
Endrias Kahssay

• The Facebook graph has more than a billon active users, and
trillions of edges.

• Because of complex privacy rules and tailoring of content to
individual users, content is generated each time its viewed
resulting in a extremely high demand for reads.

• Clients are likely to query similar information as other clients

• Facebook was built by storing the social graph on MYSQL.

• As facebook scaled, it was necessary to reduce load on the database.

• Memcache, a key value cache system was scaled to work at the size of
Facebook.

• Memcache which is a key-value system is inefficient at
representing graphs.

• Queries must always fetch entire edge list, and change to one
edge require edge list reload.

• Decentralized control logic results in more failures and thundering
herds.

• A graph-aware caching framework that is geographically distributed over
many thousands of machines.

• TAO provides low latency for users, fault tolerance, and eventual
consistency.

• Shares many of its design with memcache.

• Object: (id) → (otype, (key value)∗)

- Represent Vertices

• Assoc.: (id1, atype, id2) → (time, (key value)∗)

- Represent edges

• Association List: (id1, atype) → [anew ...aold]

- Ordered by timestamp.

• assoc add(id1, atype, id2, time, (k→v)*)

- Add assocation from id1 to id2 of type atype, and its inverse if
exists.

• assoc delete(id1, atype, id2)

Delete association from id1 to id2

• assoc_get(id1, atype, id2set, high?, low?)

• Assoc_count(id1, atype)
-- “How many checkins at the GG Bridge?” ⇒ assoc count(534, CHECKIN)

• assoc_range(id1, atype, pos, limit)
-- “50 most recent comments on Alice’s checkin” ⇒ assoc range(632, COMMENT, 0,

50)

§ TAO’s API is mapped to SQL queries.

§ Data is divided into shards, and each shard is contained in a
logical database and load balancing among different hosts.

§ Each object is associated with a unique shard that doesn’t change,
and the association list is stored with the object.

§ TAO’s cache implements the complete API for clients, handling all
communication with databases.

§ A tier consists of multiple cache servers that serve different shards
and can collectively serve any TAO request.

§ A client issues a request to an appropriate cache, which will be
responsible for completing reads and writes.

§ Cache misses and writes have to contact database.

§ Write operations might involve other shards as inverse id could be
on different machine, not guaranteed to be atomic.

§ Cache understand semantics of queries.

• Common for hundreds of objects and associations to be queried
when rendering a Facebook page.

• Results in ALL-TO-ALL connection.

• In theory could scale with a single cache tier, but making shards
more fine grained results in quadratic growth of connections and
hot spots.

• Split the cache into two levels: a leader tier and multiple follower
tiers.

• Leaders behave as described before, directly communicating
with the storage layer.

• Followers forward miss and writes to a leader.

• Eventual Consistency; one leader per shard, and leader notifies
followers that are out of date.

§ Followers can be thousands of miles of
apart from leader.

§ Master/ slave architecture with slave DB in
each region.

§ Followers forward write / cache miss
requests to local leaders, and leaders
forward reads to local db, and writes to
master leader.

• Social graph is tightly connected, meaning each region would have to
have a copy of the entire graph.

• Expensive; instead have each region have some of the shards.

• A full copy of the DB can be found across close regions.

• Eventual consistency; clients can receive stale data; best effort
read after write consistency.

• TAO embeds invalidation and refill messages in the database
replication stream.

• If a forwarded write is successful then the local leaders involved
(including inverse), will update their cache with the fresh value
from a change set before returning.

§ MYSQL remains a source of truth.

§ Version numbers are used to avoid races in updating data.

§ Slaves suffer from rare race condition related to evicting elements
post change set that are not in local DB.

§ Database fail if they crash or are too behind. If master database fails,
one of the slaves becomes a master.

§ When a leader fails, another leader for different shards takes over until
the previous leader comes back.

§ Invalidation failures: when a failed leader is replaced, all of the shards of
the leader are invalidated.

• Facebook’s workload: 99.8% read requests, and 0.2% write
requests.

• A single TAO deployment which processes billions of reads and
millions of writes per sec.

• Results for randomly sampled 6.5 million requests over a 40 day
period.

§ Average write latency in same region, 12.1 msec, remote region 74.4 msec

§ Replicas lag by 1 second 85% of the time, by utmost 3 secs 99% of
the time, and 10 secs for 99.8%.

§ Local leader was unavailable 0.15% of the time, and slave
databases were promoted 0.25% of the time.

• TAO is a graph-aware caching framework that is geographically
distributed and has great performance.

• Eventual consistency.

• Future work on guaranteeing bounded consistency, noSQL database,
fast writes, and getting rid of “rare” races that result in stale data.

