.

! "#$#
%! ≤ ! ("$

%
#
= ! (log !

%
#
= 1
!.

Prefix-based MIS algorithm

B
F

GA

C

E

D
H

• We showed that the dependence length of the
prefix’s pDAG is small

• We also showed that the number of prefixes
taken until all vertices are removed is small

• Hence the depth of the whole algorithm is
small

O(log n) w.h.p.

O(log n) x O(log Δ) = O(log2 n) w.h.p.

O(log Δ) w.h.p.

Achieving linear work

B
F

GA

C

E

D
H

• Straightforward implementation will require O(m)
work per layer of each pDAG, giving O(m log2 n)
total work

• Linear-work implementation: For each pDAG,
keep an array of roots
• Each vertex has incoming edges in an array,

and a pointer initially to the start of the array
• In any round if a vertex has an edge deleted, it

checks whether all of its incoming edges are
deleted (and if so it becomes a root)

Achieving linear work

B
F

GA

C

E

D
H

• 1) For each pDAG, keep an array of roots
• 2) Checking
• In any round if a vertex has an edge deleted, it

marks all deleted edges, and checks whether
all of its incoming edges are deleted

• We examine edges in powers of 2: first
examine one parent, then two, then four…

• If we see an incoming edge not deleted, we
stop and charge the work of checking to all
previous edges (within a factor of 2)

Achieving linear work

B
F

GA

C

E

D
H

• 3) When a vertex is added to MIS it deletes all
neighbors and checks all neighbors’ neighbors,
adding them to array of roots if necessary
• Eliminate duplicates by using concurrent

writes and packing
• Total cost of checks is O(m). Checking and

packing requires O(log m) additional depth.
• This gives O(m) work and O(log3 m) depth

overall

Maximal Matching (MM)
• Given an undirected graph G = (V, E), return a

subset such that no edges in
share an endpoint and all edges in
have a neighboring edge in

EE Í'
'\ EE

'E

'E

Maximal Matching
• By using same analysis as MIS, implicitly

processing the line graph, we get a depth of
O(log2 m) w.h.p.
• Line graph G’: vertices in G’ correspond to edges

in G, and an edge exists between two vertices in
G’ if and only if the corresponding edges in G
share an endpoint

• We can achieve linear work with an extra
factor of O(log m) in the depth.

• This gives O(m) work and O(log3 m) depth
overall.

Outline
• Introduction
– Definitions and sequential algorithm for Maximal

Independent Set
• Luby’s Algorithm
• Parallel Greedy algorithm
• Analysis of Parallel Greedy algorithm
• Experiments

Implementations

B
F

GA

C

E

D
H

• Implemented using a fixed prefix size
• Motivated theoretically
• Reduces redundant work and improves running

time
• Technique of using prefixes also applied to

other deterministic algorithms [Blelloch,
Fineman, Gibbons, Shun, PPoPP 2012]

Experiments (MIS)

B
F

GA

C

E

D
H

• 32-core Intel Nehalem with hyperthreading
• Used an “optimal” prefix size
• prefix-based MIS 3x to 8x faster than Luby’s MIS

Experiments (MIS)

B
F

GA

C

E

D
H

•Work increases with larger prefix size (more
redundant work)
• Number of rounds decreases with larger
prefix size (more parallelism)
• There is some optimal prefix size which
results in the lowest running time

Conclusions

B
F

GA

C

E

D
H

• Sequential greedy MIS algorithm on arbitrary
graphs for random orderings is actually
parallel

• With some modification we obtain similar
results for greedy maximal matching

• Has practical implications such as giving faster
implementations and guaranteeing
determinism (same solution as sequential)

