TAQ: FRCEBOOK’S DISTRIBUTED DATA
STORE FOR THE SOCIAL GRAPH

Endrias Kahssay

MOTIVATION

- The Facebook graph has more than a billon active users, and
trillions of edges.

- Because of complex privacy rules and tailoring of content to
individual users, content is generated each time its viewed
resulting in a extremely high demand for reads.

- Clients are likely to query similar information as other clients

PREVIOUS APPROACH

- Facebook was built by storing the social graph on MYSQL.
- As facebook scaled, it was necessary to reduce load on the database.

- Memcache, a key value cache system was scaled to work at the size of
Facebook.

WHY TAQ?

- Memcache which is a key-value system is inefficient at
representing graphs.

- Queries must always fetch entire edge list, and change to one
edge require edge list reload.

- Decentralized control logic results in more failures and thundering
herds.

TAO

- A graph-aware caching framework that is geographically distributed over
many thousands of machines.

- TAO provides low latency for users, fault tolerance, and eventual
consistency.

- Shares many of its design with memcache.

A I I a) ‘Alice. was at the Golden Gate Bridge with Bob

Cathy : Wish we were there! David likes this

- Object: (1d) — (otype, (key value)*)

b) [ia 105, otype: USER
name: Alice

id: 534, otype: LOCATION]

. name: Golden Gate Bridge
- Represent Vertices . l g

loc: 37°49'11"N, 122°28'43"W
[id: 244, otype: USER

name: Bob
TAGGED —n)
E N TAGGED AT id: 632, otype: CHECKIN]

[id- 379, otype: USER

- Assoc.: (idl, atype, id2) — (time, (key valu

]l RIENI

FRIEND

- Represent edges

name: Cathy

atype: COMMENT
time: 1334511670

iz

FRIEND
FRIEND

{ FRIENI
FRIEND

. text: Wish we were there!
name: David

[id: 471, otype: USER id: 771, otype: COMMENT]

@

API

- Association List: (id1, atype) — [anew ...aold]

- Ordered by timestamp.

- assoc add(idl, atype, id2, time, (k—V)¥*)

- Add assocation from id1 to id2 of type atype, and its inverse if
exists.

- assoc delete(idl, atype, id2)

Delete association from idl to id2

@

API

- assoc_get(idl, atype, id2set, high?, low?)

- Assoc_count(idl, atype)
-- “How many checkins at the GG Bridge?” = assoc count(534, CHECKIN)

- assoc_range(idl, atype, pos, limit)

-- “50 most recent comments on Alice’s checkin” = assoc range (632, COMMENT, O,
50)

DATA STORAGE
= TAQO’s API is mapped to SQL queries.

= Data is divided into shards, and each shard is contained in a
logical database and load balancing among different hosts.

= Each object is associated with a unique shard that doesn’t change,
and the association list is stored with the object.

CACHING LAYER

= TAO'’s cache implements the complete API for clients, handling all
communication with databases.

= A tier consists of multiple cache servers that serve different shards
and can collectively serve any TAO request.

= A client issues a request to an appropriate cache, which will be
responsible for completing reads and writes.

CACHING LAYER

= Cache misses and writes have to contact database.

= Write operations might involve other shards as inverse id could be
on different machine, not guaranteed to be atomic.

= Cache understand semantics of queries.

ALL-T0-ALL CONNECTION

- Common for hundreds of objects and associations to be queried
when rendering a Facebook page.

» Results in ALL-TO-ALL connection.

- In theory could scale with a single cache tier, but making shards
more fine grained results in quadratic growth of connections and
hot spots.

LEADERS AND FOLLOWERS

- Split the cache into two levels: a leader tier and multiple follower
tiers.

- Leaders behave as described before, directly communicating
with the storage layer.

- Followers forward miss and writes to a leader.

- Eventual Consistency; one leader per shard, and leader notifies
followers that are out of date.

SCALING GEOGRAPHICALLY

= Followers can be thousands of miles of
apart from leader.

Master Region for Shard Slave Region for Shard
Chents Followers Followers

Leader
Cache
C -’
¥ N

'
e

eplication

= Master/ slave architecture with slave DB in { * 'E P s Jo[e
each region.

Figure 2: Multi-region TAO configuration. The master
region sends read misses, writes, and embedded con-
sistency messages to the master database (A). Consis-

- FO].].OWGIS forwa.rd write / Ca.Che IMI1SS tency messages are delivered to the slave leader (B) as

I'equeStS to local leaders and leaders the replication stream updates the slave database. Slave

? . leader sends writes to the master leader (C) and read

forwa-rd rea-ds to loca-]- db: and ertes to misses to the replica DB (D). The choice of master and
master]_ea_der_ slave is made separately for each shard.

@

INTERNREGIONAL

- Social graph is tightly connected, meaning each region would have to
have a copy of the entire graph.

- Expensive; instead have each region have some of the shards.

- A full copy of the DB can be found across close regions.

CONSITENCY

- Eventual consistency; clients can receive stale data; best effort
read after write consistency.

- TAO embeds invalidation and refill messages in the database
replication stream.

- If a forwarded write is successful then the local leaders involved
(including inverse), will update their cache with the fresh value
from a change set before returning.

CONSITENCY

= MYSQL remains a source of truth.
= Version numbers are used to avoid races in updating data.

= Slaves suffer from rare race condition related to evicting elements
post change set that are not in local DB.

FAULT TOLERANCE

= Database fail if they crash or are too behind. If master database fails,
one of the slaves becomes a master.

= When a leader fails, another leader for different shards takes over until
the previous leader comes back.

= Invalidation failures: when a failed leader is replaced, all of the shards of
the leader are invalidated.

RESULTS

- Facebook’s workload: 99.8% read requests, and 0.2% write
requests.

- A single TAO deployment which processes billions of reads and
millions of writes per sec.

- Results for randomly sampled 6.5 million requests over a 40 day
period.

600000 avg aggregate hit rate ------- .

200000 |)
100000 |- .
0 T['lllIIII'IVITIYI‘]'IL'IIIIIF

single-server throughput (request per sec)

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
follower hit rate (%)

remote region latency E5=3
40% master region latency EEEEE
avg ping latency -------
30% _
- _
\
E \
2 N
g 20% : -
- N
N
N
10% N .
N
N
\
0% -

0O 10 20 30 40 50 60 70 80 90 100 110 120 130
write latency (msec)

Figure 9: Write latency from clients in the same region
as database masters, and from a region 58 msec away.

= Average write latency in same region, 12.1 msec, remote region 74.4 msec

READ PERFORMANCE

hit lat. (msec) miss lat. (msec)

operation 50% avg 99% S50% avg 99%
assoc_count 1.1 25 289 5.0 26.2 186.8
assoc_get 1.0 24 259 5.8 145 143.1
assoc_range 1.1 2.3 248 54 11.2 936

assoc_time_range 1.3 3.2 328 58 119 472
obj_get 1.0 24 270 82 753 1864

RESULTS

= Replicas lag by 1 second 85% of the time, by utmost 3 secs 99% of
the time, and 10 secs for 99.8%.

= iocal leader was unavailable 0.15% of the time, and slave
databases were promoted 0.25% of the time.

CONCLUSION

- TAO is a graph-aware caching framework that is geographically
distributed and has great performance.

- Eventual consistency.

- Future work on guaranteeing bounded consistency, noSQL database,
fast writes, and getting rid of “rare” races that result in stale data.

