A Distributed Multi-GPU System for Fast Graph
Processing

Zhihao Jia et al. (2018)

Presented by Edward Fan

Another graph processing framework

Frameworks we've seen so far:

Shared memory / disk-based:
- Ligra, GraphChi, X-Stream

Distributed:
- Pregel, PowerGraph, GraphX

Single-machine GPU:
- Garaph, CuSha, MapGraph

Another graph processing framework - Lux

- Lux; a distributed multi-
GPU framework

- Three interesting A_ _.:...: B
components: VR oo)
: e
- Execution model: E '
W Mdrh ¢ Rl ke P atieh Nl ik
push vs pull
. ’\v-u!bun D\mm tbc?bm
- Use of GPU-specific) B
. snu
memory hierarchy e e e

. Figure L: Multi-CPU nude architeeluce.
- Dynamic load

balancing based on
runtime performance

Programmer
interface

e Init, compute,

Upda‘te interface Program(V, E) {

void 1nit(Vertex v, Vertex v

vaid compute(Vertex v, Vertax u
Edge ¢);

bool update(Vertex v, Vertex v

ala) -
L]
old
]

e Somewhat

similar to Pregel’s [k

- _ Figure 3: All Lux programs wusl implement the slale-less
gather apply init, compute and update functions.
scatter

Ct'd) .
’

Push
execution

Algorithm 2 Vseudocode [or generic push-based execution.
1: while F # {} do

2: for all » € V do in parallel
3 init{n, 179
RV EINCIERIIEE ¢ end for '
. 5 e synchronize(V)
of vertices to 6: for all w 2 F do in parallel
T for all v & N (u) do in parallel
ComPUte on 8: compute(v, u? {u,v))
q end for
10 end for
e Used by many 11: v syaclronize(V)
. . 12: r={}
distributed 13 forall v € 1 do in parallel
_ 11: il updale(r, ¢™'?) then
systems i i iy, o
minimizes work 16 end if
17: end lor

I5: end while

Pull
execution

e Processes all
vertices and
edges at each
iteration

e Faster on GPUs
(except for very
sparse updates)

Algorithin 1 Pseudocode [or generic pull-based executiown.
I: while not halt do

2: fialt — true t halt is a global variahle
3: for all ¢ € ¥ do In parallel

1: init{e, ')

G for all u ¢ .N"(v) do in parallel

fi: compiee, w® . (w.)]

7 end for

B8: if updateiv, v°*%) then

9: fudl = Julse
10: end il

I end for

12: end while

GPU memory hierarchy

- Three major types of memory:

Zero-copy memory:
pinned region of DRAM
that can be accessed
directly

GPU device memory:
main GPU memory

GPU shared memory:
small cache shared by all
threads (think L1, but if
shared by CPU cores)

i(-q“"\"ll.» -~)
-

b, et

ﬂ . Inter-noda xtar

-~

CPUs

Fera-Cofy Memary

P32 Smitch / NVLiek
Fupdse

N

/

-

e
Figure 9: Data flow for one iteration.

GPU memory hierarchy

- Goalisto:

- Minimize transfers from
zero-copy memory to
device memory

- Use shared memory as
much as possible

- Two optimizations:
- Load and update vertices
only once per iteration

- Pull execution can put all
updates in shared
memory

i(-:i‘:‘\i‘nl' -~)
Y

b, et

ﬂ . Inter-noda xtar

-~

N
CPUs

Fera-Cofy Memary

P2 Saitch / NLiek

Wload A updae

GPU, GPU,
l_/

e
Figure 9: Data flow for one iteration.

GPU memory hierarchy

- Coalesced memory access

When multiple GPU
threads access
consecutive addresses,
the hardware combines
them into one range.

Next section: assigning
consecutive vertices to
each GPU means that
accesses are consecutive

Additional optimization:
copy a block to shared
memory using coalescing

£

ﬂ . Inter-noda xtar

-~

CPUs

Fera-Cofy Memary

P2 Saitch / NLiek

Fupdse

A

N

/

-

e
Figure 9: Data flow for one iteration.

Dynamic load balancing

To start: simple edge partitioning (assign roughly equal
number of edges to each GPU; sequentially pick boundary
vertices through CSR)

During each iteration: observe actual runtime to see how
much work is in each partition

- Then, run model to see if inter-node or local
repartitioning is worthwhile

Ly v
; AT snsnnn -/ -
. T
- Seems to converge quickly £ o]
- 4
“%0% 3 €4 48 €5 1924 42 54 €8 08 DOIE 67 €& 08 98 10
Laraton =1 Itaration = 3 e ation = 3

Figure 8: Tl estimales of over (hioes dleral s, Tles
Dlue squanes iwloate L 2ol aal vaecction Limes, wiile e
rec rreles indicate the splie pomts retnrned for a2 paratvm-
mg amomg, 4 GPUs st the ond of each steratvn.

Performance

- Pretty good! Outperforms single-CPU and multi-CPU systems

- Competitive against single-GPU when run on just 1 GPU

- Arguably, deck is stacked against CPU systems- similar “cost
efficiency” numbers, but lots more hardware for Lux

[] =H»nm | Croux I

b apted trma {me]

. L] " rw " -~ rw " ™~ L ~ Lld
P31 i) o« S55F ac CF (1 iteration!
Figure 15: Pufamares combdarkaon cn a sieglo GPLU (lower = betwer).

[¢=: Bt of (e, Gaeh. fovren [bex 3 omrdoen Geptin) o0 heias B Croswe SEB Gx)

Sl A0 AL Al

N(l Re” mm (l’ o tmonx
Figure 18; The c)'«nt on bwe for differens gupl. Processing rrn-:worka {kower s better],

lu;ux ane 1)

Performance

R St Sl S — e
CZD Sest ompute e GEl Moset Dwmpute e
B2 Aest e b B0 Modet Sev tewe

»
1]
t

it i o

1l e e B Ee

.t 1

Run tine per teration (seconas)

N . et w s M4 |:-: ::’,1 >
| s
%:.-:- R 2" 1ﬁa -Tp-—-?-:;:c amd pe il avh peit
E a0 ' e
g:;o RS H ! ..‘ S S SR S (n) Pull-Lasxd exvustivee (PR).
= xe é" '._‘ [E3 Sewt ompute wve G0 Motes omnte tora
20 ‘ . .. u:~w~u- I Modw e e
N‘i':sam'saasew .::1ls‘_;'1§z.-:- ™
reann L1
(a) PR. (b) CC. g Ij- = s L.. :J
Figure 10: 'er iwcration runtime on TV with 16 GPPUs, i m E_ i
< .’:. ==
: "
;l' S T ;hu --ih -»i
’ " Contguraton

(b) Pesh-hased pxecntions (CC).
Figure 20: Perfarmance model for different execut ons,

Questions?

Thanks!

