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Another graph processing framework

Frameworks we've seen so far:

Shared memory / disk-based:
- Ligra, GraphChi, X-Stream

Distributed:
- Pregel, PowerGraph, GraphX

Single-machine GPU:
- Garaph, CuSha, MapGraph



Another graph processing framework - Lux

- Lux; a distributed multi-
GPU framework
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Programmer
interface

e Init, compute,

Upda‘te interface Program(V, E) {

void 1nit(Vertex v, Vertex v

vaid compute(Vertex v, Vertax u
Edge ¢);

bool update(Vertex v, Vertex v
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Push
execution

Algorithm 2 Vseudocode [or generic push-based execution.
1: while F # {} do

2: for all » € V do in parallel
3 init{n, 179
RV EINCIERIIEE ¢  end for '
. 5 e synchronize( V)
of vertices to 6:  for all w 2 F do in parallel
T for all v & N (u) do in parallel
ComPUte on 8: compute(v, u? {u,v))
q end for
10 end for
e Used by many 11: v syaclronize(V)
. . 12: r={}
distributed 13 forall v € 1 do in parallel
_ 11: il updale(r, ¢™'?) then
systems i i iy, o
minimizes work 16 end if
17: end lor

I5: end while




Pull
execution

e Processes all
vertices and
edges at each
iteration

e Faster on GPUs
(except for very
sparse updates)

Algorithin 1 Pseudocode [or generic pull-based executiown.
I: while not halt do

2: fialt — true t halt is a global variahle
3: for all ¢ € ¥ do In parallel

1: init{e, ')

G for all u ¢ .N"(v) do in parallel

fi: compiee, w® . (w. )]

7 end for

B8: if updateiv, v°*%) then

9: fudl = Julse
10: end il

I end for

12: end while




GPU memory hierarchy

- Three major types of memory:

Zero-copy memory:
pinned region of DRAM
that can be accessed
directly

GPU device memory:
main GPU memory

GPU shared memory:
small cache shared by all
threads (think L1, but if
shared by CPU cores)
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Figure 9: Data flow for one iteration.



GPU memory hierarchy

- Goalisto:

-  Minimize transfers from
zero-copy memory to
device memory

- Use shared memory as
much as possible

- Two optimizations:
- Load and update vertices
only once per iteration

- Pull execution can put all
updates in shared
memory
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GPU memory hierarchy

- Coalesced memory access

When multiple GPU
threads access
consecutive addresses,
the hardware combines
them into one range.

Next section: assigning
consecutive vertices to
each GPU means that
accesses are consecutive

Additional optimization:
copy a block to shared
memory using coalescing
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Dynamic load balancing

To start: simple edge partitioning (assign roughly equal
number of edges to each GPU; sequentially pick boundary
vertices through CSR)

During each iteration: observe actual runtime to see how
much work is in each partition

- Then, run model to see if inter-node or local
repartitioning is worthwhile
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Performance

- Pretty good! Outperforms single-CPU and multi-CPU systems

- Competitive against single-GPU when run on just 1 GPU

- Arguably, deck is stacked against CPU systems- similar “cost
efficiency” numbers, but lots more hardware for Lux
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R St Sl S — e
CZD Sest ompute e GEl Moset Dwmpute e
B2 Aest e b B0 Modet Sev tewe

»
1]
t

it i o

1l e e B Ee

.t 1

Run tine per teration (seconas)

N . et w s M4 |:-: ::’,1 >
| s
%:.-:- R 2" 1ﬁa -Tp-—-?-:;:c amd pe il avh peit
E a0 ' e
g:;o RS H ! ..‘ S S SR S (n) Pull-Lasxd exvustivee (PR).
= xe é" '._‘ [E3 Sewt ompute wve G0 Motes omnte tora
20 ‘ . .. u:~w~u- I Modw e e
N‘i':sam'saasew .::1ls‘_;'1§z.-:- ™
reann L1
(a) PR. (b) CC. g Ij- = s L.. :J
Figure 10: 'er iwcration runtime on TV with 16 GPPUs, i m E_ i
< .’:. ==
: "
;l' S T ;hu --ih -»i
’ " Contguraton

(b) Pesh-hased pxecntions (CC).
Figure 20: Perfarmance model for different execut ons,



Questions?

Thanks!



