
GARAPH
EFFICIENT GPU-ACCELERATED GRAPH PROCESSING 

ON A SINGLE MACHINE WITH BALANCED 
REPLICATION

By Lingxiao Ma, Zhi Yang , Han Chen , Jilong Xue and Yafei Dai
Presented by Brian Wheatman



Goals of Garaph

■ Use all resources of machines
– Large Memory
– Fast Secondary Storage
– CPU
– GPU

■ Prior issues
– Skewed degree distribution
■ Write contention
■ Work imbalance 



Graph Representation

■ Shards
– Disjoint set of vertices along with the incoming edges

■ Increasing order of destination

– Sized to fit in the GPUs shared memory (about 12k vertices)
– Replicated 

■ Pages
– A set of shard for efficient movement of data

■ CSC for incoming edges
– pull

■ CSR for outgoing edges
– Poor behavior on GPUs
– Notify pull

■ Only neighbors of the active set pull



System Architecture
• Dispatcher

• Loading graph
• Distributing computation
• Distribute data onto multiple SSDs

• GPU/CPU computation kernel
• All blocks processed in parallel
• Only pull on GPU
• Both pull and notify pull on CPU
• Can run either synchronously or asynchronously

• When asynchronous updates are immediately 
visible

• Fault Tolerance
• Periodically writes state to secondary storage



Programming API’s



GPU-Based Graph Processing

■ Graph Processing Engine 

■ Replication-Based Gather



Graph Processing Engine 
■ Vertices stored in GPU global memory

■ Each SM has a local copy of the vertices of the shard
■ Gather by reading from global memory updating the local copy
■ Then written back to global memory on GPU
■ After round GPU global memory synchronized with host memory



Replication-Based Gather
■ To avoid write contention

– Within a shard lots of edges going to the same node
■ Made worse by natural graphs power law distribution

– Replicate the node data and sum up partial values then accumulate



CPU-Based Graph Processing

■ Processing with Edge Partitions
– Edges or split up equally into different partitions
– Vertexes split are duplicated
■ Later aggregated to obtain value

■ Dual-Mode Processing Engine 



Evaluation

■ Comparison with Other Systems

■ Customized Replication

■ Dual Modes of the CPU Kernel

■ Hybrid CPU-GPU Scheduling



Comparison with Other Systems

■ 10 iterations Pagerank



Comparison with Other Systems

■ Connected components

■ Until convergence 

■ GPU can be much slower



Customized Replication

■ Helps some pages dramatically



Dual Modes of the CPU Kernel

■ On some iterations notify pull is much better



Hybrid CPU-GPU Scheduling


