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Motivation

Several data sources generate streaming data continuously

- Sensors, financial markets, social networks, urban sensing, server logs
Some data analytics applications on top of it have near real-time use cases

- Fraud detection, abuse detection, other monitoring use cases, etc
How can we provide support for efficient streaming graph analytics use cases?

- Supporting efficient streaming queries -- instead of just computation?
- Supporting both fast updates and fresh data views w/o consistency issues ?



How does this paper differ from previous work?

Prior graph streaming systems focused on computations instead of queries:
- PageRanking, Naiad, Spark Streaming, TimeStream
Stream graph computation vs stream graph querying, according to authors

- First favors serialized computation over large portion of streaming data
- Latter focuses on concurrent queries over specific set of both streaming and stored

data

Prior systems were also stateless: no integration between streaming data for concurrent
queries or no querying of persistent store to base knowledge

Stream processing engines: not applicable, as they use relational model; authors also claim
that their performance is significantly lower than their system’s



What do authors mean by “stateful” querying?
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Fig. 1: A sample of streaming and stored data in social networking.



What do authors mean by “stateful” querying?

REGISTER QUERY Qc
SELECT ?X SELECT 2?X ?Y ?Z
FROM Tweet_Stream [RANGE 1@s STEP 1s]
FROM Like_Stream [RANGE 5s STEP 1s]
FROM X-Lab FROM X-Lab -
WHERE { WHERE { Query Condition
Logan po ?X GRAPH Tweet_Stream { ?X po ?Z
?X  ht #sosp17 GRAPH X-Lab { ?X fo ?Y }
Erik 1i ?X GRAPH Like_Stream { ?Y 1li ?Z }
} }
(a) One-shot Query (b) Continuous Query

Fig. 2: A sample of one-shot (Qg) and continuous (Q¢) queries.
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Fig. 2: A sample of one-shot (Qg) and continuous (Q() queries.



Conventional approach vs authors approach

Goal: support near real-time stateful streaming queries over linked data, where
each query may access partial data from different streams
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Fig. 3: A comparison between composite and integrated design.



Drawbacks of conventional approach

Cross-system Cost -> ~40% execution time wasted due to data transformation
and transmission

Inefficient Query Plan -> Semantic gap between the two systems impair query
optimization

Limited Scalability -> Stream processing systems dedicate all resources to the
improve performance of a single job

In summary -> high latency, low throughput



Advantages of authors’s approach over conventional
approach (“‘composite” design)

Eliminates cross-system cost -> no data transformation needed across stores

More efficient query optimization -> no semantic gap across different systems,
single global optimizer

Better Scalability -> shares data across multiple queries, can leverage that for
better scalability (though you’d have more chances here for inconsistencies, but
authors deal with that)

In summary -> lower latency, higher throughput than existing systems



Challenges when implementing “integrated” design

Hybrid Store

- efficiently handle streaming data and fast-evolving stored data

Indexing
- fast path to access streaming data in a certain time interval

Consistency

- system provides consistent data views through decentralized vector

timestamps and bounded snapshot scalarization



Authors’s approach: “integrated” design (Wukong+S)
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Fig. 5: The architecture and execution flow of Wukong+S.



Hybrid store: persistent vs transient
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Fig. 6: The injection of a triple on continuous persistent store.
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How does it provide consistency across views?

Consistent views over dynamic data AND with memory efficiency:

Streaming data contains order information

Early output from a stream source should always be visible before later output
No order relation across data sources

Key intuition: use vector clocks for decentralized vector timestamps across data
partitions



Decentralized vector timestamps in Wukong+S
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Snapshot Scalarization in Wukong+S
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Consistency Model

Provides “prefix integrity” for both continuous and one-shot queries

- Same consistency model as Structured Streaming and Apache Spark Streaming

- “at any time, the output of the application is equivalent to executing a batch job on a
prefix of the data” (databricks blog post on structured streaming, July 2016)

- Output tables are always consistent with all the records in a prefix of the data

Continuous queries
- Uses distributed vector timestamps to ensure ordering of streaming data arrival equals
order of visibility to queries

One-shot queries

- Mapping from VTS to SN (snapshot scalarization) preserves order of VTS

- Assumes timestamps in each stream arrive in monotonically non-decreasing order, and
hence doesn’t need to handle out-of-order issues in input streams



Fault Tolerance

Provides at-least-once semantics for continuous queries, e.g., 2 executions on the
same window of streams are possible in case of failure (can be addressed by
client)

Query engine layer -> logs all messages to persistent storage

Data store layer -> incremental checkpointing by periodic logging on the
background

Recovery -> uses stream index to locate data since last checkpoint; local and
stable VTS are also stored, and this is used to notify stream sources to flush data
accordingly



Leveraging RDMA (Wukong)

Stream index -> treated as location cache, providing another layer of indirection to
fast access streaming data

Normal remote access to KV pair requires at least two RDMA reads: read key
(lookup) and read value

Wukong+S accumulates stream index for each stream within one machine

- Query only needs to use one RDMA read to retrieve KV pair since stream index
is already locally accessible

- Assumption: stream index is usually much smaller than data -> feasible to
accumulate all stream indexes for one stream in one machine



Evaluation

Baseline: 6 state-of-the-art systems -> CSPARQL-engine, Heron+Wukong,
Storm+Wukong, Spark Streaming, Spark Structured Streaming, Wukong/ext

Platforms: a rack-scale 8-machine cluster, each with 2 12-core Intel Xeon, 128GB
DRAM, w/ RDMA Mellanox 56Gbps InfiniBand NIC, 40Gbps IB Switch

Benchmarks

- LSBench: Social Networking Benchmark w/ 3.75B initial stored data & 5
streams totally 134K tuple/second stream
- CityBench: Smart City Benchmark w/ 11 real-world data streams



Evaluation: single query latency
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throughput

Evaluation: throughput
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Evaluation: other experiments in the paper

Influence of different stream rate
Data insertion latency
Performance of one-shot queries
Memory consumption

Fault-tolerance overhead



Conclusion

Authors propose and implement a new design for a distributed stream query
engine that supports stateful queries over graph streams

Design primarily relies on a hybrid graph store engine -> different stores for for
continuous persistent graphs and time-based transient graphs

Addresses consistency across data views using vector timestamp and snapshot
scalarization

Lower latency and higher throughput than state-of-the-art systems for streaming
computation



