
Parallel Local Graph Clustering
Julian Shun

Joint work with Farbod Roosta-Khorasani, Kimon Fountoulakis,
and Michael W. Mahoney
Work appeared in VLDB 2016

Metric for Cluster Quality

A

B

C D

E

G

F H

Conductance =

Number of edges leaving cluster

Sum of degrees of vertices in cluster*

Conductance = 2/(2+2) = 0.5

Conductance = 1/(2+2+3) = 0.14

Low conductance à “better” cluster

*Consider the smaller of the two sides

2

Clustering Algorithms
• Finding minimum conductance cluster is NP-hard
• Many approximation algorithms and heuristic
algorithms exist
• Spectral partitioning, METIS (recursive bisection),

maximum flow-based algorithms, etc.
• All algorithms are global, i.e., they need to touch
the whole graph at least once requiring at least
|V|+|E| work
• Can be very expensive for billion-scale graphs

1.4 billion vertices
6.6 billion edges

3.5 billion vertices
128 billion edges

1.4 billion vertices
1 trillion edges

3

Local Clustering Algorithms
• Does work proportional to only the size of the
output cluster (can be much less than |V|+|E|)

• Take as input a “seed” set of vertices and find good
cluster close to “seed” set

4

Local Clustering Algorithms
• Many meaningful clusters in real-world networks
are relatively small [Leskovec et al. 2008, 2010,
Jeub et al. 2015]

Some existing local algorithms
Spielman and Teng 2004
Andersen, Chung, and Lang 2006
Andersen and Peres 2009
Gharan and Trevisan 2012
Kloster and Gleich 2014
Chung and Simpson 2015

All existing local algorithms are sequential
Existing studies are on small to medium graphs

Goal: Develop parallel local clustering algorithms
that scale to massive graphs

Network community profile plot
(LiveJournal: |V|=4M, |E|=40M)

5

Parallel Local Algorithms
• We present first parallel algorithms for local graph
clustering
• Nibble [Spielman and Teng 2004]
• PageRank-Nibble [Andersen, Chung, and Lang 2006]
• Deterministic HeatKernel-PageRank [Kloster and Gleich 2014]
• Randomized HeatKernel-PageRank [Chung and Simpson 2015]
• Sweep cut

• All local algorithms take various input parameters
that affect output cluster
• Parallel Method 1: Try many different parameters

independently in parallel
• Parallel Method 2: Parallelize algorithm for individual run

• Useful for interactive setting where data analyst tweaks
parameters based on previous results

6

PageRank-Nibble [Andersen, Chung, and Lang 2006]

• Input: seed vertex s, error ε, teleportation α

• Maintain approximate PageRank vector p and

residual vector r (represented sparsely with hash

table for local running time)

• Initialize p = {} (contains 0.0 everywhere implicitly)

r = {(s,1.0)} (contains 0.0 everywhere except s)

• While(any vertex u satisfies r[u]/deg(u) ≥ ε)

1) Choose any vertex u where r[u]/deg(u) ≥ ε

2) p[u] = p[u] + αr[u]

3) For all neighbors ngh of u: r[ngh] = r[ngh] + (1-α)r[u]/(2deg(u))

4) r[u] = (1-α)r[u]/2

• Apply sweep cut rounding on p to obtain cluster

Note: |p|1 + |r|1 = 1.0 (i.e., is a probability distribution)

Algorithm Idea

Iteratively spread probability mass around the graph

7

PR-Nibble

A

B

C D

E

G

F H

p = 0.0
r = 1.0

Seed vertex = A ε = 0.1 α = 0.1

p = 0.0
r = 0.0

p = 0.0
r = 0.0

p = 0.0
r = 0.0

p = 0.0
r = 0.0

p = 0.0
r = 0.0

p = 0.0
r = 0.0

p = 0.0
r = 0.0

While(any vertex u satisfies r[u]/deg(u) ≥ ε)
1) Choose any vertex u where r[u]/deg(u) ≥ ε
2) p[u] = p[u] + αr[u]
3) For all neighbors ngh of u: r[ngh] = r[ngh] + (1-α)r[u]/(2deg(u))
4) r[u] = (1-α)r[u]/2

r[A]/deg(A) = 1/2 ≥ ε

p = 0.1
r = 0.45

p = 0.0
r = 0.225

p = 0.0
r = 0.225

r[B]/deg(B) = 0.225/2 ≥ ε

p = 0.0225
r = 0.101

p = 0.0
r = 0.276

p = 0.1
r = 0.501

Work is proportional to number of
nonzero entries and their edges

8

Parallel PR-Nibble
• Input: seed vertex s, error ε, teleportation α
• Maintain approximate PageRank vector p and
residual vector r (length equal to # vertices)

• Initialize p = {0.0,…,0.0}, r = {0.0,…,0.0} and
r[s] = 1.0

• While(any vertex u satisfies r[u]/deg(u) ≥ ε)
1. Choose any vertex u where r[u]/deg(u) ≥ ε
2. p[u] = p[u] + αr[u]
3. For all neighbors ngh of u: r[ngh] = r[ngh] + (1-α)r[u]/(2deg(u))
4. r[u] = (1-α)r[u]/2

• Apply sweep cut rounding on p to obtain cluster

ALL

Using some stale information—is that a problem?

9

Parallel PR-Nibble
• We prove that asymptotic work remains the same
as the sequential version, O(1/(αε))

• Guarantee on cluster quality is also maintained
• Parallel implementation:

• Use fetch-and-add to deal with conflicts
• Concurrent hash table to represent sparse

sets (for local running time)
• Use the Ligra graph processing framework

[Shun and Blelloch 2013] to process only
the “active” vertices and their edges (for local running time)

Memory location

Proc1
Proc2 Proc3

+1 +3 +8

10

Ligra Graph Processing Framework
11

EdgeMapVertexMapVertexSubset

0 4 68VertexSubset

4

7

5
2

1

0

6

8

3

f(v){
data[v] = data[v] + 1;

}

4

0

6

8

VertexMap

Ligra Graph Processing Framework
12

EdgeMapVertexMapVertexSubset

4

7

5
2

1

0

6

8

3

0 4 68VertexSubset

update(u,v){…}

4

0

6

8

EdgeMap

Parallel PR-Nibble in Ligra

sparseSet p = {}, sparseSet r = {}, sparseSet r’ = {}; //concurrent hash tables

procedure UpdateNgh(s, d):

atomicAdd(r’[d], (1-α)r[s]/(2*deg(s));

procedure UpdateSelf(u):

p[u] = p[u] + αr[u]; r’[u] = (1-α)r[u]/2;

procedure PR-Nibble(G, seed, α, ε):

r = {(seed, 1.0)};

while (true):

active = { u | r[u]/deg(u) ≥ ε}; //vertexSubset
if active is empty, then break;

VertexMap(active, UpdateSelf);
EdgeMap(G, active, UpdateNgh);

r = r’; //swap roles for next iteration
return p;

13

While(any vertex u satisfies r[u]/deg(u) ≥ ε)
1) For all vertices u where r[u]/deg(u) ≥ ε:

a) p[u] = p[u] + αr[u]
b) For all neighbors ngh of u: r[ngh] = r[ngh] + (1-α)r[u]/(2deg(u))
c) r[u] = (1-α)r[u]/2

Work is only done on “active”
vertices and its outgoing edges

Performance of Parallel PR-Nibble

14

Parallel PR-Nibble in Practice

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

so
c-L

J

Pate
nts

co
m-LJ

Orku
t

Twitte
r

Frie
nd

ste
r

Yah
oo

Num. vertices processed (normalized)

Sequential
Parallel

0.00001

0.0001

0.001

0.01

0.1

1

so
c-L

J

Pate
nts

co
m-LJ

Orku
t

Twitte
r

Frie
nd

ste
r

Yah
oo

Num. iterations (normalized)

• Amount of work slightly higher than sequential
• Number of iterations until termination is much
lower!

15

PR-Nibble Optimization
16

• While(any vertex u satisfies r[u]/deg(u) ≥ ε)
1. Choose ALL vertices u where r[u]/deg(u) ≥ ε
2. p[u] = p[u] + αr[u]
3. For all neighbors ngh of u: r[ngh] = r[ngh] + (1-α)r[u]/(2deg(u))
4. r[u] = (1-α)r[u]/2

• While(any vertex u satisfies r[u]/deg(u) ≥ ε)
1. Choose ALL vertices u where r[u]/deg(u) ≥ ε
2. p[u] = p[u] + (2α/(1+α))r[u]
3. For all neighbors ngh of u: r[ngh] = r[ngh] + ((1-α)/(1+α))r[u]/deg(u)
4. r[u] = 0

• Gives the same conductance and asymptotic work
guarantees as the original algorithm

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

so
c-

LJ

ci
t-P

at
en

ts

co
m

-L
J

co
m

-O
rk

ut

nl
pk

kt
24

0

Tw
itt

er

co
m

-f
rie

nd
st

er

Y
ah

oo

ra
nd

Lo
ca

l

3D
-g

rid

N
or

m
al

iz
ed

 ru
nn

in
g

tim
e original PR-Nibble optimized PR-Nibble

Parallel PR-Nibble Performance
17

0

5

10

15

20

25

so
c-L

J

Pate
nts

co
m-LJ

Orku
t

Twitte
r

Frie
nd

ste
r

Yah
oo

Self-relative speedup on 40 cores

• 10—22x self-relative speedup on 40 cores
• Speedup limited by small active set in some
iterations and memory effects

• Running times are in seconds to sub-seconds

0

5

10

15

20

25

so
c-L

J

Pate
nts

co
m-LJ

Orku
t

Twitte
r

Frie
nd

ste
r

Yah
oo

Speedup on 40 cores relative to
our optimized sequential code

Sweep Cut Rounding

18

Sweep Cut Rounding Procedure
• What to do with the p vector?
• Sweep cut rounding procedure:

• Sort vertices by non-increasing value of p[v]/deg(v)
(for non-zero entries in p)

• Look at all possible prefixes of sorted order and choose
the cut with lowest conductance

A

B

C D

E

G

F H

Example

Sorted order = {A, B, C, D}

Cluster
{A}

{A,B}
{A,B,C}

{A,B,C,D}

Conductance = num. edges leaving cluster / sum of degrees in cluster

I
Conductance
2/2 = 1
2/4 = 0.5
1/7 = 0.14
3/11 = 0.27

19

Sweep Cut Algorithm
20

• Sort vertices by non-increasing value of p[v]/deg(v)
(for non-zero entries in p)
• O(N log N) work, where N is number of non-zeros in p

• Look at all possible prefixes of sorted order and
choose the cut with lowest conductance
• Naively takes O(N vol(N)) work, where vol(N) = sum of

degrees of non-zero vertices in p
• O(vol(N)) work algorithm: vol = 0

crossingEdges = 0
S = {}
for each vertex v in sorted order:

S = S U {v}
vol += deg(v)
for each ngh of v:

if ngh in S: crossingEdges--
else: crossingEdges++

conductance(S) = crossingEdges/vol

A

B

C

D
S = {A}
vol = 2
crossingEdges = 2
conductance({A}) = 2/2
S = {A,B}
vol += 2 à vol = 4
crossingEdges--;
crossingEdges++;
conductance({A,B}) = 2/4

B

N << # vertices in graph

Parallel Sweep Cut
21

• Sort vertices by non-increasing value of p[v]/deg(v)
(for non-zero entries in p)
• O(N log N) work and O(log N) depth (parallel time), where

N is number of non-zeros in p
• Look at all possible prefixes of sorted order and
choose the cut with lowest conductance
• Naively takes O(N vol(N)) work, where vol(N) = sum of

degrees of non-zero vertices in p
• This version is easily parallelizable by considering all cuts

independently
• What about parallelizing O(vol(N)) work algorithm?

N << # vertices in graph

O(vol(N)) work parallel algorithm
22

A

B
C D

E

G
F H

Cluster
{A}

{A,B}
{A,B,C}

{A,B,C,D}

Conductance = num. edges leaving cluster / sum of degrees in cluster

I
Conductance
2/2 = 1
2/4 = 0.5
1/7 = 0.14
3/11 = 0.27

Sorted order = {A, B, C, D}

• Each vertex has rank in sorted order:
• rank(A) = 1, rank(B) = 2, rank(C) = 3, rank(D) = 4, rank(anything else) = 5

• For each incident edge (x, y) of vertex in sorted order, where
rank(x) < rank(y), create pairs (1, rank(x)) and (-1, rank(y))

[(1,1), (-1,2), (1,1), (-1,3), (1,2), (-1,3), (1,3), (-1,4), (1,4), (-1,5), (1,4), (-1,5), (1,4), (-1,5)]
A B A C B C C D D E D F D G

• Sort pairs by second value
[(1,1), (1,1), (-1,2), (1,2), (-1,3), (-1,3), (1,3), (-1,4), (1,4), (1,4), (1,4), (-1,5), (-1,5), (-1,5)]

• Prefix sum on first value
[(1,1), (2,1), (1,2), (2,2), (1,3), (0,3), (1,3), (0,4), (1,4), (2,4), (3,4), (2,5), (1,5), (0,5)]

• Get denominator of conductance with prefix sum over degrees

Hash table insertions: O(N) work and O(log N) depth

Scan over edges: O(vol(N)) work and O(log vol(N)) depth

Prefix sum: O(vol(N)) work and
O(log vol(N)) depth

Integer sort: O(vol(N)) work and
O(log vol(N)) depth

If x and y both in prefix, 1 and -1 cancel out in prefix sum
If x in prefix and y is not, only 1 contributes to prefix sum
If neither x nor y in prefix, no contribution

x y

Sweep Cut Performance

0

5

10

15

20

25

30

so
c-L

J

Pate
nts

co
m-LJ

Orku
t

Twitte
r

Frie
nd

ste
r

Yah
oo

Self-relative speedup on 40 cores

0

5

10

15

20

25

30

so
c-L

J

Pate
nts

co
m-LJ

Orku
t

Twitte
r

Frie
nd

ste
r

Yah
oo

Speedup on 40 cores relative to sequential

• 23—28x speedup on 40 cores
• About a 2x overhead from sequential to parallel
• Outperforms sequential with 4 or more cores

23

 1

 10

 100

 1000

 1 2 4 8 16 24 32 40

R
u

n
n

i
n

g

t
i
m

e

(
s
e
c
o

n
d

s
)

Number of cores

parallel sweep

sequential sweep

Network Community Profile Plots

10

-3

10

-2

10

-1

10

0

10

0

10

1

10

2

10

3

10

4

10

5

C
o

n
d

u
c
t
a
n

c
e

Cluster size

10-3

10-2

10-1

100

100 101 102 103 104 105

C
on

du
ct

an
ce

Cluster size

42M vertices

1.2B edges

125M vertices

1.8B edges

• Use parallel algorithms to generate plots for large
graphs

• Agrees with conclusions of [Leskovec et al. 2008,
2010, Jeub et al. 2015] that good clusters tend to
be relatively small

24

Summary of our Parallel Algorithms
• Sweep cut
• PageRank-Nibble [Andersen, Chung, and Lang 2006]
• Nibble [Spielman and Teng 2004]
• Deterministic HeatKernel-PageRank [Kloster and Gleich

2014]
• Randomized HeatKernel-PageRank [Chung and Simpson

2015]

• Based on iteratively processing sets of “active” vertices in
parallel

• Use concurrent hash tables and Ligra’s functionality to get
local running times

• We prove theoretically that parallel work asymptotically
matches sequential work, and obtain low depth (parallel
time) complexity

25

