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Multicore Processors
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Q Why do semicon-
ductor vendors
provide chips with
multiple processor
cores?

A Because of Moore’s
Law and the end of
the scaling of clock
frequency.
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Technology Scaling
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Power Density
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Source: Patrick Gelsinger, /nte/ Developer’s Forum, Intel Corporation, 2004.

Projected power density, if clock frequency had

continued its trend of scaling 25%-30% per year.
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Technology Scaling
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Parallel Languages

e Pthreads

* Intel TBB

« OpenMP, Cilk
« MPI

 CUDA, OpenCL

« Today: Shared-memory parallelism

e OpenMP and Cilk are extensions of C/C++ that
supports parallel for-loops, parallel recursive calls,
etc.

» Do not need to worry about assigning tasks to
processors as these languages have a runtime
scheduler

o Cilk has a provably efficient runtime scheduler
© 2018 Julian Shun 6



PARALLELISM MODELS
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- Arithmetic operations, logical operations and
memory accesses take O(1) time

« Most sequential algorithms are designed
using this model

o Saw this in 6.046
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Basic multiprocessor models
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Bus
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2-level multistage network Fat tree
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Network topology

« Algorithms for specific topologies can be
complicated

e May not perform well on other networks
« Alternative: use a model that summarizes
latency and bandwidth of network
o Postal model
o Bulk-Synchronous Parallel (BSP) model
e LogP model

© 2018 Julian Shun
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PRAM Model

All processors can perform same local
instructions as in the RAM model

All processors operate in lock-step
« Implicit synchronization between steps

e Models for concurrent access
o Exclusive-read exclusive-write (EREW)

e Concurrent-read concurrent-write (CRCW)

= How to resolve concurrent writes: arbitrary value, value from
lowest-ID processor, logical OR of values

e Concurrent-read exclusive-write (CREW)
e Queue-read queue-write (QRQW)

= Allows concurrent access in time proportional to the
maximal number of concurrent accesses
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Work-depth model

« Similar to PRAM but does not require lock-step or
processor allocation
Computation graph - Work = number of vertices in graph
(number of operations)
« Depth (span) = longest directed
path in graph (dependence length)
« Parallelism = Work / Depth

* A work-efficient parallel algorithm
has work that asymptotically
matches the best sequential
algorithm for the problem

Goal: work-efficient and low
(polylogarithmic) depth parallel
algorithms
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Work-depth model

« Spawning/forking tasks

» Model can support either binary forking or arbitrary
forking

Binary forking Arbitrary forking
e Cilk uses binary forking, as seenin 6.172
o Converting between the two changes work by at

most a constant factor and depth by at most a
logarithmic factor

= Keep this in mind when reading textbooks/papers on
parallel algorithms

o We will assume arbitrary forking unless specified
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- State what operations are supported

e Concurrent reads/writes?
e Resolving concurrent writes
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* For a computation with work W and depth D,
on P processors a greedy scheduler achieves

« Work-efficiency is important since P and D are
usually small

© 2018 Julian Shun 16



Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition. A task is ready if all its
predecessors have executed.
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Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition. A task is ready if all its
predecessors have executed. P =3

Complete step
e > P tasks ready.
e Run any P.
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Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition. A task is ready if all its
predecessors have executed. P =3

Complete step
e > P tasks ready.
e Run any P.

Incomplete step
e < P tasks ready.
e Run all of them.
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Analysis of Greedy

Theorem [G68, B75, EZL89]. Any greedy scheduler
achieves

Running Time < W/P + D.

Proof.

o # complete steps < W/P,
since each complete step
performs P work.

e # incomplete steps < D,
since each incomplete step
reduces the span of the
unexecuted dag by 1. =
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* For a computation with work W and depth D,
on P processors Cilk’s work-stealing
scheduler achieves
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PARALLEL SUM
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« Definition: Given a sequence A=[Xg, X;i,..., X,_1],
return Xo+X;+...+X,_>+X,_;

What is the depth? What is the work?
D(n) = D(n/2)+0(1) W(n) = W(n/2)+0(n)
D(1) = O(1) W(1) = O(1)

- D(n) = O(log n) - W(n) = O(n)
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PREFIX SUM
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Prefix Sum

« Definition: Given a sequence A=[Xq, X1,..., X,_1],
return a sequence where each location stores
the sum of everything before it in A,

[0, Xq, Xg+Xi,..., Xg+X;+...+X,,_>], as well as the
total sum Xy+X;+...+X,_>+X,,_;

« Example: 2 [ 4313

0 2 6 9 10 Total sum = 13

« Can be generalized to any associative binary
operator (e.g., X, min, max)
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Sequential Prefix Sum

Input: array A of length n
Output: array A’ and total sum

cumulativeSum = O;

for i=0 to n-1:
A’[i] = cumulativeSum;
cumulativeSum += Alil;

return A’ and cumulativeSum

- What is the work of this algorithm?
e O(n)

« Can we execute iterations in parallel?

e Loop carried dependence: value of cumulativeSum

depends on previous iterations
© 2018 Julian Shun 26




Xo X1 X2 X3 X4 Xs

B = "._‘ X0+X-| '-_‘ X2—|—X3 ‘._- X4+X5 %

Total sum =
BB= O Xo+X; % Xo+...+X3 % Xo+...+X5 % Xot...+X7

v ”'_.x\'d v ”a\'-l @ ."A‘V @ n,.A q
A = 0 Xo Xo+X; Xot+...+Xp Xp+...+X3 Xg+...+ X5 Xg+...+ X5 Xo+...+Xg

i=0 i=1 i=2 i=3 i=4 i=5 i=6 i=7

o . Total sum =
for even values of i: A’[i] = B'[i/2]
for odd values of i: A’[i] = B’[(i-1)/2]+A[i-1] Xot...tX7
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Parallel Prefix Sum

Input: array A of length n (assume n is a power of 2)

Output: array A’ and total sum
What is the depth?

D(n) = D(n/2)+0(1)

PrefixSum(A, n): D(1) = O(1)
if n == 1: return ([0], A[0O]) > D(n) = O(log n)
for i=0 to n/2-1 in parallel: T T S
B[i] = A[2i] + A[2i+1] W(n) = W(n/2)+0(n)
(B’, sum) = PrefixSum(B, n/2) w@) = 0(1)
for i=0 to n-1 in parallel: = W(n) = O(n)

if i mod 2) ==0: A’[i] =B’[i/2]
else: A’[i] = B’[(i-1)/2] + A[i-1]
return (A’, sum)

© 2018 Julian Shun

28



FILTER
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Filter

« Definition: Given a sequence A=[Xy, X;,..., X;_1]
and a Boolean array of flags B[b,, b,,..., b,_],
output an array A’ containing just the elements
Ali] where BJ[i] = true (maintaining relative

order)

« Example:

A= |2 4|3 |1|3 | B=|T|F | T|T]|F
Ab=1|2 | 3 |1

« Can you implement filter using prefix sum?

© 2018 Julian Shun 37



Allocate array of size 3
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A’

T T F
1 1 0
‘ Prefix sum

1

-

HEDER

Total sum = 3
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PARALLEL

BREADTH-FIRST SEARCH
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Frontier

o8

« Can process each frontier in parallel

o Parallelize over both the vertices and their
outgoing edges

« Races, load balancing
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Parallel BFS Code

frontierSize = 5

BFS(Offsets, Edges, source) {

parent, frontier, , and degrees are array| 2 4 3 1 3
parallel_for(int i=0; i<n; i++) parent[i] = -1; Prefix sum
frontier[0] = source, frontierSize = 1, parent[source] = source; ‘

while(frontierSize > 0) {
parallel_for(int i=0; i<frontierSize; i++) 0 2 6 9 10
degreesli] = Offsets[frontier[i]+1] - Offsets[frontier[i]l;
perform prefix sum on degrees array
parallel_for(int i=0; i<frontierSize; i++) {
v = frontier[i], index = degreesli], d = Offsets[v+1]-Offsets|[v];
for(int j=0; j<d; j++) {
ngh = Edges[Offsets[v]+jl;
if(parent[ngh] == -1 && compare-and-swap(&parent[ngh], -1, v)) {
[index+j] = ngh;
} else { [index+j] = -1; }

-1” from , store in fr, and frontie

)& size of frontiergqll done using prefiXxzggum A

1 (fr24tiere-| 24 | 9 | 15[ 89 | 25 (90 | 99 | 4 -in|1|tie‘rSize4: 8
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BFS Work-Depth Analysis

 Number of iterations <= diameter A of graph

- Each iteration takes O(log m) depth for
prefix sum and filter (assuming inner loop is
parallelized)

Depth = O(A log m)

« Sum of frontier sizes = n
- Each edge traversed once -> m total visits

« Work of prefix sum on each iteration is
proportional to frontier size -> O(n) total

« Work of filter on each iteration is proportional
to number of edges traversed -> O(m) total

Work = @(n+m)

© 2018 Julian Shun 37



Performance of Parallel BFS

- Random graph with n=107and m=108
e 10 edges per vertex
* 40-core machine with 2-way hyperthreading

9 40 - o 25 -
S E g & 20
® s ® —
T3 -
o 9 Q. 5 10
5 503
T T O
o | Q @ O
Qo ™ D wn
o o
7, w 0
0 102030405060 7080 0 102030405060 7080
Number of threads Number of threads

« 31.8x speedup on 40 cores with hyperthreading

« Sequential BFS is 54% faster than parallel BFS on
1 thread
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POINTER JUMPING AND

LIST RANKING
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« Have every node in linked list or rooted tree
point to the end (root)

(a) The input tree P = [4,1,6,4,1,6,3]. (b) The t (c) The final tree P =[1,1,1,1,1,1,1]. n
What is the work and depth?

© 2018 Julian Shun Source: “Parallel Algorithms” by Guy E. Blelloch and Bruce M. Maggs 40




List Ranking

« Have every node in linked list determine its

distance to the end

parallel-for i=0 to n-1:
if P[i] == i then VI[i] = 0 else VI[i] = 1

for j=0 to ceil(log n)-1:
parallel-for i=0 to n-1:

temp = V[PIi]]
//sync
V[i] = VI[i] + temp;
//sync
temp?2 = P[PIil];
//sync
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What is the work and depth? -

Sequential algorithm only requires O(n) work

© 2018 Julian Shun 43



ListRanking(list P)
1. If list has two or fewer nodes, then return //base case
2. Every node flips a fair coin
3. For each vertex u (except the last vertex), if u flipped Tails
and P[u] flipped Heads then u will be paired with P[u]
A. rank(u) = rank(u)+rank(P[u])
B. P[u] = P[P[ul]]
4. Recursively call ListRanking on smaller list
Insert contracted nodes v back into list with rank(v) =
rank(v) + rank(P[v])

T H T T H T
(2) (1 )—(2) O
© 2018 Julian Shun
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Work-Depth Analysis

Number of pairs per round is (n-1)/4 in
expectation

o For all nodes u except for the last node, probability
of u flipping Tails and P[u] flipping Heads is 1/4

o Linearity of expectations gives (n-1)/4 pairs overall
Each round takes linear work and O(1) depth
Expected work: W(n) < W(7n/8) + O(n)
Expected depth: D(n) < D(7n/8) + O(1)
W = O(n)
D = O(log n)

Can show depth with high probability with
Chernoff bound

© 2018 Julian Shun
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CONNECTED COMPONENTS

N
4
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Connected Components

- Given an undirected graph, label all vertices
such that L(u) = L(v) if and only if there is a

path between u and v
« BFS depth is proportional to diameter
o Works well for graphs with small diameter

« Today we will see a randomized algorithm that
takes O((n+m)log n) work and O(log n) depth

e Deterministic version in paper

o We will study a work-efficient parallel algorithm in a
couple of lectures
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Random Mate

« |dea: Form a set of non-overlapping star
subgraphs and contract them

- Each vertex flips a coin. For each Heads
vertex, pick an arbitrary Tails neighbor (if
there is one) and point to it

0 1 0 1

® o o 0 ® Tails
O Heads

2e—4o of ‘ S o®
S e ° o o 3 54 o’
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1

® Tails

O Heads Form stars
24 ‘e
3 ® 5c .7

‘ Contract

Repeat until each component
has a single vertex

Expand vertices back in reverse
order with label of neighbor

3 7
© 2018 Julian Shun Source: “Parallel Algorithms” by Guy E. Blelloch and Bruce M. Maggs 50



CC_Random_Mate(L, E)
if(|/E| = 0) Return L //base case

else
1.
2.

3.
4.
5

6

Flip coins for all vertices

For v where coin(v)=Heads, hook to arbitrary Tails neighbor
w and set L(v) = w

E’ = { (L(u),L(V)) | (u,v) € E and L(u) #= L(v) }

L’ = CC_Random_Mate(L, E’)

For v where coin(v)=Heads, set L’(v) = L’(w) where w is the

Tails neighbor that v hooked to in Step 2

Return L’

- Each iteration requires O(m+n) work and O(1)
depth

Assumes we do not pack vertices and edges

« Each iteration eliminates 1/4 of the vertices in
expectation

W =

O((m+n)log n) expected D = O(logn) w.h.p.
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(Minimum) Spanning Forest

« Spanning Forest: Keep track of edges used
for hooking

e Edges will only hook two components that are not
yet connected

 Minimum Spanning Forest:

o For each “Heads” vertex v, instead of picking an
arbitrary neighbor to hook to, pick neighbor w

where (v, w) is the minimum weight edge incident
tov

o Can find this edge using priority concurrent write

© 2018 Julian Shun 52



Form stars with 14

min-weight edge , 15

‘ Contract

‘ -
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PARALLEL BELLMAN-FORD

A
(B
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 What is the work and depth assuming
writeMin has unit cost?

« Work = O(mn)
* Depth = O(n)
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QUICKSORT
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Parallel Quicksort

{

static void quicksort(int64 t *left, int64 t *right)

int64 t *p;

ik Vet =—1Figh t YRt URN;

p = partition(left; right);
cilk _spawn quicksort(left, p);
quicksort(p + 1, right);

cilk sync;

v

Partition picks random pivot p and splits
elements into left and right subarrays

Partition can be implemented using prefix
sum in linear work and logarithmic depth

Overall work is O(n log n)
What is the depth?

© 2018 Julian Shun  Slide adapted from 6.172 (Charles Leiserson and Saman Amarasinghe
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Parallel Quicksort Depth

Keys in order

n/4 keys

« Pivot is chosen uniformly at random

n/2 keys

n/4 keys

« 1/2 chance that pivot falls in middle range, in
which case sub-problem size is at most 3n/4

« Expected depth:
e D(n) <(1/2) D(3n/4) + O(log n)
= O(log?n)

« Can get high probability bound with Chernoff

bound
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RADIX SORT
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« Consider 1-bit digits
Radix_sort(A, b) //b is the number of bits of A
For i from O to b-1: //sort by i’th most significant bit
Flags ={(@>>i)mod 2 |a € A}
NotFlags = {!(a >> i) mod 2 | a € A}
(sumg, Ry) = prefixSum(NotFlags)
(sum,, R,) = prefixSum(Flags)
Parallel-for j = O to |A|-1:
if(Flags[jl = 0): A’[Ry[j1] = Alj]
else: A’[R;[j]+sum,] = A[j]
A=A

A=/1 265 43

Flags=/1/0/0 1 0 1 R, = 0 1
NotFlags=/0 |1 1 /0 10 Rog = 0 O
sumg = 3

AN=2,6 41|53

 Each iteration is stable

© 2018 Julian Shun
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Work-Depth Analysis

Radix_sort(A, b) //b is the number of bits of A
For i from O to b-1:

Flags={(@>>i)mod 2 |ac A}
NotFlags = {!(a >> i) mod 2 | a € A}
(sumgy, Ry) = prefixSum(NotFlags)
(sum,, R,) = prefixSum(Flags)
Parallel-for j = 0 to |A|-1:

if(Flags[j] = 0): A’[R[jl] = Al

else: A’[R;[j]+sum,] = A[j]
A=A

- Each iteration requires O(n) work and O(log n)
depth

* Overall work = O(bn)

« Overall depth = O(b log n)

« For larger radixes, see Ch. 6 of "Thinking in Parallel:
Some Basic Data-Parallel Algorithms and Techniques”
by Uzi Vishkin
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REMOVING DUPLICATES
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Removing Duplicates with Hashing

« Given an array A of n elements, output the
elements in A excluding duplicates

Construct a table T of size m, where m is the next prime after 2n
i=0
While (JA] > 0)

1. Parallel-for each element jin A try to insert j into T at
location (hash(Aljl,i) mod m) //if the location was empty at
the beginning of round i, and there are concurrent writes
then an arbitrary one succeeds

2. Filter out elements j in A such that
T[(hash(A[j],i) mod m)] = A[j]

3. i=i+1

« Use a new hash function on each round
« Claim: Every round, the number of elements

decreases by a factor of 2 in expectation
W = O(n) expected D = O(log4n) w.h.p.

© 2018 Julian Shun 63



« “Introduction to Parallel Algorithms” by
Joseph JaJa

« Ch. 27 of “Introduction to Algorithms, 3rd
Edition” by Cormen, Leiserson, Rivest, and
Stein

« “Thinking in Parallel: Some Basic Data-Parallel
Algorithms and Techniques” by Uzi Vishkin
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