Fast and Concurrent RDF Queries with
RDMA-Based Distributed Graph
Exploration

JIAXIN SHI, YOUYANG YAO, RONG CHEN, HAIBO CHEN, FEIFEI LI

PRESENTED BY ANDREW XIA
APRIL 25, 2018

Overview of Wukong

Distributed in-memory RDF

Low Latency, concurrent queries over large RDF datasets

RDMA-friendly Graph Model and k/v Store

RDMA-based full history pruning

Combine data migration for low latency, high throughput via one-sided RDMA operations

RDF (Resource Description Framework)

= (subject, predicate, object)

& R-Group ---d @
. . a
= Represent as a graph, subject & object are O Course =0
. . . . O Student
vertices, predicate is a directed edge O professor
= SPARQL mo : memberOf
tc:takesCourse
to:teacherof
. ”SG|ECt RD Where GP” ad:advisor
= GP is a set of triple patterns ty:type (not incl.)
= RD is a result description Fig. 1: An example RDF graph.
SELECT ?X ?Y ?Z WHERE {
?X teacherOf ?Y . ﬁ
?Z takesCourse ?Y .
?Z advisor ?X . ® o
}
SPARQL Graph Results

Fig. 3: A SPARQL query (Q;) on sample RDF graph.

Existing Solutions of RDF

* Triple Store & Triple Join
* Store set of triples in relational database, leverage join operation
* Costly join operations, redundant intermediate results

* Can accelerate using redundant six SPO (subject, predicate, object) permutation indexes with more
memory consumption

* Graph Store, Graph Exploration

* Trinity.RDF stores RDF data in native graph model, with distributed in-memory k/v store, uses graph
exploration

* Final centralized join expensive

RDMA (Remote Direct Memory Access)

Bypass CPU when fetching data from other machines

Cross-node memory access technique: low-latency, low CPU overhead

Two-sided messages: SEND/RECV

One-sided operations: READ, WRITE, fetch-and-add, compare-and-swap

Latency of RDMA is relatively insensitive to payload sizes

Wukong Architecture

* Cluster of servers, connected with RDMA

features
. Cli P
* SPARQL Queries over RDF data éméxye 0 9 9
* Partition RDF graph into many shards across « fg String | sener C('j
multiple machines F —
/
* Each Server has / §U §U LU
* Query engine — — _ E ¥ Shared Local Graph
[cngine | “fctngine | [EngineN | T _____
* Graph store [Store | [Store | [core; |core; --- |core;

Server 0 Server 1 Server N

* Query Processing

* Partition query into chain of sub-queries across
machines

Fig. 5: The architecture overview of Wukong.

Graph Model Index

* normal vertex: subject and objects

* jndex vertex

to:teacherOf
* predicate index: maintain all subject and () Predicate Index prof:professor (b) Type Index

objects labeled with particular predicate

Fig. 6: Two types of index vertex of Wukong.
* type index: group all subjects with same type

O R-Group id @ Server 0 Server 1
O Course 2 mo .

O sStudent
© Professor

mo :memberOf

tc - takesCourse oo
to:teacherof “ ‘ @/ | “ ‘ ‘ @
ad:advisor

ty:type (not incl.) R:R-Group P:Professor S:Student C:course

ty:type mo:memberOf ad:advisor to:teacherOf tc:takesCourse

Flg 1: An example RDF graph. Fig. 7: A hybrid graph partitioning on two servers.

Differentiated Graph Partitioning

* to support distributed queries, need to partition
graph among multiple machines while
maintaining access locality, parallelism

Server 0

* each normal vertex randomly assigned (via
hash) to machine with all edges

* each index vertex replicated among multiple
machines, with edges linked to same machine

Server 1

R:R-Group P:Professor S:Student C:course
ty:type mo:memberOf ad:advisor to:teacherOf tc:takesCourse

Fig. 7: A hybrid graph partitioning on two servers.

RDMA-Friendly predicate based store

* Distributed k/v store Server 0 Server 1
* Key: (vertex ID, pred/type ID, edge direction)

* Value: (neighboring vertex ID or index ID)

* Observation: A SPARQL query will query
neighboring vertices satisfying a predicate

R:R-Group P:Professor S:Student C:course

¢ SpECIal keywords ty:type mo:memberOf ad:advisor to:teacherOf tc:takesCourse
* 0 vid: INDEX vertex Fig. 7: A hybrid graph partitioning on two servers.
* 0 p/tid: pred .
p/ P ID mapping Part of key/value pairs
1 p/t|d type vid p/tid direction Server 0 Server 1
o 1noex] [epred |[ein | [2lel1f[L3,5] | [telele[}+[4]
1 Steve| |1 ty 1 out X
2 Erik |]2 ad /,| 2|1|1H—-|:|-—p/tid [10]4 0> 3,9]
3 Raven| |3 to normal |
Kre | [e CEREl e IR
X-L Prof .
¢ x-tobl & Prof | sou[GTeToRL] | | [EElek
8 Bobby [|8 C :
o marise| |9 roarp| P-idx—elslef{2,3.4] | [elsief{7.5.9]
10 0S Key:(vid|p/tid|d) Value:(v/p/tid)

Fig. 8: The design of predicate-based key/value store.

Query Processing

* Goal of query: find subject/object fitting subgraph pattern

* Wukong: Graph exploration in order defined by edge of subgraph

* If predicate known, subject / object are free variables, begin walk with predicate index
* Continue searching graph satisfying triple patterns

* If predicate unknown, begin walk from constant vertex where p/tid=0

SELECT ?X ?Y ?Z WHERE {
?X teacherOf ?Y .
?Z takesCourse ?Y .
?Z advisor ?X .

2

Graph

}

SPARQL Results

Fig. 3: A SPARQL query (Q;) on sample RDF graph.

Server 0 Server 1

Cée e "éée b

R:R-Group P:Professor S:Student C:course
ty:type mo:memberOf ad:advisor to:teacherOf tc:takesCourse

Fig. 7: A hybrid graph partitioning on two servers.

Sever 0

Time

@

H:Erik to

[INDEX | to$— Erik| [STEP4] ‘,

[Erik|to$—{DS|

H:Erik to DS

[DS [tct—{Kurt]|

H:Erik to DS

ad

Logan
Logan to OS tc &

Raven ad Erik X

Sever 1

[INDEX | to$—{ Logan]|

[Logan|to$—{0S|
H:Logan to 0S

| 0S| tc4—{Raven,Marie|

H:Logan to OS tc Raven
Logan to OS tc Marie

[Marie|ad$—{Logan|

Logan to OS tc
Marie ad Logan

Full History Pruning

* Certain tuples should be filtered out during graph exploration

* Wukong: pass full exploration history to next step across all machines

* Remove expensive cost of final join

Sever 0 TlTe Sever 1
‘ [INDEX[to}+{Erik] ‘, [INDEX[to}—{Logan]
o HiErik o LI Hiloganto
[Erik|to$—{DS| [Logan|to$—{0S|
_______ H:Erik to DS T ... Hilogan to 05
[DS [tc— Kurt] | 0S| tc4—> Raven,Marie|
H:Erik to DS H:Logan to OS tc Raven
.......... teKurt _..Logan to 05 tc Marie
@ """"""""""""""""""""" ad [Marie|ad$—{Logan|
ad [Raven[ad}—{Erik]| Y Logan to 0S tc
ad Logan) Marie ad Logan
@ Logan to OS tc

Raven ad Erik)¢

Migrating Execution or Data

3us Time re-schedule

* In-place execution E §
* Bypass remote CPU via one-sided RDMA READ Server 0

B3

* Fork-Join execution Server 1
* Fetch many vertices (@) In-place (b) Fork-join

- One-sided RDMA WRITE, push subquery with Fig. 10: A sample of (a) in-place and (b) fork-join execution.

full history to remote machine

@n

RDMA READ Task § v
U Queue

bypass OS & CPU § U bypass OS & CPU

@n

Sever 0 TuTe Sever 1

* Decide at runtime which execution mode ‘ [INDEX[to}—{Erik] SEE ‘ [INDEX[to}—{Logan]|
* |[N| RDMA operations H:Erik to

.. Erik|to—{DS Logan|tot—{0S
* If IN| >2*servers, fork-join [H.El,.ilk tt.losl STEP-2 IH?fogaln tt?{osI
° If [IN] = # vertices, in-place G-t [p3 [05[Ec}-»[Raven,Marie]
H:Erik to DS = t¢ H:Logan to OS tc Raven
tc Kurt o R Logan to OS tc Marie

------------------- Marie|ads— Logan
@ ,,,,,, STEP-4] 2 T I |adt—{Logan]
ad [Raven[ad}—+{Erik] Logan to 0S tc

Marie ad Logan

Logan
a Logan to 0S tc -
Raven ad Erik X

Concurrent Query Processing

* Motivation: what if some tasks for workers take
much longer than other tasks?

* Work-stealing model

* All tasks can be stolen from any worker thread
queue

* Isn’t efficient for Wukong, because most tasks are
small

* Worker-obliger work-stealing algorithm

* Each worker keeps track of neighboring workers’
task queue

* If neighbors’ tasks take too long, then worker will
take some of neighbor’s tasks

Implementation

* Task Queue
* Worker thread on each core, logical private task queue

* One client queue, multiple server queues per server

* Launching Query
* Start point of query either normal vertex or index vertex

* Wukong will decide whether replicating index vertex queries is necessary depending on vertex degree

* Multi-Threading
* Parallelize graph exploration via multiple threads processing parts of subgraph

Eva ‘ u a t i O n Table 2: The query performance (msec) on a single machine.

—LUBM) THAD-SG _ RDF-3X__ BitMat _
2560 | Wukong TriAD (50K) (mem) (mem)
» Datasets L1 752 621 3315 2.3E5 abort
, , L2 120 149 221 4494 36256
* Two synthetic datasets, two real-life datasets L3 306 316 3,101 3,675 752
L4 0.19 3.38 3.34 22 55451
: L5 0.11 2.34 1.36 1.0 52
* Comparison L6 056 207 6.06 375 487
* Centralized systems: RDF-3X, BitMat i 6711 2176 2,753 9927 19,323
Geo. M 15.7 723 108 441 -

* Distributed systems: TriAD, Trinity.RDF, SHARD
Table 3: The query performance (msec) on a 6-node cluster.

Large Queries: L1, L2, L3, L7

LUBM : TriAD-SG __ Trinity

. 10240 Wukong TriAD (200K) RDF SHARD

* Small Queries: L4, L5, L6 L1 516 2.110 1422 12648 19.7E6

L2 78 512 695 6,081 4.4E6

L3 203 1,252 1225 8735 129E6

Table 1: A collection of real-life and synthetic datasets. L4 0.41 34 3.9 5 10.6E6

" Dataset #Iriples #Subjects #Objects #Predicates 11:2 8;; 36214 :g g g;gg

LUBM-10240 | 1410M 222M 165 M 17 L7 464 10,055 11572 31214 12.0E6

WSDTS 105M 5.2 M 98 M 86 Geo. M 6 190 141 450 90.1E6
DBPSB I5M 03M 52M 14,128
YAGO2 190 M 10.5M 540M 99

Evolving Graph Support

* Wukong can incrementally update graph with concurrent queries

* Low Overhead in latency, because of multi-threading

Table 4: The query latency (msec) of Wukong on evolving
LUBM with 1 million triples/second ingestion rate.
LUBM-10240 | L1 L2 L3 L4 L5 L6 L7

Wukong 587 87 222 043 0.18 095 516
Overhead (%) 120 103 8.6 4.7 5.6 6.3 10.1

Optimization Sources

* BASE: graph-exploration strategy with one-
step pruning, via TCP/IP

* RDMA: one-sided RDMA operations Table 5: The contribution of optimizations to query latency
(msec) of Wukong. Optimizations are cumulative.
* FHP: full-history pruning BN

10240 | BASE +RDMA +FHP +IDX +PBS +DYN
* |DX: add predicate/type index, differentiated Ll 9,766 9705 888 853 84 516
. L2 2,272 2161 1559 84 79 78
graph partitioning L3 421 404 404 205 203 203
_ _ _ L4 1.49 079 078 078 056 041
* PBS: predicate-based, finer-grained vertex L5 1.00 039 039 039 031 017
g " L6 3.84 140 137 137 117 089
€composition L7 2,176 2,041 657 494 466 464
Geo. M | 1023 690.1 396 226 199 15.7

* DYN: in-place execution, switch between data
migration and execution distribution

2000

-
@
o

L4 >
°1° T 15009 ©1.20 = _B_ -
Scalability i i I T
— 1000 P\ Y7 s o—— FAO——— _Tee——
2 :
% 500 % 0.40 fciinin .., M, s
* Number of threads - 7 i I S]
i = lol Bl
) 0 : 0.003 3 Y 5 6
* Number of machines Number of Machines Number of Machines
) Fig. 15: The latency of queries in group (I) and (IT) with the
* Size of dataset

increase of machines on LUBM-10240.

. . . 10
* Good practitioner of COST metric 2 T T 1.60
- L1 2 g £ : i L4 >«
e 28 b L2 e . L5 =
3 * 13 | S 1.20} L6 - 7]
€26 | L7 @ b g
— — : A E— Y
- : : > 0.80 s s
Q 4 Q i ;
2% P T S Pl : :
) e
3 22 S 0_40:\.&............?\.. i(' s sssaneerrr
: ¢ & & & h
0 H H H H H
2 e 6 P 210 0.00 a 5 0
Size of Datasets [x10 Univ.] Size of Datasets [x10 Univ.]

Fig. 16: The latency of queries in group (I) and (IT) with the
increase of LUBM datasets (40-10240).

Memory Efficiency

* Triple stores (TriAD, RDF-3X, BitMAT) rely on six primary SPO permutation indexes for
performance

* However, high memory pressure

* Wukong: RDF data in graph form is more space efficient, only double triples for subjects and
values

* Currently k/v store hash table only has < 75% occupancy, can be improved

Thanks!

References

SHI, J., YAO, Y., CHEN, R., CHEN, H., AND LI, F. Fast and concurrent rdf queries with rdma-based
distributed graph exploration. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16) (Savannah, GA, Nov. 2016), USENIX Association

