
Sub-millisecond Stateful
Stream Querying over

Fast-evolving Linked Data
6.886

Joana M. F. da Trindade
Apr 24th 2018



Motivation
Several data sources generate streaming data continuously

- Sensors, financial markets, social networks, urban sensing, server logs

Some data analytics applications on top of it have near real-time use cases

- Fraud detection, abuse detection, other monitoring use cases, etc

How can we provide support for efficient streaming graph analytics use cases?

- Supporting efficient streaming queries -- instead of just computation?
- Supporting both fast updates and fresh data views w/o consistency issues ?



How does this paper differ from previous work?
Prior graph streaming systems focused on computations instead of queries:

- PageRanking, Naiad, Spark Streaming, TimeStream

Stream graph computation vs stream graph querying, according to authors

- First favors serialized computation over large portion of streaming data
- Latter focuses on concurrent queries over specific set of both streaming and stored 

data

Prior systems were also stateless: no integration between streaming data for concurrent 
queries or no querying of persistent store to base knowledge

Stream processing engines: not applicable, as they use relational model; authors also claim 
that their performance is significantly lower than their system’s



What do authors mean by “stateful” querying?



What do authors mean by “stateful” querying?



What do authors mean by “stateful” querying?

Join 
between
3 graph 
streams



Conventional approach vs authors approach
Goal: support near real-time stateful streaming queries over linked data, where 
each query may access partial data from different streams

“conventional”
approach, 

AKA 
“composite” 

design

Authors’s 
approach

AKA 
“integrated”

design



Drawbacks of conventional approach
Cross-system Cost -> ~40% execution time wasted due to data transformation 
and transmission

Inefficient Query Plan -> Semantic gap between the two systems impair query 
optimization

Limited Scalability -> Stream processing systems dedicate all resources to the 
improve performance of a single job

In summary -> high latency, low throughput



Advantages of authors’s approach over conventional 
approach (“composite” design)

Eliminates cross-system cost -> no data transformation needed across stores

More efficient query optimization -> no semantic gap across different systems, 
single global optimizer

Better Scalability -> shares data across multiple queries, can leverage that for 
better scalability (though you’d have more chances here for inconsistencies, but 
authors deal with that)

In summary -> lower latency, higher throughput than existing systems



Challenges when implementing “integrated” design
Hybrid Store

- efficiently handle streaming data and fast-evolving stored data

Indexing

- fast path to access streaming data in a certain time interval

Consistency

- system provides consistent data views through decentralized vector

timestamps and bounded snapshot scalarization



Authors’s approach: “integrated” design (Wukong+S)



Hybrid store: persistent vs transient

Different data doesn’t interfere 
with each other

Each optimized for different 
acess patterns

Timeless data: continuous 
persistent store

Temporal data: time-based 
transient store



How does it provide consistency across views?

Consistent views over dynamic data AND with memory efficiency:

Streaming data contains order information

Early output from a stream source should always be visible before later output

No order relation across data sources

Key intuition: use vector clocks for decentralized vector timestamps across data 
partitions



Decentralized vector timestamps in Wukong+S



Snapshot Scalarization in Wukong+S



Consistency Model

Provides “prefix integrity” for both continuous and one-shot queries
- Same consistency model as Structured Streaming and Apache Spark Streaming
- “at any time, the output of the application is equivalent to executing a batch job on a 

prefix of the data” (databricks blog post on structured streaming, July 2016)
- Output tables are always consistent with all the records in a prefix of the data

Continuous queries
- Uses distributed vector timestamps to ensure ordering of streaming data arrival equals 

order of visibility to queries

One-shot queries
- Mapping from VTS to SN (snapshot scalarization) preserves order of VTS
- Assumes timestamps in each stream arrive in monotonically non-decreasing order, and 

hence doesn’t need to handle out-of-order issues in input streams



Fault Tolerance
Provides at-least-once semantics for continuous queries, e.g., 2 executions on the 
same window of streams are possible in case of failure (can be addressed by 
client)

Query engine layer -> logs all messages to persistent storage

Data store layer -> incremental checkpointing by periodic logging on the 
background

Recovery -> uses stream index to locate data since last checkpoint; local and 
stable VTS are also stored, and this is used to notify stream sources to flush data 
accordingly



Leveraging RDMA (Wukong)

Stream index -> treated as location cache, providing another layer of indirection to 
fast access streaming data

Normal remote access to KV pair requires at least two RDMA reads: read key 
(lookup) and read value

Wukong+S accumulates stream index for each stream within one machine
- Query only needs to use one RDMA read to retrieve KV pair since stream index 

is already locally accessible
- Assumption: stream index is usually much smaller than data -> feasible to 

accumulate all stream indexes for one stream in one machine



Evaluation

Baseline: 6 state-of-the-art systems -> CSPARQL-engine, Heron+Wukong, 
Storm+Wukong, Spark Streaming, Spark Structured Streaming, Wukong/ext

Platforms: a rack-scale 8-machine cluster, each with 2 12-core Intel Xeon, 128GB 
DRAM, w/ RDMA Mellanox 56Gbps InfiniBand NIC, 40Gbps IB Switch

Benchmarks

- LSBench: Social Networking Benchmark w/ 3.75B initial stored data & 5 
streams totally 134K tuple/second stream

- CityBench: Smart City Benchmark w/ 11 real-world data streams



Evaluation: single query latency



Evaluation: throughput



Evaluation: other experiments in the paper

Influence of different stream rate

Data insertion latency

Performance of one-shot queries

Memory consumption

Fault-tolerance overhead



Conclusion
Authors propose and implement a new design for a distributed stream query 
engine that supports stateful queries over graph streams

Design primarily relies on a hybrid graph store engine -> different stores for for 
continuous persistent graphs and time-based transient graphs

Addresses consistency across data views using vector timestamp and snapshot 
scalarization

Lower latency and higher throughput than state-of-the-art systems for streaming 
computation


