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Background and Motivation

Problem: Frequent Subgraph Mining (FSM)

°Finding all subgraphs with frequency larger than a
threshold.

cEssential for clustering, image processing, ...

Prior work scale poorly due to load imbalance and
communication overheads

°”Tree” of subgraphs is highly irregular -> imbalance

°Dividng up subgraph determination task has high
communication and synchronization overheads.
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Scalemine Solves Imbalance

ldea: Divide into two phases

°15t Phase: approximately determine likely frequent
subgraphs.

»ldentify set of subgraphs with high probability
»Collect statistics

»Predict execution time for each subgraph calculation

o2"d Phase: Exact FSM algorithm

»Use candidate tasks from the 15t phase when the task pool runs
low




What is Subgraph Mining?

Given a graph G(V,E,L) with V nodes, E edges and L
labels...
°S(V’,E’,L) is a subgraph of G if there is an isomorphism
relationship
»All vertices match in labels
»All edges match in labels and connectivity

Frequent Subgraph Mining (FSM) finds subgraphs with
number of matches (support) >t

°This work deals with unique vertex matchings (called
MNI metric).
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MNI Metric

Find number of distinct matches for each vertex v,

°Create an MNI,,,,.. , where each column (MNI_,, ) consists
of matches for the vertex (called valid nodes)

°The number of entries in all columns > T -> valid
subgraph




MNI Metric

Input Graph G Subgraph S

V1

MNI Table

v1 V2 U3
Ui u2 us
u21 U119 U20
U7 Uie U115
U14 U112 U13
Ui1r U9 Uuio
us




Approximation Phase

Goals
°cRepresentative
cEfficient
°Informative

Approach: Use sampling to construct a set of
subgraphs with high probability of being frequent




Approximation Phase

Given probability of success p,, and humber of nodes
N....

°MNI,(v;) = Nip;
°But we don’t know p;!

Use the Central Limit Theorem to estimate p,

o Distribution of means of a large number of i.i.d. random variables
is approximately normal, regardless of underlying distribution

AN
AN

L = np O‘:%




Approximation Phase

Define a vague area for inconclusive estimates

low = i — (20)

high = i 4+ (26)




Approximation Phase

Fig. 3. The distribution of means of the samples




Approximation Phase

Input: G the input graph, 7 support threshold, S Candidate Subgraph, maxzS
Maximum number of samples, m¢n.S Minimum number of samples,
bSize sample size

Output: r the estimated support

1 D < CREATEDOMAINS(G, S)

2 71+ 0

3 foreach D; € D do

4 nValids <+ 0; totalValids < 0; nInvalids < 0

5 counter <+ 0

6 P—,— < T/|D1|

7 Reset distribution T

8 while true do

9 counter = counter + 1 u < GETRANDOMNODE(D;)
10 b < IsVALID(G,S,u,D;)

1 if b is true then

12 nValids = nValids + 1

13 totalValids = totalValids + 1

14 else nInvalids = nInvalids + 1

15 if counter (mod bSize)=0 then

16 m < COMPUTEMEAN(nV alids,nInvalids)
17 Add mto T

18 if counter > minS then

19 M < COMPUTEMEAN(T")

20 SD <+ COMPUTESD(T)

21 if FINISHSAMPLING(T,7,maxS) then break
22 nValids < 0

23 nlnvalids < 0

24 estimatedSize < (totalValids/counter) = |D,|
25 if estimatedSize < r then r < estimatedSize




Approximation Phase

Also collect useful statistics
cEstimates support of subgraph
°Number of valid nodes per MNI_
cExpected invalid columns
°Subgraph evaluation time

N;
D;,eD
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Exact Phase

Master-Worker paradigm

°cMaster keeps track of task pool, task dispatch and
synchronization

°MPI for communication

Keep two task pools

cApproximation pool (P,,,) from the approximation
phase

cExact pool (P.y) for the normal FSM algorithm
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Exact Phase
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Fig. 4. ScaleMine System Architecture




Exact Phase — Load Balancing

FSM often runs out of work in its exact pool in the
beginning and at the end

cResults in load imbalance

When out of work, dispatch tasks from P,
°These are high likelihood of frequent subgraph tasks
°Minimizes wasted work
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Exact Phase — Subtasking

Use estimated evaluation time to partition long-
running tasks
°Vlertical or Horizontal

Manage imbalance caused by partitioning based on
predicted workload distribution

Limax
A= — 1
L
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Exact Phase - Pruning

Preemptively determing invalid subgrahs

°Know a column does not have sufficient support if
number of valid nodes + number of remaining nodes is
less than T

°oCan also be used for subtasks

Prune large, expensive nodes by delaying their
computation until necessary
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Evaluation

Evaluated on 4 graphs

Comparison with prior work
°GraMli (single-threaded)
cArabesque (distributed)

Evaluated on a cluster of 16 machines
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Evaluation
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Fig. 5. Performance of ScaleMine vs. existing FSM systems on a cluster of
16 machines (256 workers) using two datasets: (a) Patents and (b) Twitter




Evaluation
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Fig. 6. Effect of ScaleMine’s optimizations using Shaheen II with 512 cores

on both Twitter (7 = 155k) and Weibo (7 = 490k




Evaluation

Approximation Phase retains high accuracy
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Evaluation

Approximation Phase is cheap!
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Fig. 8. Approximation phase time w.r.t the exact time




Evaluation

ScaleMine is scalable
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Imitations

How much wasted work is there from added
communication/synchronization overheads of
subtasking?

Priority within a pool?

Some key terms not explained (F-score? Which
values of T used?
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Conclusion

Prior subgraph mining systems do not scale well
°Single-thread: Insufficient for large graphs

°Distributed: Suffer from synchronization overheads and
load imbalance

SclaeMine uses a novel 2-phase technique to
provide scalable subgraph mining

°cApproximation phase for finding useful work quickly
°Pruning to remove invalid subgraphs early.

________________________________________________________________________________________________________]




