
1

ScaleMine: Scalable Parallel 
Frequent Subgraph Mining in a 
Single Large Graph
EHAB ABDELHAMID, IBRAHIM 
ABDELAZIZ, PANOS KALNIS, ZUHAIR
KHAYYAT, FUAD JAMOUR

Presented by Hyun Ryong (Ryan) Lee



Background and Motivation
Problem: Frequent Subgraph Mining (FSM)
◦Finding all subgraphs with frequency larger than a 
threshold.

◦Essential for clustering, image processing, ...

Prior work scale poorly due to load imbalance and 
communication overheads
◦”Tree” of subgraphs is highly irregular -> imbalance
◦Dividng up subgraph determination task has high 
communication and synchronization overheads.

2



Background and Motivation

3

10
2

10
3

10
4

10
5

10
6

2 4 8 16 32 64

T
im

e 
(S

ec
o
n
d
s)

Number of workers

Ideal Scalability
Baseline

Task Division

Fig. 1. Strong scalability of Baseline and TaskDivision. Total response time
in seconds. Twitter dataset; ⌧=160K (see Section V for details).

among subgraphs. Due to the irregular space, there are periods
when the task pool at the master is empty so that some workers
may stay idle. Also, the variability of the computational cost
generates stragglers. The result is a highly imbalanced system.
In our example, only two workers were utilized more than
35%, whereas the utilization of the majority was below 0.2%.

A possible solution is to use intra-task parallelism: fre-
quency computation for each candidate subgraph is divided
into subtasks that run in parallel. We call this version TaskDi-
vision. For the above-mentioned experiment, TaskDivision
achieves almost perfect load balance with roughly 100%
utilization for every worker. Unfortunately, TaskDivision is not
embarrassingly parallel: communication and synchronization
cost is substantial and straightforward pruning optimizations
become extremely costly. Figure 1 shows that TaskDivision
can be more than an order of magnitude slower than Baseline.

In this paper, we propose ScaleMine; a scalable parallel
system for exact FSM in a single large graph. The main
contribution of ScaleMine is the introduction of a two-phase
approach consisting of an approximate and an exact phase.
First, ScaleMine executes a novel approximate FSM algorithm
that uses sampling to: (i) identify a set of subgraphs that are
frequent with high probability; (ii) collect various statistics
about the input graph; and (iii) build a model to predict the
execution time for each subgraph frequency calculation task.
The approximate phase is fast and comprises a small fraction
of the total computational cost.

In the subsequent exact phase, ScaleMine implements a
hybrid of Baseline and TaskDivision. The master maintains a
pool of tasks, each corresponding to frequency calculation of a
candidate subgraph. Available workers request tasks, calculate
the frequency and return the result to the master. In contrast
to existing approaches, if the task pool runs low, the master
fills it with subgraphs identified in the approximate phase,
meaning that workers do not stay idle. Furthermore, subgraphs
identified in the approximate phase are, with high probability,
frequent; therefore the algorithm prunes infrequent subgraphs
early and does not waste time at wrong regions of the search
space. For each task, the master uses the cost model built in the
approximate phase, to simulate various scenarios of intra-task
parallelism, and decides whether it pays off to split expensive
tasks into subtasks, in order to improve load balance while

reducing response time. Finally, statistics collected during the
previous phase, are used by the workers. Frequency calculation
can be mapped to a constraint satisfaction problem, where
the order of constraint checking impacts the execution cost.
Workers use the statistics to generate low-cost execution plans.

Note that the output of ScaleMine is the exact solution. The
approximate phase is used to improve load balance, provide
information that guides the search faster towards the correct
solution, and decide the tasks for which intra-task parallelism
is beneficial. Table I compares ScaleMine to state-of-the-art
systems: ScaleMine supports 10x larger graphs (i.e, 1B edges),
scales to 12x more workers (i.e., 8,192 cores on Shaheen II;
a Cray XC40 supercomputer) and runs orders of magnitude
faster. In summary, our contributions are:
• We develop ScaleMine, a scalable parallel frequent sub-

graph mining system for a single large graph.
• We propose a novel two-phase approach, consisting of an

approximate phase that collects information and an exact
phase that exploits the collected information to generate
fast execution plans with good load balance.

• We conduct extensive experimental evaluation on a modest
cluster and on Shaheen II, a high-end Cray XC40 super-
computer, using large real datasets. Our results show that
ScaleMine outperforms the state-of-the-art by at least an
order of magnitude in terms of the supported graph size,
the number of workers, and execution time.

II. PRELIMINARIES

A. Support Metric

A graph G = (V,E, L) consists of a set of nodes V , a set
of edges E ✓ V ⇥ V and a function L that assigns labels
to nodes and edges. Subgraph isomorphism finds matches of
one graph in another. Given two graphs G = (V

G

, E

G

, L) and
S = (V

S

, E

S

, L), there is a subgraph isomorphism relation
from S to G, if each node v 2 V

S

has a matching node u 2 V

G

with the same label, and each edge e

s

2 E

S

has a matching
edge e

g

2 E

G

that has the same label and connectivity. Each
match is called an embedding of S in G.

Given graph G and a threshold ⌧ , the FSM problem is to
find all subgraphs in G with support larger than or equal
to ⌧ ; such subgraphs are called frequent. There are many
definitions of the support metric, but most applications utilize
an anti-monotone support metric because it facilitates search
space pruning. An intuitive metric is to count the number of
embeddings of a subgraph in G; however, this is not anti-
monotone [20]. Several anti-monotone support metrics are
proposed for FSM in a single graph, such as MIS [9], HO [21]
and MNI [20]. Out of these, MNI is the most efficient, since
the computation of MIS and HO are NP-complete. We adopt
MNI in this work.

MNI computes the support of a subgraph S as the minimum
number of distinct graph vertices that match each v

i

2 V

S

. An
MNI

table

consists of a set of MNI
col

; the MNI metric returns
the length of the smallest MNI

col

. An MNI
col

(v
i

) contains
a list of distinct valid nodes, i.e., nodes corresponding to

2



Scalemine Solves Imbalance
Idea: Divide into two phases
◦1st Phase: approximately determine likely frequent 
subgraphs.
»Identify set of subgraphs with high probability
»Collect statistics
»Predict execution time for each subgraph calculation

◦2nd Phase: Exact FSM algorithm
»Use candidate tasks from the 1st phase when the task pool runs 
low

4



What is Subgraph Mining?
Given a graph G(V,E,L) with V nodes, E edges and L 
labels...
◦S(V’,E’,L) is a subgraph of G if there is an isomorphism 
relationship
»All vertices match in labels
»All edges match in labels and connectivity

Frequent Subgraph Mining (FSM) finds subgraphs with 
number of matches (support) > !
◦This work deals with unique vertex matchings (called 
MNI metric).

5



MNI Metric
Find number of distinct matches for each vertex vi
◦Create an MNItable , where each column (MNIcol ) consists 
of matches for the vertex (called valid nodes)

◦The number of entries in all columns > ! -> valid 
subgraph

6



MNI Metric

7

u1
u22

u21

u20
u19

u3u2

u4 u5
u18

u6

u7

u23

u17

u16
u15

u8

u9 u10

u11

u12

u14

u13

MNI Table

v1

v3

v2

Input Graph G Subgraph S

v1

u1

u21

u17

u14

u11

u8

v2

u2

u19

u16

u12

u9

v3

u3

u20

u15

u13

u10

(a)

(b)

(c)

A

B C

A
A

A

A

AAA

B

B

B

B B

B

B

B

B

B

C

C C

C

C
C

Fig. 2. (a) Input graph G (b) A Subgraph S (c) the MNI table of S
embeddings in G when ⌧ = 3

subgraph node v

i

in the list of embeddings of S in G.
Figure 2 shows an example of MNI calculation. Figure 2(a)
shows the input graph G and Figure 2(b) shows a subgraph
S. Each node is assigned a label. Assuming ⌧ = 3, for a
subgraph S to be frequent, each MNI

col

has to have at least
three distinct nodes. Given the six embeddings highlighted
with circles, MNI

col

(v1): {u1, u21, u17, u14, u11, u8},
MNI

col

(v2): {u2, u19, u16, u12, u9} and MNI
col

(v3):
{u3, u20, u15, u13, u10}. Nodes belonging to an MNI

col

are called valid nodes for that column, while the other nodes
are invalid. Figure 2(c) shows the resulting MNI

table

; since
all columns have size greater than three, S is frequent. Now,
let ⌧ = 6. v2 and v3 correspond to only five distinct nodes
in the embeddings, which is less than ⌧ , so S is infrequent.
MNI

col

(v2) and MNI
col

(v3) are called invalid columns.

B. FSM Algorithms

The FSM search space is composed of the set of all
frequent subgraphs as well as the first layer of infrequent
subgraphs. The search space is not known in advance; it is
built through a series of evaluation/extension iterations. Each
iteration involves a large number of subgraph evaluations (i.e.,
frequency calculation) , which are expensive operations. Most
FSM algorithms store embeddings of the previously evaluated
subgraphs in order to utilize them in subsequent iterations.
Such approach may avoid some computations, but suffers
from storing and processing an excessive number of embed-
dings. GraMi [11] proposed an alternative approach that does
not maintain many embeddings. GraMi models the subgraph
evaluation as a constraint satisfaction problem (CSP). During
each iteration, it solves the CSP until it finds the minimal
set of embeddings that are sufficient to satisfy ⌧ and ignores
other embeddings. To support large graphs, GraMi employs
the following optimizations that significantly improve the

performance: (i) prioritize light-weight node evaluations and
postpone expensive ones, and (ii) utilize the graph structure as
well as the previous subgraph evaluations to prune the search
space. In this work, we use the approach proposed by GraMi
as it is shown to efficiently handle larger graphs compared to
other algorithms.

III. APPROXIMATE PHASE

Load balance is essential for scalability. Achieving good
load balance is easier when the search space is known in
advance; unfortunately, this is not the case for FSM. We tackle
the load balancing problem by a novel two-phase approach.
The first phase builds an approximation of the search space and
collects statistics. The second phase, which returns the exact
results, uses the approximation to balance the load among
workers and optimize their execution plans.

An effective approximation of the FSM search space should
be: (i) representative: the predicted search space should rep-
resent the exact search space within acceptable accuracy;
(ii) efficient: the approximation phase should have minimal
overhead; (iii) informative: the approximation should be ac-
companied with statistics that can be used to optimize the
performance of the exact phase. Although approximate FSM is
not a new idea, none of the existing approximation techniques
meets the aforementioned requirements. That is, they either
return an insignificant fraction of the search space; do not
generate the required statistics; or have a high computational
cost.

ScaleMine introduces a novel approximation phase, based
on sampling, that satisfies the aforementioned requirements.
The approximate phase resembles the typical FSM algorithm.
It begins by finding small frequent subgraphs, which are then
extended to larger ones by adding edges. We employ an
adaptive sampling approach (Section III-A) to estimate quickly
and accurately whether a subgraph is frequent. During this
process, ScaleMine collects useful statistics for each candidate
subgraph (Section III-B). These statistics are later utilized to
optimize the exact FSM phase.

A. Sampling-based Subgraph Evaluation
For a candidate subgraph S, a typical FSM algorithm

populates the sets: MNI
col

(v1),MNI
col

(v2), . . . ,MNI
col

(v
d

)
with valid nodes. Iterating over all nodes in each column
is expensive since it involves subgraph isomorphism. Our
approach randomly samples a small fraction of these nodes,
and estimates the size of each column. Given an MNI

col

(v
i

),
the process of validating each node resembles a binomial
distribution. If the probability of success p

i

is known, then
the number of valid nodes in MNI

col

(v
i

) = N

i

p

i

, where N

i

is
the number of nodes in column i. Unfortunately, the value of
p

i

is unknown. p
i

can be estimated by sampling a relatively
small number of nodes. Since the problem is to decide whether
a candidate subgraph is frequent or not, we can relax the
problem to estimating whether p

i

is smaller or larger than p

i,⌧

,
where p

i,⌧

is called the ⌧ -probability of success and equals
⌧/N

i

. Having p

i

> p

i,⌧

means that the number of valid nodes

3



Approximation Phase
Goals
◦Representative
◦Efficient
◦Informative

Approach: Use sampling to construct a set of 
subgraphs with high probability of being frequent

8



Approximation Phase
Given probability of success pi, and number of nodes 
Ni...
◦MNIcol(vi) = Nipi
◦But we don’t know pi!

Use the Central Limit Theorem to estimate pi
◦ Distribution of means of a large number of i.i.d. random variables 

is approximately normal, regardless of underlying distribution

9

µ p⌧1 p⌧3p⌧2

low high

Fig. 3. The distribution of means of the samples

in MNI
col

(v
i

) is more than ⌧ , and consequently MNI
col

(v
i

) is
a valid column; otherwise, it is invalid.

ScaleMine employs the central limit theorem to estimate the
probability that p

i

is larger than p

i,⌧

. The theorem states that
the distribution of the means of a large number of indepen-
dent, identically distributed random variables is approximately
normal, regardless of the underlying distribution [22]. For
each MNI

col

(v
i

) belonging to a subgraph S, k sets of n

randomly selected nodes are sampled. The mean of each set
is estimated as the number of valid nodes. The means of
the generated k sets constitute a normal distribution with
mean µ̂ = np̂ and standard deviation �̂ = �p

n

, where p̂ is
the probability of success estimated from the sampled nodes,
and � =

p
np̂(1� p̂). Sampling independence is guaranteed

since each node belonging to an MNI
col

column has the same
probability to be validated against the input graph.

After generating the distribution, a vague, inconclusive, area
is defined. Having a support threshold within this area means
that the estimated support is not significantly different than the
given threshold; therefore more sampling is needed to increase
confidence. The vague area is bounded by:

low = µ̂� (z�̂) and high = µ̂+ (z�̂)

where z is the value of the standard normal table for a specific
confidence interval. A smaller vague area results in increasing
the decision accuracy, which requires having more samples;
the trade-off is an increased computational overhead.

Fig. 3 shows an example of a normal distribution generated
by the sampling process, and mark three probability of success
values multiplied by n: p

⌧1 , p
⌧2 and p

⌧3 , for different support
thresholds ⌧1, ⌧2 and ⌧3, respectively. Assume ⌧2 is the support
threshold; the sampled nodes have larger mean than p

⌧2 , so
the corresponding MNI

col

is predicted to be valid. As for
⌧3, the corresponding MNI

col

is predicted to be invalid since
p

⌧3 > µ. An interesting case is when ⌧1 is used: p
⌧1 is inside

the vague area and the difference between µ and p

⌧1 is not
significant. Thus, we cannot make a confident decision, and
more sampling is required. In general, for subgraphs with
support values close to ⌧ , more samples are evaluated until p

⌧

moves outside of the vague area. In some cases, p
⌧

never gets
out of the vague area, so we set a maximum number of samples
to stop the process regardless of the obtained accuracy.

Input: G the input graph, ⌧ support threshold, S Candidate Subgraph, maxS

Maximum number of samples, minS Minimum number of samples,
bSize sample size

Output: r the estimated support
1 D  CREATEDOMAINS(G, S)
2 r  0
3 foreach Di 2 D do
4 nV alids 0; totalV alids 0; nInvalids 0
5 counter  0
6 P⌧  ⌧/|Di|
7 Reset distribution T

8 while true do
9 counter = counter + 1 u GETRANDOMNODE(Di)

10 b ISVALID(G,S ,u,Di)
11 if b is true then
12 nV alids = nV alids + 1
13 totalV alids = totalV alids + 1

14 else nInvalids = nInvalids + 1
15 if counter (mod bSize)=0 then
16 m COMPUTEMEAN(nV alids,nInvalids)
17 Add m to T

18 if counter � minS then
19 M  COMPUTEMEAN(T )
20 SD  COMPUTESD(T )
21 if FINISHSAMPLING(T ,⌧ ,maxS) then break

22 nV alids 0
23 nInvalids 0

24 estimatedSize (totalV alids/counter) ⇤ |Di|
25 if estimatedSize < r then r  estimatedSize

Algorithm 1: Sampling-based Subgraph Evaluation

We summarize in Algorithm 1 the proposed sampling tech-
nique. The list of domains is created for each node v 2 S

(Line 1). For each domain, sampling is conducted, and the
number of valid and invalid nodes are counted. This process
iterates until the sample size is met (Line 15). Then the mean
value m is computed for each set of samples, and it is added
to the distribution T . Support is estimated once the number
of sampled nodes meets the default minimum number of
samples (Line 18). The mean and standard deviation are then
computed for the distribution T , which is assumed to follow
a normal distribution according to the central limit theorem
(Lines 19 and 20). Note that the default minimum number of
samples is a user-defined value, manually tuned, to allow the
central limit theorem to be applicable on the sampled data.
FINISHSAMPLING (line 21) returns true if the given support
is outside of the vague area, or when the maximum sample
size (maxS) is reached.

B. Search Space Estimation
During the approximation phase, ScaleMine collects useful

statistics for each candidate subgraph. We show in Section IV
how these statistics are utilized to achieve better performance
during the exact phase. We show below the information
collected during the approximation phase:
Subgraph estimated support: for each candidate subgraph,
[
Supp(S,G) is the value returned from Algorithm 1 which is
an estimation of the exact value Supp(S,G).
Subgraph evaluation time: ScaleMine estimates the time
required for the exact evaluation of a candidate subgraph as:

X

Di2D

time(D
i

) ⇤ |D
i

|
N

i

4

µ p⌧1 p⌧3p⌧2

low high

Fig. 3. The distribution of means of the samples

in MNI
col

(v
i

) is more than ⌧ , and consequently MNI
col

(v
i

) is
a valid column; otherwise, it is invalid.

ScaleMine employs the central limit theorem to estimate the
probability that p

i

is larger than p

i,⌧

. The theorem states that
the distribution of the means of a large number of indepen-
dent, identically distributed random variables is approximately
normal, regardless of the underlying distribution [22]. For
each MNI

col

(v
i

) belonging to a subgraph S, k sets of n

randomly selected nodes are sampled. The mean of each set
is estimated as the number of valid nodes. The means of
the generated k sets constitute a normal distribution with
mean µ̂ = np̂ and standard deviation �̂ = �p

n

, where p̂ is
the probability of success estimated from the sampled nodes,
and � =

p
np̂(1� p̂). Sampling independence is guaranteed

since each node belonging to an MNI
col

column has the same
probability to be validated against the input graph.

After generating the distribution, a vague, inconclusive, area
is defined. Having a support threshold within this area means
that the estimated support is not significantly different than the
given threshold; therefore more sampling is needed to increase
confidence. The vague area is bounded by:

low = µ̂� (z�̂) and high = µ̂+ (z�̂)

where z is the value of the standard normal table for a specific
confidence interval. A smaller vague area results in increasing
the decision accuracy, which requires having more samples;
the trade-off is an increased computational overhead.

Fig. 3 shows an example of a normal distribution generated
by the sampling process, and mark three probability of success
values multiplied by n: p

⌧1 , p
⌧2 and p

⌧3 , for different support
thresholds ⌧1, ⌧2 and ⌧3, respectively. Assume ⌧2 is the support
threshold; the sampled nodes have larger mean than p

⌧2 , so
the corresponding MNI

col

is predicted to be valid. As for
⌧3, the corresponding MNI

col

is predicted to be invalid since
p

⌧3 > µ. An interesting case is when ⌧1 is used: p
⌧1 is inside

the vague area and the difference between µ and p

⌧1 is not
significant. Thus, we cannot make a confident decision, and
more sampling is required. In general, for subgraphs with
support values close to ⌧ , more samples are evaluated until p

⌧

moves outside of the vague area. In some cases, p
⌧

never gets
out of the vague area, so we set a maximum number of samples
to stop the process regardless of the obtained accuracy.

Input: G the input graph, ⌧ support threshold, S Candidate Subgraph, maxS

Maximum number of samples, minS Minimum number of samples,
bSize sample size

Output: r the estimated support
1 D  CREATEDOMAINS(G, S)
2 r  0
3 foreach Di 2 D do
4 nV alids 0; totalV alids 0; nInvalids 0
5 counter  0
6 P⌧  ⌧/|Di|
7 Reset distribution T

8 while true do
9 counter = counter + 1 u GETRANDOMNODE(Di)

10 b ISVALID(G,S ,u,Di)
11 if b is true then
12 nV alids = nV alids + 1
13 totalV alids = totalV alids + 1

14 else nInvalids = nInvalids + 1
15 if counter (mod bSize)=0 then
16 m COMPUTEMEAN(nV alids,nInvalids)
17 Add m to T

18 if counter � minS then
19 M  COMPUTEMEAN(T )
20 SD  COMPUTESD(T )
21 if FINISHSAMPLING(T ,⌧ ,maxS) then break

22 nV alids 0
23 nInvalids 0

24 estimatedSize (totalV alids/counter) ⇤ |Di|
25 if estimatedSize < r then r  estimatedSize

Algorithm 1: Sampling-based Subgraph Evaluation

We summarize in Algorithm 1 the proposed sampling tech-
nique. The list of domains is created for each node v 2 S

(Line 1). For each domain, sampling is conducted, and the
number of valid and invalid nodes are counted. This process
iterates until the sample size is met (Line 15). Then the mean
value m is computed for each set of samples, and it is added
to the distribution T . Support is estimated once the number
of sampled nodes meets the default minimum number of
samples (Line 18). The mean and standard deviation are then
computed for the distribution T , which is assumed to follow
a normal distribution according to the central limit theorem
(Lines 19 and 20). Note that the default minimum number of
samples is a user-defined value, manually tuned, to allow the
central limit theorem to be applicable on the sampled data.
FINISHSAMPLING (line 21) returns true if the given support
is outside of the vague area, or when the maximum sample
size (maxS) is reached.

B. Search Space Estimation
During the approximation phase, ScaleMine collects useful

statistics for each candidate subgraph. We show in Section IV
how these statistics are utilized to achieve better performance
during the exact phase. We show below the information
collected during the approximation phase:
Subgraph estimated support: for each candidate subgraph,
[
Supp(S,G) is the value returned from Algorithm 1 which is
an estimation of the exact value Supp(S,G).
Subgraph evaluation time: ScaleMine estimates the time
required for the exact evaluation of a candidate subgraph as:

X

Di2D

time(D
i

) ⇤ |D
i

|
N

i

4



Approximation Phase
Define a vague area for inconclusive estimates

10

µ p⌧1 p⌧3p⌧2

low high

Fig. 3. The distribution of means of the samples

in MNI
col

(v
i

) is more than ⌧ , and consequently MNI
col

(v
i

) is
a valid column; otherwise, it is invalid.

ScaleMine employs the central limit theorem to estimate the
probability that p

i

is larger than p

i,⌧

. The theorem states that
the distribution of the means of a large number of indepen-
dent, identically distributed random variables is approximately
normal, regardless of the underlying distribution [22]. For
each MNI

col

(v
i

) belonging to a subgraph S, k sets of n

randomly selected nodes are sampled. The mean of each set
is estimated as the number of valid nodes. The means of
the generated k sets constitute a normal distribution with
mean µ̂ = np̂ and standard deviation �̂ = �p

n

, where p̂ is
the probability of success estimated from the sampled nodes,
and � =

p
np̂(1� p̂). Sampling independence is guaranteed

since each node belonging to an MNI
col

column has the same
probability to be validated against the input graph.

After generating the distribution, a vague, inconclusive, area
is defined. Having a support threshold within this area means
that the estimated support is not significantly different than the
given threshold; therefore more sampling is needed to increase
confidence. The vague area is bounded by:

low = µ̂� (z�̂) and high = µ̂+ (z�̂)

where z is the value of the standard normal table for a specific
confidence interval. A smaller vague area results in increasing
the decision accuracy, which requires having more samples;
the trade-off is an increased computational overhead.

Fig. 3 shows an example of a normal distribution generated
by the sampling process, and mark three probability of success
values multiplied by n: p

⌧1 , p
⌧2 and p

⌧3 , for different support
thresholds ⌧1, ⌧2 and ⌧3, respectively. Assume ⌧2 is the support
threshold; the sampled nodes have larger mean than p

⌧2 , so
the corresponding MNI

col

is predicted to be valid. As for
⌧3, the corresponding MNI

col

is predicted to be invalid since
p

⌧3 > µ. An interesting case is when ⌧1 is used: p
⌧1 is inside

the vague area and the difference between µ and p

⌧1 is not
significant. Thus, we cannot make a confident decision, and
more sampling is required. In general, for subgraphs with
support values close to ⌧ , more samples are evaluated until p

⌧

moves outside of the vague area. In some cases, p
⌧

never gets
out of the vague area, so we set a maximum number of samples
to stop the process regardless of the obtained accuracy.

Input: G the input graph, ⌧ support threshold, S Candidate Subgraph, maxS

Maximum number of samples, minS Minimum number of samples,
bSize sample size

Output: r the estimated support
1 D  CREATEDOMAINS(G, S)
2 r  0
3 foreach Di 2 D do
4 nV alids 0; totalV alids 0; nInvalids 0
5 counter  0
6 P⌧  ⌧/|Di|
7 Reset distribution T

8 while true do
9 counter = counter + 1 u GETRANDOMNODE(Di)

10 b ISVALID(G,S ,u,Di)
11 if b is true then
12 nV alids = nV alids + 1
13 totalV alids = totalV alids + 1

14 else nInvalids = nInvalids + 1
15 if counter (mod bSize)=0 then
16 m COMPUTEMEAN(nV alids,nInvalids)
17 Add m to T

18 if counter � minS then
19 M  COMPUTEMEAN(T )
20 SD  COMPUTESD(T )
21 if FINISHSAMPLING(T ,⌧ ,maxS) then break

22 nV alids 0
23 nInvalids 0

24 estimatedSize (totalV alids/counter) ⇤ |Di|
25 if estimatedSize < r then r  estimatedSize

Algorithm 1: Sampling-based Subgraph Evaluation

We summarize in Algorithm 1 the proposed sampling tech-
nique. The list of domains is created for each node v 2 S

(Line 1). For each domain, sampling is conducted, and the
number of valid and invalid nodes are counted. This process
iterates until the sample size is met (Line 15). Then the mean
value m is computed for each set of samples, and it is added
to the distribution T . Support is estimated once the number
of sampled nodes meets the default minimum number of
samples (Line 18). The mean and standard deviation are then
computed for the distribution T , which is assumed to follow
a normal distribution according to the central limit theorem
(Lines 19 and 20). Note that the default minimum number of
samples is a user-defined value, manually tuned, to allow the
central limit theorem to be applicable on the sampled data.
FINISHSAMPLING (line 21) returns true if the given support
is outside of the vague area, or when the maximum sample
size (maxS) is reached.

B. Search Space Estimation
During the approximation phase, ScaleMine collects useful

statistics for each candidate subgraph. We show in Section IV
how these statistics are utilized to achieve better performance
during the exact phase. We show below the information
collected during the approximation phase:
Subgraph estimated support: for each candidate subgraph,
[
Supp(S,G) is the value returned from Algorithm 1 which is
an estimation of the exact value Supp(S,G).
Subgraph evaluation time: ScaleMine estimates the time
required for the exact evaluation of a candidate subgraph as:

X

Di2D

time(D
i

) ⇤ |D
i

|
N

i

4

µ p⌧1 p⌧3p⌧2

low high

Fig. 3. The distribution of means of the samples

in MNI
col

(v
i

) is more than ⌧ , and consequently MNI
col

(v
i

) is
a valid column; otherwise, it is invalid.

ScaleMine employs the central limit theorem to estimate the
probability that p

i

is larger than p

i,⌧

. The theorem states that
the distribution of the means of a large number of indepen-
dent, identically distributed random variables is approximately
normal, regardless of the underlying distribution [22]. For
each MNI

col

(v
i

) belonging to a subgraph S, k sets of n

randomly selected nodes are sampled. The mean of each set
is estimated as the number of valid nodes. The means of
the generated k sets constitute a normal distribution with
mean µ̂ = np̂ and standard deviation �̂ = �p

n

, where p̂ is
the probability of success estimated from the sampled nodes,
and � =

p
np̂(1� p̂). Sampling independence is guaranteed

since each node belonging to an MNI
col

column has the same
probability to be validated against the input graph.

After generating the distribution, a vague, inconclusive, area
is defined. Having a support threshold within this area means
that the estimated support is not significantly different than the
given threshold; therefore more sampling is needed to increase
confidence. The vague area is bounded by:

low = µ̂� (z�̂) and high = µ̂+ (z�̂)

where z is the value of the standard normal table for a specific
confidence interval. A smaller vague area results in increasing
the decision accuracy, which requires having more samples;
the trade-off is an increased computational overhead.

Fig. 3 shows an example of a normal distribution generated
by the sampling process, and mark three probability of success
values multiplied by n: p

⌧1 , p
⌧2 and p

⌧3 , for different support
thresholds ⌧1, ⌧2 and ⌧3, respectively. Assume ⌧2 is the support
threshold; the sampled nodes have larger mean than p

⌧2 , so
the corresponding MNI

col

is predicted to be valid. As for
⌧3, the corresponding MNI

col

is predicted to be invalid since
p

⌧3 > µ. An interesting case is when ⌧1 is used: p
⌧1 is inside

the vague area and the difference between µ and p

⌧1 is not
significant. Thus, we cannot make a confident decision, and
more sampling is required. In general, for subgraphs with
support values close to ⌧ , more samples are evaluated until p

⌧

moves outside of the vague area. In some cases, p
⌧

never gets
out of the vague area, so we set a maximum number of samples
to stop the process regardless of the obtained accuracy.

Input: G the input graph, ⌧ support threshold, S Candidate Subgraph, maxS

Maximum number of samples, minS Minimum number of samples,
bSize sample size

Output: r the estimated support
1 D  CREATEDOMAINS(G, S)
2 r  0
3 foreach Di 2 D do
4 nV alids 0; totalV alids 0; nInvalids 0
5 counter  0
6 P⌧  ⌧/|Di|
7 Reset distribution T

8 while true do
9 counter = counter + 1 u GETRANDOMNODE(Di)

10 b ISVALID(G,S ,u,Di)
11 if b is true then
12 nV alids = nV alids + 1
13 totalV alids = totalV alids + 1

14 else nInvalids = nInvalids + 1
15 if counter (mod bSize)=0 then
16 m COMPUTEMEAN(nV alids,nInvalids)
17 Add m to T

18 if counter � minS then
19 M  COMPUTEMEAN(T )
20 SD  COMPUTESD(T )
21 if FINISHSAMPLING(T ,⌧ ,maxS) then break

22 nV alids 0
23 nInvalids 0

24 estimatedSize (totalV alids/counter) ⇤ |Di|
25 if estimatedSize < r then r  estimatedSize

Algorithm 1: Sampling-based Subgraph Evaluation

We summarize in Algorithm 1 the proposed sampling tech-
nique. The list of domains is created for each node v 2 S

(Line 1). For each domain, sampling is conducted, and the
number of valid and invalid nodes are counted. This process
iterates until the sample size is met (Line 15). Then the mean
value m is computed for each set of samples, and it is added
to the distribution T . Support is estimated once the number
of sampled nodes meets the default minimum number of
samples (Line 18). The mean and standard deviation are then
computed for the distribution T , which is assumed to follow
a normal distribution according to the central limit theorem
(Lines 19 and 20). Note that the default minimum number of
samples is a user-defined value, manually tuned, to allow the
central limit theorem to be applicable on the sampled data.
FINISHSAMPLING (line 21) returns true if the given support
is outside of the vague area, or when the maximum sample
size (maxS) is reached.

B. Search Space Estimation
During the approximation phase, ScaleMine collects useful

statistics for each candidate subgraph. We show in Section IV
how these statistics are utilized to achieve better performance
during the exact phase. We show below the information
collected during the approximation phase:
Subgraph estimated support: for each candidate subgraph,
[
Supp(S,G) is the value returned from Algorithm 1 which is
an estimation of the exact value Supp(S,G).
Subgraph evaluation time: ScaleMine estimates the time
required for the exact evaluation of a candidate subgraph as:

X

Di2D

time(D
i

) ⇤ |D
i

|
N

i

4



Approximation Phase

11

µ p⌧1 p⌧3p⌧2

low high

Fig. 3. The distribution of means of the samples

in MNI
col

(v
i

) is more than ⌧ , and consequently MNI
col

(v
i

) is
a valid column; otherwise, it is invalid.

ScaleMine employs the central limit theorem to estimate the
probability that p

i

is larger than p

i,⌧

. The theorem states that
the distribution of the means of a large number of indepen-
dent, identically distributed random variables is approximately
normal, regardless of the underlying distribution [22]. For
each MNI

col

(v
i

) belonging to a subgraph S, k sets of n

randomly selected nodes are sampled. The mean of each set
is estimated as the number of valid nodes. The means of
the generated k sets constitute a normal distribution with
mean µ̂ = np̂ and standard deviation �̂ = �p

n

, where p̂ is
the probability of success estimated from the sampled nodes,
and � =

p
np̂(1� p̂). Sampling independence is guaranteed

since each node belonging to an MNI
col

column has the same
probability to be validated against the input graph.

After generating the distribution, a vague, inconclusive, area
is defined. Having a support threshold within this area means
that the estimated support is not significantly different than the
given threshold; therefore more sampling is needed to increase
confidence. The vague area is bounded by:

low = µ̂� (z�̂) and high = µ̂+ (z�̂)

where z is the value of the standard normal table for a specific
confidence interval. A smaller vague area results in increasing
the decision accuracy, which requires having more samples;
the trade-off is an increased computational overhead.

Fig. 3 shows an example of a normal distribution generated
by the sampling process, and mark three probability of success
values multiplied by n: p

⌧1 , p
⌧2 and p

⌧3 , for different support
thresholds ⌧1, ⌧2 and ⌧3, respectively. Assume ⌧2 is the support
threshold; the sampled nodes have larger mean than p

⌧2 , so
the corresponding MNI

col

is predicted to be valid. As for
⌧3, the corresponding MNI

col

is predicted to be invalid since
p

⌧3 > µ. An interesting case is when ⌧1 is used: p
⌧1 is inside

the vague area and the difference between µ and p

⌧1 is not
significant. Thus, we cannot make a confident decision, and
more sampling is required. In general, for subgraphs with
support values close to ⌧ , more samples are evaluated until p

⌧

moves outside of the vague area. In some cases, p
⌧

never gets
out of the vague area, so we set a maximum number of samples
to stop the process regardless of the obtained accuracy.

Input: G the input graph, ⌧ support threshold, S Candidate Subgraph, maxS

Maximum number of samples, minS Minimum number of samples,
bSize sample size

Output: r the estimated support
1 D  CREATEDOMAINS(G, S)
2 r  0
3 foreach Di 2 D do
4 nV alids 0; totalV alids 0; nInvalids 0
5 counter  0
6 P⌧  ⌧/|Di|
7 Reset distribution T

8 while true do
9 counter = counter + 1 u GETRANDOMNODE(Di)

10 b ISVALID(G,S ,u,Di)
11 if b is true then
12 nV alids = nV alids + 1
13 totalV alids = totalV alids + 1

14 else nInvalids = nInvalids + 1
15 if counter (mod bSize)=0 then
16 m COMPUTEMEAN(nV alids,nInvalids)
17 Add m to T

18 if counter � minS then
19 M  COMPUTEMEAN(T )
20 SD  COMPUTESD(T )
21 if FINISHSAMPLING(T ,⌧ ,maxS) then break

22 nV alids 0
23 nInvalids 0

24 estimatedSize (totalV alids/counter) ⇤ |Di|
25 if estimatedSize < r then r  estimatedSize

Algorithm 1: Sampling-based Subgraph Evaluation

We summarize in Algorithm 1 the proposed sampling tech-
nique. The list of domains is created for each node v 2 S

(Line 1). For each domain, sampling is conducted, and the
number of valid and invalid nodes are counted. This process
iterates until the sample size is met (Line 15). Then the mean
value m is computed for each set of samples, and it is added
to the distribution T . Support is estimated once the number
of sampled nodes meets the default minimum number of
samples (Line 18). The mean and standard deviation are then
computed for the distribution T , which is assumed to follow
a normal distribution according to the central limit theorem
(Lines 19 and 20). Note that the default minimum number of
samples is a user-defined value, manually tuned, to allow the
central limit theorem to be applicable on the sampled data.
FINISHSAMPLING (line 21) returns true if the given support
is outside of the vague area, or when the maximum sample
size (maxS) is reached.

B. Search Space Estimation
During the approximation phase, ScaleMine collects useful

statistics for each candidate subgraph. We show in Section IV
how these statistics are utilized to achieve better performance
during the exact phase. We show below the information
collected during the approximation phase:
Subgraph estimated support: for each candidate subgraph,
[
Supp(S,G) is the value returned from Algorithm 1 which is
an estimation of the exact value Supp(S,G).
Subgraph evaluation time: ScaleMine estimates the time
required for the exact evaluation of a candidate subgraph as:

X

Di2D

time(D
i

) ⇤ |D
i

|
N

i

4



Approximation Phase

12

µ p⌧1 p⌧3p⌧2

low high

Fig. 3. The distribution of means of the samples

in MNI
col

(v
i

) is more than ⌧ , and consequently MNI
col

(v
i

) is
a valid column; otherwise, it is invalid.

ScaleMine employs the central limit theorem to estimate the
probability that p

i

is larger than p

i,⌧

. The theorem states that
the distribution of the means of a large number of indepen-
dent, identically distributed random variables is approximately
normal, regardless of the underlying distribution [22]. For
each MNI

col

(v
i

) belonging to a subgraph S, k sets of n

randomly selected nodes are sampled. The mean of each set
is estimated as the number of valid nodes. The means of
the generated k sets constitute a normal distribution with
mean µ̂ = np̂ and standard deviation �̂ = �p

n

, where p̂ is
the probability of success estimated from the sampled nodes,
and � =

p
np̂(1� p̂). Sampling independence is guaranteed

since each node belonging to an MNI
col

column has the same
probability to be validated against the input graph.

After generating the distribution, a vague, inconclusive, area
is defined. Having a support threshold within this area means
that the estimated support is not significantly different than the
given threshold; therefore more sampling is needed to increase
confidence. The vague area is bounded by:

low = µ̂� (z�̂) and high = µ̂+ (z�̂)

where z is the value of the standard normal table for a specific
confidence interval. A smaller vague area results in increasing
the decision accuracy, which requires having more samples;
the trade-off is an increased computational overhead.

Fig. 3 shows an example of a normal distribution generated
by the sampling process, and mark three probability of success
values multiplied by n: p

⌧1 , p
⌧2 and p

⌧3 , for different support
thresholds ⌧1, ⌧2 and ⌧3, respectively. Assume ⌧2 is the support
threshold; the sampled nodes have larger mean than p

⌧2 , so
the corresponding MNI

col

is predicted to be valid. As for
⌧3, the corresponding MNI

col

is predicted to be invalid since
p

⌧3 > µ. An interesting case is when ⌧1 is used: p
⌧1 is inside

the vague area and the difference between µ and p

⌧1 is not
significant. Thus, we cannot make a confident decision, and
more sampling is required. In general, for subgraphs with
support values close to ⌧ , more samples are evaluated until p

⌧

moves outside of the vague area. In some cases, p
⌧

never gets
out of the vague area, so we set a maximum number of samples
to stop the process regardless of the obtained accuracy.

Input: G the input graph, ⌧ support threshold, S Candidate Subgraph, maxS

Maximum number of samples, minS Minimum number of samples,
bSize sample size

Output: r the estimated support
1 D  CREATEDOMAINS(G, S)
2 r  0
3 foreach Di 2 D do
4 nV alids 0; totalV alids 0; nInvalids 0
5 counter  0
6 P⌧  ⌧/|Di|
7 Reset distribution T

8 while true do
9 counter = counter + 1 u GETRANDOMNODE(Di)

10 b ISVALID(G,S ,u,Di)
11 if b is true then
12 nV alids = nV alids + 1
13 totalV alids = totalV alids + 1

14 else nInvalids = nInvalids + 1
15 if counter (mod bSize)=0 then
16 m COMPUTEMEAN(nV alids,nInvalids)
17 Add m to T

18 if counter � minS then
19 M  COMPUTEMEAN(T )
20 SD  COMPUTESD(T )
21 if FINISHSAMPLING(T ,⌧ ,maxS) then break

22 nV alids 0
23 nInvalids 0

24 estimatedSize (totalV alids/counter) ⇤ |Di|
25 if estimatedSize < r then r  estimatedSize

Algorithm 1: Sampling-based Subgraph Evaluation

We summarize in Algorithm 1 the proposed sampling tech-
nique. The list of domains is created for each node v 2 S

(Line 1). For each domain, sampling is conducted, and the
number of valid and invalid nodes are counted. This process
iterates until the sample size is met (Line 15). Then the mean
value m is computed for each set of samples, and it is added
to the distribution T . Support is estimated once the number
of sampled nodes meets the default minimum number of
samples (Line 18). The mean and standard deviation are then
computed for the distribution T , which is assumed to follow
a normal distribution according to the central limit theorem
(Lines 19 and 20). Note that the default minimum number of
samples is a user-defined value, manually tuned, to allow the
central limit theorem to be applicable on the sampled data.
FINISHSAMPLING (line 21) returns true if the given support
is outside of the vague area, or when the maximum sample
size (maxS) is reached.

B. Search Space Estimation
During the approximation phase, ScaleMine collects useful

statistics for each candidate subgraph. We show in Section IV
how these statistics are utilized to achieve better performance
during the exact phase. We show below the information
collected during the approximation phase:
Subgraph estimated support: for each candidate subgraph,
[
Supp(S,G) is the value returned from Algorithm 1 which is
an estimation of the exact value Supp(S,G).
Subgraph evaluation time: ScaleMine estimates the time
required for the exact evaluation of a candidate subgraph as:

X

Di2D

time(D
i

) ⇤ |D
i

|
N

i

4



Approximation Phase
Also collect useful statistics
◦Estimates support of subgraph
◦Number of valid nodes per MNIcol
◦Expected invalid columns
◦Subgraph evaluation time

13

µ p⌧1 p⌧3p⌧2

low high

Fig. 3. The distribution of means of the samples

in MNI
col

(v
i

) is more than ⌧ , and consequently MNI
col

(v
i

) is
a valid column; otherwise, it is invalid.

ScaleMine employs the central limit theorem to estimate the
probability that p

i

is larger than p

i,⌧

. The theorem states that
the distribution of the means of a large number of indepen-
dent, identically distributed random variables is approximately
normal, regardless of the underlying distribution [22]. For
each MNI

col

(v
i

) belonging to a subgraph S, k sets of n

randomly selected nodes are sampled. The mean of each set
is estimated as the number of valid nodes. The means of
the generated k sets constitute a normal distribution with
mean µ̂ = np̂ and standard deviation �̂ = �p

n

, where p̂ is
the probability of success estimated from the sampled nodes,
and � =

p
np̂(1� p̂). Sampling independence is guaranteed

since each node belonging to an MNI
col

column has the same
probability to be validated against the input graph.

After generating the distribution, a vague, inconclusive, area
is defined. Having a support threshold within this area means
that the estimated support is not significantly different than the
given threshold; therefore more sampling is needed to increase
confidence. The vague area is bounded by:

low = µ̂� (z�̂) and high = µ̂+ (z�̂)

where z is the value of the standard normal table for a specific
confidence interval. A smaller vague area results in increasing
the decision accuracy, which requires having more samples;
the trade-off is an increased computational overhead.

Fig. 3 shows an example of a normal distribution generated
by the sampling process, and mark three probability of success
values multiplied by n: p

⌧1 , p
⌧2 and p

⌧3 , for different support
thresholds ⌧1, ⌧2 and ⌧3, respectively. Assume ⌧2 is the support
threshold; the sampled nodes have larger mean than p

⌧2 , so
the corresponding MNI

col

is predicted to be valid. As for
⌧3, the corresponding MNI

col

is predicted to be invalid since
p

⌧3 > µ. An interesting case is when ⌧1 is used: p
⌧1 is inside

the vague area and the difference between µ and p

⌧1 is not
significant. Thus, we cannot make a confident decision, and
more sampling is required. In general, for subgraphs with
support values close to ⌧ , more samples are evaluated until p

⌧

moves outside of the vague area. In some cases, p
⌧

never gets
out of the vague area, so we set a maximum number of samples
to stop the process regardless of the obtained accuracy.

Input: G the input graph, ⌧ support threshold, S Candidate Subgraph, maxS

Maximum number of samples, minS Minimum number of samples,
bSize sample size

Output: r the estimated support
1 D  CREATEDOMAINS(G, S)
2 r  0
3 foreach Di 2 D do
4 nV alids 0; totalV alids 0; nInvalids 0
5 counter  0
6 P⌧  ⌧/|Di|
7 Reset distribution T

8 while true do
9 counter = counter + 1 u GETRANDOMNODE(Di)

10 b ISVALID(G,S ,u,Di)
11 if b is true then
12 nV alids = nV alids + 1
13 totalV alids = totalV alids + 1

14 else nInvalids = nInvalids + 1
15 if counter (mod bSize)=0 then
16 m COMPUTEMEAN(nV alids,nInvalids)
17 Add m to T

18 if counter � minS then
19 M  COMPUTEMEAN(T )
20 SD  COMPUTESD(T )
21 if FINISHSAMPLING(T ,⌧ ,maxS) then break

22 nV alids 0
23 nInvalids 0

24 estimatedSize (totalV alids/counter) ⇤ |Di|
25 if estimatedSize < r then r  estimatedSize

Algorithm 1: Sampling-based Subgraph Evaluation

We summarize in Algorithm 1 the proposed sampling tech-
nique. The list of domains is created for each node v 2 S

(Line 1). For each domain, sampling is conducted, and the
number of valid and invalid nodes are counted. This process
iterates until the sample size is met (Line 15). Then the mean
value m is computed for each set of samples, and it is added
to the distribution T . Support is estimated once the number
of sampled nodes meets the default minimum number of
samples (Line 18). The mean and standard deviation are then
computed for the distribution T , which is assumed to follow
a normal distribution according to the central limit theorem
(Lines 19 and 20). Note that the default minimum number of
samples is a user-defined value, manually tuned, to allow the
central limit theorem to be applicable on the sampled data.
FINISHSAMPLING (line 21) returns true if the given support
is outside of the vague area, or when the maximum sample
size (maxS) is reached.

B. Search Space Estimation
During the approximation phase, ScaleMine collects useful

statistics for each candidate subgraph. We show in Section IV
how these statistics are utilized to achieve better performance
during the exact phase. We show below the information
collected during the approximation phase:
Subgraph estimated support: for each candidate subgraph,
[
Supp(S,G) is the value returned from Algorithm 1 which is
an estimation of the exact value Supp(S,G).
Subgraph evaluation time: ScaleMine estimates the time
required for the exact evaluation of a candidate subgraph as:

X

Di2D

time(D
i

) ⇤ |D
i

|
N

i

4



Exact Phase
Master-Worker paradigm
◦Master keeps track of task pool, task dispatch and 
synchronization

◦MPI for communication

Keep two task pools
◦Approximation pool (PAPP) from the approximation 
phase

◦Exact pool (PEX) for the normal FSM algorithm

14



Exact Phase

15

D is the set of all domains, time(D
i

) is the time spent on
evaluating the sampled nodes for domain D

i

, N
i

is the number
of sampled nodes and |D

i

| is the domain size. We utilize this
information to guide intra-task parallelism (see Section IV-B).
Number of valid nodes per MNI

col

: besides having the
estimated subgraph support, it is also important to know the
estimated number of valid nodes per MNI

col

. This value is
calculated in Line 24 of Algorithm 1. We use the estimated
number of valid nodes per MNI

col

for the early pruning in the
exact phase (see Section IV-C). Note that we only store this
information for approximated infrequent subgraphs because it
only helps with evaluating infrequent subgraphs.
Expected invalid columns: an expected invalid column is a
column that is predicted to have a number of valid nodes less
than ⌧ . The exact phase utilizes this information to optimize
the execution plan. Note that we only store the invalid columns
for the approximated infrequent subgraphs only.

IV. EXACT PHASE - PARALLEL FSM

A. System Description

ScaleMine employs the master-worker paradigm on a mul-
tithreaded shared-nothing environment. It uses the standard
Message Passing Interface (MPI) for communication. Figure 4
shows the system architecture. The master receives the input
graph and the user-defined support threshold ⌧ . The graph is
loaded and dispatched to nodes in the cluster by the graph
loader. Each node has a single copy of the graph index,
which is utilized by the workers (i.e., threads) running on that
node; each core is assigned a single thread. Once the graph is
loaded, ScaleMine starts its two-phase processing for finding
the frequent subgraphs.

The first phase builds the approximate search space, which
generates a pool of tasks, denoted by P

App

. The pool stores
both frequent and infrequent predicted subgraphs (i.e., ap-
proximations). The second phase handles the exact evaluation
of FSM. Alongside P

App

, ScaleMine uses a second pool of
tasks, denoted by P

Ex

, to store candidate subgraphs generated
from exact evaluation. This phase starts by generating a set of
tasks consisting of frequent vertices. Once they are evaluated,
frequent subgraphs are added to the result set, expanded, and
stored in the exact task pool P

Ex

. The master prioritizes
dispatching tasks from P

Ex

to available workers until it
becomes empty. Statistics of each subgraph are also sent to the
corresponding worker. If such statistics are not available for a
subgraph, ScaleMine generates them on the fly by approximate
evaluation of the subgraph. Dispatched tasks are prioritized by
size; smaller subgraphs are processed first.

Due to the nature of FSM, the number of available tasks is
small at the beginning and by the end of the evaluation process.
Such behavior affects the scalability and the utilization of the
available resources. To avoid having idle workers, ScaleMine
dispatches tasks to idle workers from the pool of approximated
subgraphs P

App

whenever P
Ex

is empty. These tasks are not
random since they are generated by the approximation phase.
As such, they are expected to be evaluated in future iterations.

MPI - Communication Protocol

Graph Loader
A

B C A
E

Input Graph G

Graph Index
Node 1

w11 ...w12 w1n

Phase 2: Parallel FSMPhase 1: Approx. Space Task

Task Scheduler / Load Balancer

ScaleMine Master

G
ra

ph
D

at
a

A
pp

ro
x.

Ev
al

.
Ex

ac
t

Ev
al

.

Fr
eq

?/
A

ux
In

f
Pool

Graph Index
Node 2

w21 ...w22 w2n

G
ra

ph
D

at
a

A
pp

ro
x.

Ev
al

.
Ex

ac
t

Ev
al

.

Fr
eq

?/
A

ux
In

f

Graph Index
Node m

wm1 ...wm2 wmn

G
ra

ph
D

at
a

A
pp

ro
x.

Ev
al

.
Ex

ac
t

Ev
al

.

Fr
eq

?/
A

ux
In

f

...

Fig. 4. ScaleMine System Architecture

Instead of waiting for the exact evaluator to produce them,
they are evaluated ahead of time to benefit from the available
resources. There is a chance that some of these tasks should
not be evaluated at all, the approximation phase is accurate
enough to minimize such cases.

Once a worker finishes its task, it sends the result back to the
master and asks for more tasks. Then, the master updates the
task pools (P

Ex

and P

App

) and sends new tasks to available
workers. Updating the task pool involves: (i) removing larger
supergraphs from P

App

that contains a reported infrequent
subgraph by the exact phase. (ii) Adding new subgraphs
to P

Ex

by extending reported frequent subgraphs, and (iii)
removing tasks from P

App

that match discovered subgraphs
to avoid task duplication. ScaleMine explores the search space
level by level, from smaller candidates to larger ones, until no
more frequent subgraphs are found. ScaleMine incurs minimal
communication overhead. Tasks along with their approximate
statistical information are sent to workers, which report the
computed support values back to the master. No synchro-
nization data or embedding lists are communicated. Since
the frequency computation is an expensive task compared to
tasks generation and scheduling, the overhead of the master is
minimal and insignificant to the overall runtime of ScaleMine.

We discuss in the following sections how ScaleMine ex-
ploits the knowledge collected during the approximate phase
to provide a scalable FSM solution.

B. Subtasking

Reducing the number of idle workers by having enough
tasks for all workers is not guaranteed to provide a balanced
workload. Evaluating one subgraph can take significantly more
time than another subgraph. Therefore, assigning an expensive
task to a single worker would introduce a straggler worker
which severely affects the load balance and hinders the system
scalability. To avoid this scenario, it is important to have
coherent tasks; tasks that require almost the same processing
time. ScaleMine utilizes the estimated evaluation time for
each predicted subgraph to distinguish between expensive and
lightweight tasks. Expensive tasks are divided into smaller
subtasks which are evaluated by several workers while each
lightweight task is assigned to a single worker.

5



Exact Phase – Load Balancing
FSM often runs out of work in its exact pool in the 
beginning and at the end
◦Results in load imbalance

When out of work, dispatch tasks from PAPP
◦These are high likelihood of frequent subgraph tasks
◦Minimizes wasted work

16



Exact Phase – Load Balancing
FSM often runs out of work in its exact pool in the 
beginning and at the end
◦Results in load imbalance

When out of work, dispatch tasks from PAPP
◦These are high likelihood of frequent subgraph tasks
◦Minimizes wasted work

17



Exact Phase – Subtasking
Use estimated evaluation time to partition long-
running tasks
◦Vertical or Horizontal

Manage imbalance caused by partitioning based on 
predicted workload distribution

18

The goal of subtasking is to partition a task into n subtasks;
each subtask is a disjoint partition of the processing space.
Partitioning can be either vertical or horizontal. Vertical par-
titioning assigns a different MNI

col

to different workers. Each
worker will be responsible for evaluating its given column.
This approach has three limitations: (i) usually the number
of columns compared to the available workers is very small.
Therefore, the maximum number of workers to be used is
limited by the number of columns. (ii) Even if the number
of columns is large enough, there is no need to evaluate all
columns for candidate subgraphs that are indeed infrequent.
As a result, a subset of the workers will end up doing
useless work. (iii) Different columns have different execution
overheads, which retracts to the first load imbalance problem.

In horizontal partitioning, graph nodes are partitioned
among workers. Each worker; which has access to the whole
input graph, is responsible for counting valid nodes only in its
partition. A hash-based partitioning is a simple yet effective
approach for distributing the workload. By opting for this
partitioning strategy, enough subtasks are generated, and no
extra overhead is required to process unnecessary columns.

We now describe how ScaleMine decides the number of
subtasks (n) that an expensive task should be divided into.
A larger number of subtasks utilizes more cores and ensures
minimum amount of processing for each core which enhances
the load balance. However, having more subtasks increases the
processing overhead of each subtask since some pruning opti-
mizations can not be utilized when the task is divided among
multiple independent workers. Moreover, subtasking requires
more synchronization overhead between the master and the
involved workers. ScaleMine tries to find a near optimal value
for n which ensures both good load balance and minimal
computation/communication overheads. ScaleMine follows an
event-driven simulation-based approach that maximizes the
load balance while minimizing the number of subtasks. This
approach utilizes the statistics obtained from the approxima-
tion phase to simulate the runtime of different partitioning
granularities. For each granularity, ScaleMine calculates the
imbalance percentage as follows:

� =
L

max

L̂

� 1

where L

max

is the maximum predicted workload on any
worker and L̂ is the average predicted workload over all
workers. A smaller value of � translates to a more coherent
distribution of the subtasks. Task partitioning is based on
a maximum subtask time ✓, if a task has a predicted time
T

p

more than ✓, it is partitioned into n = T

p

/✓ subtasks.
ScaleMine starts evaluating � without any task partitioning
(✓=maximum predicted task time), and keeps generating finer
workloads by decreasing ✓, 10% after each iteration, until �
becomes less than a given threshold. Since this step is based
on an event-driven simulation, its overhead is insignificant.

C. Optimizations
ScaleMine also utilizes the subgraphs statistics collected

during the approximation phase to optimize the performance

of the exact phase. We highlight below each one of these
optimizations. Notice that these optimizations are only applied
for subgraphs predicted as infrequent.

Early Pruning: When evaluating an MNI
col

, let nV denote the
number of the already found valid nodes and let nR denote
the number of remaining nodes. An important optimization
is to stop evaluating this MNI

col

when the stopping condition:
nV +nR < ⌧ is met. In other words, the number of remaining
nodes plus the valid ones is not enough to satisfy ⌧ . It is easy
to detect this case in a single-threaded solution [11] when the
whole column is evaluated by a single task. However, this is
quite challenging when the task is divided among multiple
workers. For subgraphs expected to be infrequent, ScaleMine
employs a heuristic approach to decide when to stop evaluating
a column. For a subtask i, let nV

i

, nR
i

and �

i

be the number of
already found valid nodes, the number of nodes to be evaluated
and the percentage of work assigned to worker i, respectively.
The stopping condition can be re-written for each subtask i

as: nV
i

+ nR

i

< ⌧�

i

. Interestingly, the predicted number of
valid nodes, pV

i

, can be utilized to allow earlier break by
modifying the stopping condition to: nR

i

< (⌧ � pV

i

)�
i

.
That is, assuming a consistent distribution of valid nodes
among subtasks, a break happens earlier when the difference
between ⌧ and pV

i

becomes larger. In reality, subtasks tend to
differ in the distribution of valid nodes. To accommodate this,
the following is added to the left-hand side of the stopping
condition: nV

i

� (pV
i

· �
i

· ↵
i

), where ↵

i

is the percentage of
the so far progress of subtask i. Once this condition is met, the
remaining unprocessed nodes are treated as being valid nodes,
giving an upper bound on the number of valid nodes. If this
upper bound does not exceed ⌧ , then for sure the exact value
cannot exceed ⌧ too, and the column is reported as invalid
and the whole subgraph as infrequent. For the case where the
upper bound exceeds ⌧ , the evaluation needs to be repeated
after turning this optimization off. To minimize the chances
of such case, we introduce m; a constant value between 0 and
1 (inclusive). Having a lower m delays the application of this
condition. The final version of the stopping condition is:

nV

i

� (pV
i

· �
i

· ↵
i

) + nR

i

< (⌧ � pV

i

) · �
i

·m

Pruning expensive nodes: Some graph nodes, especially
in large dense graphs, are excessively expensive to evaluate.
Similar to GraMi [11], ScaleMine avoids evaluating these
nodes in favor of other lightweight nodes. GraMi relies on
a user-given threshold to identify expensive nodes. Instead,
ScaleMine exploits the knowledge gained during the approxi-
mation phase to identify these nodes. During the approximate
phase, for each MNI

col

in each subgraph, ScaleMine maintains
the average computation steps needed to evaluate the graph
nodes. Then, during the exact phase, ScaleMine identifies
expensive nodes as the nodes that need significantly more
computation steps than their corresponding averages. Similar
to the previous optimization, the costly nodes are assumed
to be valid for support computation. Then, if the calculated

6



Exact Phase - Pruning
Preemptively determing invalid subgrahs
◦Know a column does not have sufficient support if 
number of valid nodes + number of remaining nodes is 
less than !

◦Can also be used for subtasks

Prune large, expensive nodes by delaying their 
computation until necessary

19



Evaluation

Evaluated on 4 graphs

Comparison with prior work
◦GraMi (single-threaded)
◦Arabesque (distributed)

Evaluated on a cluster of 16 machines

20



Evaluation

21

10
1

10
2

10
3

10
4

24K 25K 26K 27K 28K

T
im

e 
(s

ec
)

Support Threshold

ScaleMine
Arabesque
GraMi

(a) Patents

10
2

10
3

10
4

10
5

160K 170K 180K 190K 200K

T
im

e 
(s

ec
)

Support Threshold

ScaleMine
GraMi

(b) Twitter

Fig. 5. Performance of ScaleMine vs. existing FSM systems on a cluster of
16 machines (256 workers) using two datasets: (a) Patents and (b) Twitter

 0

 4

 8

 12

 16

 20

 24

Twitter Weibo

T
im

e 
(H

o
u

rs
)

Baseline
Approx. Space
Task Division(Avg)

Task Division(Sim)
Early Pruning

11

0.9 0.69
1.87

0.61 1.02

XX XX XX XX

Fig. 6. Effect of ScaleMine’s optimizations using Shaheen II with 512 cores
on both Twitter (⌧ = 155k) and Weibo (⌧ = 490k, maximum size = 5 edges)

of magnitude better performance than GraMi. For ⌧=160k,
GraMi could not find the frequent subgraphs within two days.
Also, Arabesque crashes for all support thresholds due to
the storage and communication overheads associated with the
excessive number of embeddings.

C. Optimizations

In this experiment, we measure the effect of each of the pro-
posed optimizations using 512 computing cores on Shaheen II.
We start from the baseline approach (Baseline), this approach
applies exact evaluation, available tasks are dispatched to idle
workers whenever possible. Then, we gradually apply each
optimization. The first optimization is to build an approximate
search space then utilize its pool of tasks to keep workers
busy (Approx. Space). The second optimization is to divide
expensive tasks, first by using the average predicted time (Task
Division (Avg)), second by using our simulation-based task
partitioning (Task Division (Sim)). Finally, we apply the early
pruning optimization (Early pruning).

Figure 6 shows the results on Twitter and Weibo datasets.
Y-Axis shows the elapsed time in hours. Each bar represents
the time spent after adding the corresponding optimization
(the exact runtime is on top of each bar). A column marked
with red ”XX” indicates that the experiment did not finish
within 24 hours. For Twitter on ⌧=155k, the baseline does
not finish within one day due to the workload imbalance.
We noticed in this experiment that a few cores were highly
overloaded while the others were idle. When we introduce
the search space approximation phase, the system finishes in
11 hours because it generates a pool of tasks to improve the
utilization of workers. In other words, the system was able to

complete the whole mining process significantly faster than
the baseline by just utilizing the information collected during
the approximation phase. With Task Division optimization,
the processing time for each candidate is estimated; hence
expensive tasks are identified and divided among workers.
With our workload simulation technique, we achieve better
performance by saving 700 seconds compared to using the
average as a threshold. Dividing the tasks based on the average
value did not correctly represent the distribution of the tasks
execution times. Therefore, it resulted in dividing the wrong
subtasks and increasing their overheads. On the other hand,
ScaleMine’s simulation approach was able to correctly capture
the variability among the subtasks; allowing ScaleMine to only
divide the expensive ones to achieve a better balanced runtime.
Finally, the early pruning strategy of ScaleMine improves
system efficiency by finishing in 300 seconds less time.

A similar behavior is noticed in Weibo dataset, when using
⌧=490k and limiting subgraph size to 5 edges, where dividing
the tasks using the average time didn’t allow the system to
finish within one day. On the other hand, utilizing the proposed
simulation-based task division makes it practically feasible.
Overall, the conducted experiments show the importance of
all the optimizations proposed by ScaleMine.

D. Approximation Phase Performance

In this experiment, we measure the accuracy of the approxi-
mation phase by comparing the reported frequent patterns from
the approximation phase to the exact frequent patterns reported
at the end of the mining process. If a pattern is reported as
frequent by the approximation phase and it is indeed frequent,
we count this pattern as a true positive. If the approximation
phase missed an actual frequent pattern, then we count it as
a false negative. Finally, patterns found as frequent by the
approximation phase but are not actually frequent are counted
as false positives. We utilize the known F-measure metric for
assessing the quality of our approximation phase.

Figure 7 shows the calculated F-measure for Patents and
Twitter datasets. The X-axis represents different support val-
ues. For each dataset, the used support thresholds are the same
thresholds used in Figure 5. For Twitter, ScaleMine maintains
an F-measure = 1 for all the different support values. As for the
patents dataset, ScaleMine achieves an F-measure of more than
0.97. Achieving this high accuracy comes at a low computation
cost compared to the total mining time. Figure 8 shows the
time of the approximation phase alongside the time of the
exact phase. In this experiment, we show the total time for each
dataset using its lowest support threshold; i.e. we pick the most
time-consuming mining process for each dataset. As shown in
Figure 8, the approximation phase takes between 3% and 21%
of the total execution time. Specifically, for larger graphs, with
more expensive tasks, the proportion of approximation time
becomes lower. This shows that our approximation phase can
be used to support fast and accurate results as a standalone
approximate FSM solution.

8



Evaluation

22

10
1

10
2

10
3

10
4

24K 25K 26K 27K 28K

T
im

e 
(s

ec
)

Support Threshold

ScaleMine
Arabesque
GraMi

(a) Patents

10
2

10
3

10
4

10
5

160K 170K 180K 190K 200K

T
im

e 
(s

ec
)

Support Threshold

ScaleMine
GraMi

(b) Twitter

Fig. 5. Performance of ScaleMine vs. existing FSM systems on a cluster of
16 machines (256 workers) using two datasets: (a) Patents and (b) Twitter

 0

 4

 8

 12

 16

 20

 24

Twitter Weibo

T
im

e 
(H

o
u

rs
)

Baseline
Approx. Space
Task Division(Avg)

Task Division(Sim)
Early Pruning

11

0.9 0.69
1.87

0.61 1.02

XX XX XX XX

Fig. 6. Effect of ScaleMine’s optimizations using Shaheen II with 512 cores
on both Twitter (⌧ = 155k) and Weibo (⌧ = 490k, maximum size = 5 edges)

of magnitude better performance than GraMi. For ⌧=160k,
GraMi could not find the frequent subgraphs within two days.
Also, Arabesque crashes for all support thresholds due to
the storage and communication overheads associated with the
excessive number of embeddings.

C. Optimizations

In this experiment, we measure the effect of each of the pro-
posed optimizations using 512 computing cores on Shaheen II.
We start from the baseline approach (Baseline), this approach
applies exact evaluation, available tasks are dispatched to idle
workers whenever possible. Then, we gradually apply each
optimization. The first optimization is to build an approximate
search space then utilize its pool of tasks to keep workers
busy (Approx. Space). The second optimization is to divide
expensive tasks, first by using the average predicted time (Task
Division (Avg)), second by using our simulation-based task
partitioning (Task Division (Sim)). Finally, we apply the early
pruning optimization (Early pruning).

Figure 6 shows the results on Twitter and Weibo datasets.
Y-Axis shows the elapsed time in hours. Each bar represents
the time spent after adding the corresponding optimization
(the exact runtime is on top of each bar). A column marked
with red ”XX” indicates that the experiment did not finish
within 24 hours. For Twitter on ⌧=155k, the baseline does
not finish within one day due to the workload imbalance.
We noticed in this experiment that a few cores were highly
overloaded while the others were idle. When we introduce
the search space approximation phase, the system finishes in
11 hours because it generates a pool of tasks to improve the
utilization of workers. In other words, the system was able to

complete the whole mining process significantly faster than
the baseline by just utilizing the information collected during
the approximation phase. With Task Division optimization,
the processing time for each candidate is estimated; hence
expensive tasks are identified and divided among workers.
With our workload simulation technique, we achieve better
performance by saving 700 seconds compared to using the
average as a threshold. Dividing the tasks based on the average
value did not correctly represent the distribution of the tasks
execution times. Therefore, it resulted in dividing the wrong
subtasks and increasing their overheads. On the other hand,
ScaleMine’s simulation approach was able to correctly capture
the variability among the subtasks; allowing ScaleMine to only
divide the expensive ones to achieve a better balanced runtime.
Finally, the early pruning strategy of ScaleMine improves
system efficiency by finishing in 300 seconds less time.

A similar behavior is noticed in Weibo dataset, when using
⌧=490k and limiting subgraph size to 5 edges, where dividing
the tasks using the average time didn’t allow the system to
finish within one day. On the other hand, utilizing the proposed
simulation-based task division makes it practically feasible.
Overall, the conducted experiments show the importance of
all the optimizations proposed by ScaleMine.

D. Approximation Phase Performance

In this experiment, we measure the accuracy of the approxi-
mation phase by comparing the reported frequent patterns from
the approximation phase to the exact frequent patterns reported
at the end of the mining process. If a pattern is reported as
frequent by the approximation phase and it is indeed frequent,
we count this pattern as a true positive. If the approximation
phase missed an actual frequent pattern, then we count it as
a false negative. Finally, patterns found as frequent by the
approximation phase but are not actually frequent are counted
as false positives. We utilize the known F-measure metric for
assessing the quality of our approximation phase.

Figure 7 shows the calculated F-measure for Patents and
Twitter datasets. The X-axis represents different support val-
ues. For each dataset, the used support thresholds are the same
thresholds used in Figure 5. For Twitter, ScaleMine maintains
an F-measure = 1 for all the different support values. As for the
patents dataset, ScaleMine achieves an F-measure of more than
0.97. Achieving this high accuracy comes at a low computation
cost compared to the total mining time. Figure 8 shows the
time of the approximation phase alongside the time of the
exact phase. In this experiment, we show the total time for each
dataset using its lowest support threshold; i.e. we pick the most
time-consuming mining process for each dataset. As shown in
Figure 8, the approximation phase takes between 3% and 21%
of the total execution time. Specifically, for larger graphs, with
more expensive tasks, the proportion of approximation time
becomes lower. This shows that our approximation phase can
be used to support fast and accurate results as a standalone
approximate FSM solution.

8



Evaluation

23

 0.85

 0.9

 0.95

 1

τ1 τ2 τ3 τ4 τ5

F
-M

ea
su

re

Support Threshold τ

Patents
Twitter

Fig. 7. Approximation phase accuracy for Patents and Twitter datasets. The
used support thresholds are the same thresholds used in Figure 5

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Patents Twitter Weibo Mico

T
im

e 
(K

se
c)

Approx. Time
Exact Time

Fig. 8. Approximation phase time w.r.t the exact time

E. Scalability
We show in Figure 9 the scalability and speedup efficiency

of ScaleMine using the four real graphs; Patents, Twitter,
Weibo and Mico with ⌧ = 15k, 155k, 460k and 8m, respec-
tively. For both Weibo and Mico, we set the maximum allowed
frequent subgraph size to 5 edges. Figures 9(a) and 9(b) show
the scalability and speedup efficiency for Patents and Twitter
datasets when the number of workers (cores) ranges from 32
to 1024. ScaleMine achieves good speedup efficiency up to
512 cores for both datasets; 87% for Patents and 69% for
the Twitter dataset. When the number of workers increases to
1024, the total time spent by ScaleMine decreased but it does
not achieve good speedup efficiency; around 67% for Patents
and 59% for Twitter. Such decrease in speedup efficiency is
expected since subtasks become smaller and the parallelization
overhead becomes relatively expensive. Figures 9(c) and 9(d)
show the scalability and speedup efficiency for the largest two
datasets; Weibo and Mico, starting from 512 to 8192 workers.
We do not show the performance of ScaleMine using a lower
number of cores as it takes significant time to finish. Similar to
the last experiment, ScaleMine achieves good scalability and
speedup efficiency for both datasets up to 4096 cores. After
that, adding more workers does not significantly improve the
performance which resulted in lower speedup efficiency.

VI. RELATED WORK

A. Single Machine Approaches

Transactional mining. This setting is concerned with mining
frequent subgraphs on a dataset of many, usually small graphs.

Different approaches have been proposed to solve this prob-
lem. The join-based approach [26] constructs new candidate
subgraphs by joining smaller frequent ones. This approach
suffers from the costly joins and the overhead of pruning
false positives. The extension-based approach [10] extends
subgraphs directly from one subgraph instead of joining two
other subgraphs. Other methods focus on particular subsets
of frequent subgraphs, such as maximal [27], closed [28] and
significant [29, 30] frequent subgraphs. All these systems do
not work when the input is a single large graph.

Single graph mining. In this setting, a single large graph
is the input for the FSM algorithm. It is not straightforward
to define an appropriate support metric in this setting, hence,
several works proposed defining an appropriate anti-monotone
support metric such as MIS [9] and MNI [20]. SIGRAM [9]
uses the MIS metric to discover frequent subgraphs in a single
sparse graph. SIGRAM needs to store intermediate results in
order to evaluate frequencies. Since the number of intermediate
embeddings is huge, SIGRAM becomes very expensive in
practice and cannot scale to large dense graphs. GRAMI [11]
overcomes such limitations by finding only a minimal num-
ber of embeddings to satisfy the support threshold. Both
approaches are limited by the capabilities of a single machine
and can not support large-scale graphs.

Approximate mining. A set of approximate FSM systems
were proposed to have an efficient execution of the mining
task. GREW [31] proposes a heuristic approach that prunes
large parts of the search space. Unlike the approximate phase
of ScaleMine where the produced result includes most of
the patterns, GREW discovers only a small subset of the
answers. SEUS [32] is an approximate method that constructs
a compact summary of the input graph. This facilitates pruning
many infrequent candidates. However, it is only useful when
the input graph contains few and very frequent subgraphs.
GAPPROX[33] employs an approximate version of the MIS
metric. It mainly relies on enumerating all intermediate iso-
morphisms but allows approximate matches. SUBDUE [34] is
a branch-and-bound technique that mines approximate sub-
graph patterns that can be used to compress the original
graph. Finally, Khan et al. [35] propose proximity patterns,
which relax the connectivity constraint of subgraphs. Allowing
approximate matches, like in [33, 34, 35], may result in
producing patterns that do not exist in the input graph. Relying
on these approaches for our approximate phase may generate
a lot of useless tasks.

Parallel FSM Several research efforts [12, 13] proposed
FSM systems that utilize multi-core architectures. In [13],
the authors propose a parallel extension to SUBDUE, which
outputs approximate results. The work proposed in [36] par-
allelize SIGRAM. This system inherits all of the limitations
associated with SIGRAM, i.e., it only supports small sparse
graphs. Moreover, the discussed experiments show that the
system cannot benefit from more than 30 cores. Although these
systems can utilize the capabilities of the underlying hardware,
they are still limited by the capabilities of a single machine

9

Approximation Phase retains high accuracy



Evaluation

24

Approximation Phase is cheap!

 0.85

 0.9

 0.95

 1

τ1 τ2 τ3 τ4 τ5

F
-M

ea
su

re

Support Threshold τ

Patents
Twitter

Fig. 7. Approximation phase accuracy for Patents and Twitter datasets. The
used support thresholds are the same thresholds used in Figure 5

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Patents Twitter Weibo Mico

T
im

e 
(K

se
c)

Approx. Time
Exact Time

Fig. 8. Approximation phase time w.r.t the exact time

E. Scalability
We show in Figure 9 the scalability and speedup efficiency

of ScaleMine using the four real graphs; Patents, Twitter,
Weibo and Mico with ⌧ = 15k, 155k, 460k and 8m, respec-
tively. For both Weibo and Mico, we set the maximum allowed
frequent subgraph size to 5 edges. Figures 9(a) and 9(b) show
the scalability and speedup efficiency for Patents and Twitter
datasets when the number of workers (cores) ranges from 32
to 1024. ScaleMine achieves good speedup efficiency up to
512 cores for both datasets; 87% for Patents and 69% for
the Twitter dataset. When the number of workers increases to
1024, the total time spent by ScaleMine decreased but it does
not achieve good speedup efficiency; around 67% for Patents
and 59% for Twitter. Such decrease in speedup efficiency is
expected since subtasks become smaller and the parallelization
overhead becomes relatively expensive. Figures 9(c) and 9(d)
show the scalability and speedup efficiency for the largest two
datasets; Weibo and Mico, starting from 512 to 8192 workers.
We do not show the performance of ScaleMine using a lower
number of cores as it takes significant time to finish. Similar to
the last experiment, ScaleMine achieves good scalability and
speedup efficiency for both datasets up to 4096 cores. After
that, adding more workers does not significantly improve the
performance which resulted in lower speedup efficiency.

VI. RELATED WORK

A. Single Machine Approaches

Transactional mining. This setting is concerned with mining
frequent subgraphs on a dataset of many, usually small graphs.

Different approaches have been proposed to solve this prob-
lem. The join-based approach [26] constructs new candidate
subgraphs by joining smaller frequent ones. This approach
suffers from the costly joins and the overhead of pruning
false positives. The extension-based approach [10] extends
subgraphs directly from one subgraph instead of joining two
other subgraphs. Other methods focus on particular subsets
of frequent subgraphs, such as maximal [27], closed [28] and
significant [29, 30] frequent subgraphs. All these systems do
not work when the input is a single large graph.

Single graph mining. In this setting, a single large graph
is the input for the FSM algorithm. It is not straightforward
to define an appropriate support metric in this setting, hence,
several works proposed defining an appropriate anti-monotone
support metric such as MIS [9] and MNI [20]. SIGRAM [9]
uses the MIS metric to discover frequent subgraphs in a single
sparse graph. SIGRAM needs to store intermediate results in
order to evaluate frequencies. Since the number of intermediate
embeddings is huge, SIGRAM becomes very expensive in
practice and cannot scale to large dense graphs. GRAMI [11]
overcomes such limitations by finding only a minimal num-
ber of embeddings to satisfy the support threshold. Both
approaches are limited by the capabilities of a single machine
and can not support large-scale graphs.

Approximate mining. A set of approximate FSM systems
were proposed to have an efficient execution of the mining
task. GREW [31] proposes a heuristic approach that prunes
large parts of the search space. Unlike the approximate phase
of ScaleMine where the produced result includes most of
the patterns, GREW discovers only a small subset of the
answers. SEUS [32] is an approximate method that constructs
a compact summary of the input graph. This facilitates pruning
many infrequent candidates. However, it is only useful when
the input graph contains few and very frequent subgraphs.
GAPPROX[33] employs an approximate version of the MIS
metric. It mainly relies on enumerating all intermediate iso-
morphisms but allows approximate matches. SUBDUE [34] is
a branch-and-bound technique that mines approximate sub-
graph patterns that can be used to compress the original
graph. Finally, Khan et al. [35] propose proximity patterns,
which relax the connectivity constraint of subgraphs. Allowing
approximate matches, like in [33, 34, 35], may result in
producing patterns that do not exist in the input graph. Relying
on these approaches for our approximate phase may generate
a lot of useless tasks.

Parallel FSM Several research efforts [12, 13] proposed
FSM systems that utilize multi-core architectures. In [13],
the authors propose a parallel extension to SUBDUE, which
outputs approximate results. The work proposed in [36] par-
allelize SIGRAM. This system inherits all of the limitations
associated with SIGRAM, i.e., it only supports small sparse
graphs. Moreover, the discussed experiments show that the
system cannot benefit from more than 30 cores. Although these
systems can utilize the capabilities of the underlying hardware,
they are still limited by the capabilities of a single machine

9



Evaluation

ScaleMine is scalable

25

 0

 10

 20

 30

 40

 50

 60

 70

32 64 128 256 512 1024

T
im

e 
(K

se
c)

Number of workers

Patents
Twitter

(a) Scalability: Twitter and Patents

 0

 0.2

 0.4

 0.6

 0.8

 1

32 64 128 256 512 1024

S
p

ee
d

u
p

 E
ff

ic
ie

n
cy

Number of workers

Patents
Twitter

(b) Speedup: Twitter and Patents

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

512 1024 2048 4096 8192

T
im

e 
(K

se
c)

Number of workers

Weibo
MiCo

(c) Scalability: Weibo and Mico

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

512 1024 2048 4096 8192

S
p

ee
d

u
p

 E
ff

ic
ie

n
cy

Number of workers

Weibo
Mico

(d) Speedup: Weibo and Mico

Fig. 9. Scalability and speedup efficiency of ScaleMine on Shaheen II supercomputer using different real datasets: Patents with ⌧ = 15k, Twitter with
⌧ = 155k, Weibo with ⌧ = 460k and maximum subgraph size set to 5 edges and Mico with ⌧ = 8m and maximum subgraph size set to 5 edges

and can not scale to handle nowadays large-scale graphs.

B. Distributed FSM Systems
A number of distributed FSM systems [6, 7, 37, 8, 38]

have been devoted for the transactional setting. These systems
cannot handle the single graph setting. Other efforts [14, 18,
17, 15] proposed distributed systems for the single graph
setting. MRPF [14] and MRSUB [15] rely on the MapReduce
framework [16]. They both require a user-given parameter for
the maximum size of the frequent subgraphs, such requirement
limits their applicability. Furthermore, since these systems
are based on MapReduce, they inherit its limitations. Since
FSM is an iterative process, these systems incur a significant
disk access cost due to flushing/reading the intermediate data
between the subsequent MapReduce jobs.

Both Arabesque [17] and Pegi [18] leverage the vertex-
centric programming model to provide a solution for FSM on
large graphs. Arabesque supports FSM through a set of internal
abstractions; these abstractions facilitate retrieval, processing,
and extension of subgraph matches. Pegi, on the other hand,
utilizes a combination of coarse-grain and fine-grain process-
ing, where the master node controls the flow of the mining
process and individual vertices are in charge of embedding
discovery. Pegi utilizes aggregators to synchronize the flow of
information between the workers and the master node. The
main drawback of both systems is that they require to find all
subgraph embeddings for computing the support as well as for
subgraph extension. The number of embeddings is known to
increase exponentially with the graph size, which significantly
increases the communication volume between machines and
hinders the scalability of the system. Moreover, since both
systems rely on a fine-grain programming model, only vertices
related to frequent subgraphs will be computationally active
while others will be inactive. As a result, these systems may
suffer from load imbalance since they cannot equally distribute
active vertices across the workers.

C. Workload Prediction
APlug [39] is a framework that allows users to maximize

the CPU utilization for distributed bag-of-tasks applications.
It takes as input the set of user constraints; such as budget,
time or minimum speedup efficiency and suggests the best
combinations of CPU cores as well as the level of task
decomposition that meets the user requirements. APlug is
suitable for applications where the search space follows a tree

structure. This tree decomposition may result in distributed
subtrees that overlap with each other. Such overlap results
in redundant subgraph evaluation which can be prohibitively
expensive for costly tasks like FSM. PREDIcT [40] is a
methodology for predicting the runtime of iterative algorithms.
It estimates the number of iterations required for an algorithm
to converge and the runtime of each iteration. Then, it uses
an extrapolator and a cost model to predict the runtime of the
algorithm. PREDIcT is meant for iterative algorithms which
are known to have a uniform work per iteration. Unlike these
algorithms, the runtime of each FSM iteration significantly
differs from the other iterations due to the unpredictable search
space and the complexity of subgraph isomorphism problem.

VII. CONCLUSION

In this paper, we proposed ScaleMine, an exact scalable
frequent subgraph mining system for a single large graph.
ScaleMine is a dual-phase system that starts with generating
a sample-based approximation of the search space. Then, it
runs an exact evaluation phase that utilizes the approximation
phase to achieve better load balance and efficient evaluation of
the candidate subgraphs. Our results show that ScaleMine is at
least an order of magnitude faster than state-of-the-art systems.
Furthermore, ScaleMine is capable of scaling to thousands of
cores (i.e., 12x more than the competitors) and graphs with
up to one billion edges (i.e., 10x more than the competitors).

The current prototype of ScaleMine assumes that each
machine has an in-memory copy of the input graph. Our
prototype was built to demonstrate the benefits of the two-
phase approach. However, the current implementation limits
the ability of ScaleMine to handle graphs larger than the capac-
ity of a single machine. In the future, we intend to investigate
graph partitioning techniques to assign a smaller partition of
the input graph to each machine. Typically, graph partitioning
increases the communication overhead of the system due to the
exchange of data and intermediate results among machines.
We will investigate adaptive partitioning techniques [41] to
possibility reduce this overhead. By doing so, we expect to
scale to at least an order of magnitude larger graphs (i.e., 10B
edges) and more workers (i.e., 100,000 cores).

ACKNOWLEDGEMENTS

For computer time, this research used the resources of the
Supercomputing Laboratory at King Abdullah University of
Science & Technology (KAUST) in Thuwal, Saudi Arabia.

10



Limitations
How much wasted work is there from added 
communication/synchronization overheads of 
subtasking?

Priority within a pool?

Some key terms not explained (F-score? Which 
values of ! used?

26



Conclusion
Prior subgraph mining systems do not scale well
◦Single-thread: Insufficient for large graphs
◦Distributed: Suffer from synchronization overheads and 
load imbalance

SclaeMine uses a novel 2-phase technique to 
provide scalable subgraph mining
◦Approximation phase for finding useful work quickly
◦Pruning to remove invalid subgraphs early.

27


