Sub-millisecond Stateful
Stream Querying over
Fast-evolving Linked Data

6.886
Joana M. F. da Trindade
Apr 24th 2018

Motivation

Several data sources generate streaming data continuously

- Sensors, financial markets, social networks, urban sensing, server logs
Some data analytics applications on top of it have near real-time use cases

- Fraud detection, abuse detection, other monitoring use cases, etc
How can we provide support for efficient streaming graph analytics use cases?

- Supporting efficient streaming queries -- instead of just computation?
- Supporting both fast updates and fresh data views w/o consistency issues ?

How does this paper differ from previous work?

Prior graph streaming systems focused on computations instead of queries:
- PageRanking, Naiad, Spark Streaming, TimeStream
Stream graph computation vs stream graph querying, according to authors

- First favors serialized computation over large portion of streaming data
- Latter focuses on concurrent queries over specific set of both streaming and stored

data

Prior systems were also stateless: no integration between streaming data for concurrent
queries or no querying of persistent store to base knowledge

Stream processing engines: not applicable, as they use relational model; authors also claim
that their performance is significantly lower than their system’s

What do authors mean by “stateful” querying?

Tweet_Stream Like Stream
Logan po T-15 @802+ Logan 1li T-12 es8elr
T-15 ga [31,121] @802 Erik 1i T-14 e8el
T-15 ht #sospl7 0862 Erik 1i T-15 0806
Erik po T-16 @8051 Tony 1i T-15 @8e6
T-16 ga [41,-74] 0805 Bruce 1i T-15 @806
Logan po T-17 08081 Clint 1i T-15 e8leT
'T-17 ga [31,121] 0808| Steve 1li T-15 0810
t Erik 1i T-17 e81e
Tuple oy .
= Logan 1i T-16 @812+
¥ Thor 1i T-15 @812
-ty:type li:like ht:hashtag @
fo:follow po:post ga:gps_add -;"

Fig. 1: A sample of streaming and stored data in social networking.

What do authors mean by “stateful” querying?

REGISTER QUERY Qc
SELECT ?X SELECT 2?X ?Y ?Z
FROM Tweet_Stream [RANGE 1@s STEP 1s]
FROM Like_Stream [RANGE 5s STEP 1s]
FROM X-Lab FROM X-Lab -
WHERE { WHERE { Query Condition
Logan po ?X GRAPH Tweet_Stream { ?X po ?Z
?X ht #sosp17 GRAPH X-Lab { ?X fo ?Y }
Erik 1i ?X GRAPH Like_Stream { ?Y 1li ?Z }
} }
(a) One-shot Query (b) Continuous Query

Fig. 2: A sample of one-shot (Qg) and continuous (Q¢) queries.

What do authors mean by “stateful” querying?

REGISTER QUERY Qc
SELECT ?X SELECT ?X ?Y ?Z
FROM Tweet_Stream [RANGE 1@s STEP 1s]
FROM Like_Stream [RANGE 5s STEP 1s]
FROM X-Lab FROM X-Lab N
WHERE { WHERE { QueryCondltlon J]
Logan po ?X GRAPH Tweet_Stream { ?X po ?Z omn
?X ht #sosp17 GRAPH X-Lab { ?X fo ?Y between
Erik 1i ?X GRAPH Like Stream { ?Y 1i ?Z } 3 graph
} } streams
(a) One-shot Query (b) Continuous Query

Fig. 2: A sample of one-shot (Qg) and continuous (Q() queries.

Conventional approach vs authors approach

Goal: support near real-time stateful streaming queries over linked data, where
each query may access partial data from different streams

St i : St i .. Continuous
rg%’t“e:”g Continuous Query r%e;rgng Timing Data Query
EEEEEER EEEEEERE
“conventional” "M ®ENE S O mommm : CGIO : ‘a :
aooroach Streammg System Authors's
PP ’ approach
1 AKA H ” AKA
comp_osﬂe] —Do —> —Do “‘integrated”
design One-shot design
Initial Data Store Oa%-g;o'(Initial Data Timeless Data Query
a) Composite Design b) Integrated Design

Fig. 3: A comparison between composite and integrated design.

Drawbacks of conventional approach

Cross-system Cost -> ~40% execution time wasted due to data transformation
and transmission

Inefficient Query Plan -> Semantic gap between the two systems impair query
optimization

Limited Scalability -> Stream processing systems dedicate all resources to the
improve performance of a single job

In summary -> high latency, low throughput

Advantages of authors’s approach over conventional
approach (“‘composite” design)

Eliminates cross-system cost -> no data transformation needed across stores

More efficient query optimization -> no semantic gap across different systems,
single global optimizer

Better Scalability -> shares data across multiple queries, can leverage that for
better scalability (though you’d have more chances here for inconsistencies, but
authors deal with that)

In summary -> lower latency, higher throughput than existing systems

Challenges when implementing “integrated” design

Hybrid Store

- efficiently handle streaming data and fast-evolving stored data

Indexing
- fast path to access streaming data in a certain time interval

Consistency

- system provides consistent data views through decentralized vector

timestamps and bounded snapshot scalarization

Authors’s approach: “integrated” design (Wukong+S)

Continuous
Query
EEEEEEEE BN
H EEE EEER

Streaming
Data

Server 1

i) i)+ [l

Server 0

a) Architecture

Continuous One-shot

Engine Engine
e
Continuous regqister .. One-shot

Query S \ ek)

.. Query

Coordinator

Streaming Data

Adapter Dispatcher Injector Store

b) Execution Flow

Fig. 5: The architecture and execution flow of Wukong+S.

Hybrid store: persistent vs transient

X-Lab vid ID-Mapping Table | |ngex Vertex KVStore
@ po @ 2 Egggﬁ i dire.ction I e|4|e H—PI 4,5,6
Loga) oo 2 Erik @ in 1| Normal Vertex Different data doesn’t interfere
{19« po oy ||aT . [11al1 -] 5. KB with each other
Tweet_Stream : key<:\ o .
value Each optimized for different

acess patterns

Fig. 6: The injection of a triple on continuous persistent store.

802 _©8e5 edos , Timeless data: continuous
persistent store

Tweet_Stream

Logan po T-15 2802 GC —
T-15 ga [31,121] ese2
T-15 ht #sospl7 @802

Temporal data: time-based

Transient transient store
Slice

Erik po T-16 2805

T-16 ga [41,-74] @885 ‘ .
Logan po T-17 o868 Time-based
T-17 31,121] e8es)

ga [31,121] Transient Store

Fig. 7: The design of time-based transient store in Wukong+S.

How does it provide consistency across views?

Consistent views over dynamic data AND with memory efficiency:

Streaming data contains order information

Early output from a stream source should always be visible before later output
No order relation across data sources

Key intuition: use vector clocks for decentralized vector timestamps across data
partitions

Decentralized vector timestamps in Wukong+S

8:00 8:01 8:02 .
— .time Continuous \%j

: : S—
Sourcee. . . Query Stable VIS
Sourcelo @ @ apie_
So:| 4
S1:42
Local VTS A
So:| 4
S1:2
Servero
So:| 5
e
Serverl Local VTS

Snapshot Scalarization in Wukong+S

One-shot
Query

Servero

\4

- SN: Snapshot Number
Key VTS: Vector Timestamp

SN=2:[4,10]~_ Visible
SN=3:[5,12] — snapshot
SN=4:[7,14]

Consistency Model

Provides “prefix integrity” for both continuous and one-shot queries

- Same consistency model as Structured Streaming and Apache Spark Streaming

- “at any time, the output of the application is equivalent to executing a batch job on a
prefix of the data” (databricks blog post on structured streaming, July 2016)

- Output tables are always consistent with all the records in a prefix of the data

Continuous queries
- Uses distributed vector timestamps to ensure ordering of streaming data arrival equals
order of visibility to queries

One-shot queries

- Mapping from VTS to SN (snapshot scalarization) preserves order of VTS

- Assumes timestamps in each stream arrive in monotonically non-decreasing order, and
hence doesn’t need to handle out-of-order issues in input streams

Fault Tolerance

Provides at-least-once semantics for continuous queries, e.g., 2 executions on the
same window of streams are possible in case of failure (can be addressed by
client)

Query engine layer -> logs all messages to persistent storage

Data store layer -> incremental checkpointing by periodic logging on the
background

Recovery -> uses stream index to locate data since last checkpoint; local and
stable VTS are also stored, and this is used to notify stream sources to flush data
accordingly

Leveraging RDMA (Wukong)

Stream index -> treated as location cache, providing another layer of indirection to
fast access streaming data

Normal remote access to KV pair requires at least two RDMA reads: read key
(lookup) and read value

Wukong+S accumulates stream index for each stream within one machine

- Query only needs to use one RDMA read to retrieve KV pair since stream index
is already locally accessible

- Assumption: stream index is usually much smaller than data -> feasible to
accumulate all stream indexes for one stream in one machine

Evaluation

Baseline: 6 state-of-the-art systems -> CSPARQL-engine, Heron+Wukong,
Storm+Wukong, Spark Streaming, Spark Structured Streaming, Wukong/ext

Platforms: a rack-scale 8-machine cluster, each with 2 12-core Intel Xeon, 128GB
DRAM, w/ RDMA Mellanox 56Gbps InfiniBand NIC, 40Gbps IB Switch

Benchmarks

- LSBench: Social Networking Benchmark w/ 3.75B initial stored data & 5
streams totally 134K tuple/second stream
- CityBench: Smart City Benchmark w/ 11 real-world data streams

Evaluation: single query latency

219 527 346 2215 1422

50 49.03
40.77
40
31.14
30
20
0.10 0.08 0.11
10
V023 | 1648 2628 178 3.50 1.68
0 - - |m—

N Wukong+S l Storm+Wukong M Spark Streaming

latency (msec)

throughput

Evaluation: throughput

2 1000

S 800

O

£ 600

S 400

2

T 200

9O

= 0

= 0 2 4 6

#machine

Mixture of LSBench 1-3

o

throughput
(kilo query/second)

00
o
o

(o))
o
o

B
o
o

N
o
o

o

2 4 6
#machine

Mixture of LSBench 1-6

Evaluation: other experiments in the paper

Influence of different stream rate
Data insertion latency
Performance of one-shot queries
Memory consumption

Fault-tolerance overhead

Conclusion

Authors propose and implement a new design for a distributed stream query
engine that supports stateful queries over graph streams

Design primarily relies on a hybrid graph store engine -> different stores for for
continuous persistent graphs and time-based transient graphs

Addresses consistency across data views using vector timestamp and snapshot
scalarization

Lower latency and higher throughput than state-of-the-art systems for streaming
computation

