
Fast and Concurrent RDF Queries with
RDMA-Based Distributed Graph
Exploration
JIAXIN SHI, YOUYANG YAO, RONG CHEN, HAIBO CHEN, FEIFEI LI

PRESENTED BY ANDREW XIA
APRIL 25, 2018

Wukong

Overview of Wukong
• Distributed in-memory RDF

• Low Latency, concurrent queries over large RDF datasets

• RDMA-friendly Graph Model and k/v Store

• RDMA-based full history pruning

• Combine data migration for low latency, high throughput via one-sided RDMA operations

RDF (Resource Description Framework)
§ (subject, predicate, object)

§ Represent as a graph, subject & object are
vertices, predicate is a directed edge

§ SPARQL

§ “select RD where GP”
§ GP is a set of triple patterns
§ RD is a result description

Existing Solutions of RDF
• Triple Store & Triple Join
• Store set of triples in relational database, leverage join operation
• Costly join operations, redundant intermediate results
• Can accelerate using redundant six SPO (subject, predicate, object) permutation indexes with more

memory consumption

• Graph Store, Graph Exploration
• Trinity.RDF stores RDF data in native graph model, with distributed in-memory k/v store, uses graph

exploration
• Final centralized join expensive

RDMA (Remote Direct Memory Access)
• Bypass CPU when fetching data from other machines

• Cross-node memory access technique: low-latency, low CPU overhead

• Two-sided messages: SEND/RECV

• One-sided operations: READ, WRITE, fetch-and-add, compare-and-swap

• Latency of RDMA is relatively insensitive to payload sizes

Wukong Architecture
• Cluster of servers, connected with RDMA
features

• SPARQL Queries over RDF data

• Partition RDF graph into many shards across
multiple machines

• Each Server has
• Query engine
• Graph store

• Query Processing
• Partition query into chain of sub-queries across

machines

Graph Model Index
• normal vertex: subject and objects

• index vertex
• predicate index: maintain all subject and

objects labeled with particular predicate
• type index: group all subjects with same type

Differentiated Graph Partitioning
• to support distributed queries, need to partition
graph among multiple machines while
maintaining access locality, parallelism

• each normal vertex randomly assigned (via
hash) to machine with all edges

• each index vertex replicated among multiple
machines, with edges linked to same machine

RDMA-Friendly predicate based store
• Distributed k/v store
• Key: (vertex ID, pred/type ID, edge direction)
• Value: (neighboring vertex ID or index ID)

• Observation: A SPARQL query will query
neighboring vertices satisfying a predicate

• Special keywords
• 0 vid: INDEX vertex
• 0 p/tid: pred
• 1 p/tid: type

Query Processing
• Goal of query: find subject/object fitting subgraph pattern

• Wukong: Graph exploration in order defined by edge of subgraph

• If predicate known, subject / object are free variables, begin walk with predicate index
• Continue searching graph satisfying triple patterns

• If predicate unknown, begin walk from constant vertex where p/tid=0

Full History Pruning
• Certain tuples should be filtered out during graph exploration

• Wukong: pass full exploration history to next step across all machines

• Remove expensive cost of final join

Migrating Execution or Data
• In-place execution
• Bypass remote CPU via one-sided RDMA READ

• Fork-Join execution
• Fetch many vertices
• One-sided RDMA WRITE, push subquery with

full history to remote machine

• Decide at runtime which execution mode
• |N| RDMA operations
• If |N| > 2*servers, fork-join
• If |N| = # vertices, in-place

Concurrent Query Processing
• Motivation: what if some tasks for workers take
much longer than other tasks?

• Work-stealing model
• All tasks can be stolen from any worker thread

queue
• Isn’t efficient for Wukong, because most tasks are

small

• Worker-obliger work-stealing algorithm
• Each worker keeps track of neighboring workers’

task queue
• If neighbors’ tasks take too long, then worker will

take some of neighbor’s tasks

Implementation
• Task Queue
• Worker thread on each core, logical private task queue
• One client queue, multiple server queues per server

• Launching Query
• Start point of query either normal vertex or index vertex
• Wukong will decide whether replicating index vertex queries is necessary depending on vertex degree

• Multi-Threading
• Parallelize graph exploration via multiple threads processing parts of subgraph

Evaluation
• Datasets
• Two synthetic datasets, two real-life datasets

• Comparison
• Centralized systems: RDF-3X, BitMat
• Distributed systems: TriAD, Trinity.RDF, SHARD

• Large Queries: L1, L2, L3, L7

• Small Queries: L4, L5, L6

Evolving Graph Support
• Wukong can incrementally update graph with concurrent queries

• Low Overhead in latency, because of multi-threading

Optimization Sources
• BASE: graph-exploration strategy with one-
step pruning, via TCP/IP

• RDMA: one-sided RDMA operations

• FHP: full-history pruning

• IDX: add predicate/type index, differentiated
graph partitioning

• PBS: predicate-based, finer-grained vertex
decomposition

• DYN: in-place execution, switch between data
migration and execution distribution

Scalability
• Number of threads

• Number of machines

• Size of dataset

• Good practitioner of COST metric

Memory Efficiency
• Triple stores (TriAD, RDF-3X, BitMAT) rely on six primary SPO permutation indexes for
performance
• However, high memory pressure

• Wukong: RDF data in graph form is more space efficient, only double triples for subjects and
values
• Currently k/v store hash table only has < 75% occupancy, can be improved

Thanks!

References
SHI, J., YAO, Y., CHEN, R., CHEN, H., AND LI, F. Fast and concurrent rdf queries with rdma-based
distributed graph exploration. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16) (Savannah, GA, Nov. 2016), USENIX Association

