
A Distributed Multi-GPU System for Fast Graph 
Processing
Zhihao Jia et al. (2018)

Presented by Edward Fan



Another graph processing framework

- Frameworks we’ve seen so far: 

- Shared memory / disk-based: 
- Ligra, GraphChi, X-Stream 

- Distributed: 
- Pregel, PowerGraph, GraphX 

- Single-machine GPU: 
- Garaph, CuSha, MapGraph



Another graph processing framework - Lux

- Lux: a distributed multi-
GPU framework 

- Three interesting 
components: 

- Execution model: 
push vs pull 

- Use of GPU-specific 
memory hierarchy 

- Dynamic load 
balancing based on 
runtime performance



Programmer 
interface 

● init, compute, 
update 

● Somewhat 
similar to Pregel’s 
gather-apply-
scatter



Push 
execution 

● Maintains frontier 
of vertices to 
compute on 

● Used by many 
distributed 
systems- 
minimizes work



Pull 
execution 

● Processes all 
vertices and 
edges at each 
iteration 

● Faster on GPUs 
(except for very 
sparse updates)



GPU memory hierarchy

- Three major types of memory: 
- Zero-copy memory: 

pinned region of DRAM 
that can be accessed 
directly 

- GPU device memory: 
main GPU memory 

- GPU shared memory: 
small cache shared by all 
threads (think L1, but if 
shared by CPU cores)



GPU memory hierarchy

- Goal is to: 
- Minimize transfers from 

zero-copy memory to 
device memory 

- Use shared memory as 
much as possible 

- Two optimizations: 
- Load and update vertices 

only once per iteration 

- Pull execution can put all 
updates in shared 
memory



GPU memory hierarchy

- Coalesced memory access 
- When multiple GPU 

threads access 
consecutive addresses, 
the hardware combines 
them into one range. 

- Next section: assigning 
consecutive vertices to 
each GPU means that 
accesses are consecutive 

- Additional optimization: 
copy a block to shared 
memory using coalescing



Dynamic load balancing

- To start: simple edge partitioning (assign roughly equal 
number of edges to each GPU; sequentially pick boundary 
vertices through CSR) 

- During each iteration: observe actual runtime to see how 
much work is in each partition 

- Then, run model to see if inter-node or local 
repartitioning is worthwhile 

- Seems to converge quickly



Performance

- Pretty good! Outperforms single-CPU and multi-CPU systems 
- Competitive against single-GPU when run on just 1 GPU 

- Arguably, deck is stacked against CPU systems- similar “cost 
efficiency” numbers, but lots more hardware for Lux



Performance



Questions?  
 
 
Thanks!


