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LECTURE 2
PARALLEL ALGORITHMS

Julian Shun
February 9, 2018
Lecture material taken from “Parallel Algorithms” 
by Guy E. Blelloch and Bruce M. Maggs and 6.172 
by Charles Leiserson and Saman Amarasinghe
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Multicore Processors

Intel Haswell-E

Q Why do semicon-
ductor vendors 
provide chips with 
multiple processor 
cores?

A Because of Moore’s 
Law and the end of 
the scaling of clock 
frequency.

Slide adapted from 6.172 (Charles Leiserson and Saman Amarasinghe)
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Technology Scaling

0

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

1970 1980 1990 2000 2010

u Transistors x 1000
■ Clock frequency (MHz)

Transistor 
count is still 

rising, …

but clock speed 
is bounded at 

~4GHz.

Slide adapted from 6.172 (Charles Leiserson and Saman Amarasinghe)
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Power Density

Source: Patrick Gelsinger, Intel Developer’s Forum, Intel Corporation, 2004.

Projected power density, if clock frequency had 
continued its trend of scaling 25%-30% per year.

Slide adapted from 6.172 (Charles Leiserson and Saman Amarasinghe)



© 2018 Julian Shun 5

Technology Scaling
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potentially doubles
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Slide adapted from 6.172 (Charles Leiserson and Saman Amarasinghe)
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Parallel Languages
• Pthreads
• Intel TBB
• OpenMP, Cilk
• MPI
• CUDA, OpenCL

• Today: Shared-memory parallelism
∙ OpenMP and Cilk are extensions of C/C++ that 

supports parallel for-loops, parallel recursive calls, 
etc.

∙ Do not need to worry about assigning tasks to 
processors as these languages have a runtime 
scheduler

∙ Cilk has a provably efficient runtime scheduler



© 2018 Julian Shun 7

PARALLELISM MODELS
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Random-access machine (RAM)
• Arithmetic operations, logical operations and 

memory accesses take O(1) time
• Most sequential algorithms are designed 

using this model
∙ Saw this in 6.046
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Basic multiprocessor models

Local memory machine

Modular memory 
machine

Parallel random-access
Machine (PRAM)

Source: “Parallel Algorithms” by Guy E. Blelloch and Bruce M. Maggs
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Network topology

2-level multistage network Fat tree

Hypercube

Bus

Mesh

Source: “Parallel Algorithms” by Guy E. Blelloch and Bruce M. Maggs
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Network topology
• Algorithms for specific topologies can be 

complicated
∙ May not perform well on other networks

• Alternative: use a model that summarizes 
latency and bandwidth of network
∙ Postal model
∙ Bulk-Synchronous Parallel (BSP) model
∙ LogP model



© 2018 Julian Shun 12

PRAM Model
• All processors can perform same local 

instructions as in the RAM model
• All processors operate in lock-step
• Implicit synchronization between steps
• Models for concurrent access
∙ Exclusive-read exclusive-write (EREW)
∙ Concurrent-read concurrent-write (CRCW)

■ How to resolve concurrent writes: arbitrary value, value from 
lowest-ID processor, logical OR of values

∙ Concurrent-read exclusive-write (CREW)
∙ Queue-read queue-write (QRQW)

■ Allows concurrent access in time proportional to the 
maximal number of concurrent accesses
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• Work = number of vertices in graph 
(number of operations)

• Depth (span) = longest directed 
path in graph (dependence length)

• Parallelism = Work / Depth
• A work-efficient parallel algorithm 

has work that asymptotically 
matches the best sequential 
algorithm for the problem

Computation graph

Goal: work-efficient and low 
(polylogarithmic) depth parallel 
algorithms

• Similar to PRAM but does not require lock-step or 
processor allocation

Work-depth model
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Work-depth model
• Spawning/forking tasks
∙ Model can support either binary forking or arbitrary 

forking

∙ Cilk uses binary forking, as seen in 6.172
∙ Converting between the two changes work by at 

most a constant factor and depth by at most a 
logarithmic factor
■ Keep this in mind when reading textbooks/papers on 

parallel algorithms
∙ We will assume arbitrary forking unless specified

Binary forking Arbitrary forking
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Work-depth model
• State what operations are supported
∙ Concurrent reads/writes?
∙ Resolving concurrent writes
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Scheduling
• For a computation with work W and depth D, 

on P processors a greedy scheduler achieves

• Work-efficiency is important since P and D are 
usually small

Running time ≤ W/P + D
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Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition. A task is ready if all its 
predecessors have executed.

Slide adapted from 6.172 (Charles Leiserson and Saman Amarasinghe)
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Greedy Scheduling

Complete step
● ≥ P tasks ready.
● Run any P.

P = 3
Definition. A task is ready if all its 
predecessors have executed.

IDEA: Do as much as possible on every step.

Slide adapted from 6.172 (Charles Leiserson and Saman Amarasinghe)
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Greedy Scheduling

Complete step
● ≥ P tasks ready.
● Run any P.

P = 3

Incomplete step
● < P tasks ready.
● Run all of them.

Definition. A task is ready if all its 
predecessors have executed.

IDEA: Do as much as possible on every step.

Slide adapted from 6.172 (Charles Leiserson and Saman Amarasinghe)
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Theorem [G68, B75, EZL89]. Any greedy scheduler 
achieves

Running Time ≤ W/P + D.

Analysis of Greedy

Proof.
∙ # complete steps ≤ W/P, 

since each complete step 
performs P work.

∙ # incomplete steps ≤ D, 
since each incomplete step 
reduces the span of the 
unexecuted dag by 1.  ■

Slide adapted from 6.172 (Charles Leiserson and Saman Amarasinghe)
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Cilk Scheduling
• For a computation with work W and depth D, 

on P processors Cilk’s work-stealing 
scheduler achieves

Expected running time ≤ W/P + O(D)
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PARALLEL SUM
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Parallel Sum
• Definition: Given a sequence A=[x0, x1,…, xn-1], 

return x0+x1+…+xn-2+xn-1

Sum(A, n): //assume n is a power of 2
if n == 1: return A[0]
for i=0 to n/2-1 in parallel:

B[i] = A[2i] + A[2i+1]
return Sum(B, n/2)

What is the depth?
D(n) = D(n/2)+O(1)
D(1) = O(1)
à D(n) = O(log n)

What is the work?
W(n) = W(n/2)+O(n)
W(1) = O(1)
à W(n) = O(n)



© 2018 Julian Shun 24

PREFIX SUM



© 2018 Julian Shun 25

Prefix Sum
• Definition: Given a sequence A=[x0, x1,…, xn-1], 

return a sequence where each location stores 
the sum of everything before it in A, 
[0, x0, x0+x1,…, x0+x1+…+xn-2], as well as the 
total sum x0+x1+…+xn-2+xn-1

• Example:

• Can be generalized to any associative binary 
operator (e.g., ×, min, max)

2 4 3 1 3

0 2 6 9 10 Total sum = 13
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Sequential Prefix Sum
Input: array A of length n
Output: array A’ and total sum

cumulativeSum = 0;
for i=0 to n-1:

A’[i] = cumulativeSum;
cumulativeSum += A[i];

return A’ and cumulativeSum
• What is the work of this algorithm? 
∙ O(n)

• Can we execute iterations in parallel?
∙ Loop carried dependence: value of cumulativeSum

depends on previous iterations
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Parallel Prefix Sum
x0 x1 x2 x3 x4 x5 x6 x7

x0+x1 x2+x3 x4+x5 x6+x7

x0+…+x7

Total sum =

x00 x0+x1 x0+…+x2 x0+…+x3 x0+…+x4 x0+…+x5 x0+…+x6A’ =

A =

B =

B’ = x0+x1 x0+…+x3 x0+…+x50

x0+…+x7

Total sum =

Recursively compute 
prefix sum on B

i=0 i=1 i=2 i=3 i=4 i=5 i=6 i=7

for even values of i: A’[i] = B’[i/2]

for odd values of i: A’[i] = B’[(i-1)/2]+A[i-1]
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Parallel Prefix Sum
Input: array A of length n (assume n is a power of 2)
Output: array A’ and total sum

PrefixSum(A, n):
if n == 1: return ([0], A[0])
for i=0 to n/2-1 in parallel:

B[i] = A[2i] + A[2i+1]
(B’, sum) = PrefixSum(B, n/2)
for i=0 to n-1 in parallel:

if (i mod 2) == 0: A’[i] = B’[i/2]
else: A’[i] = B’[(i-1)/2] + A[i-1]

return (A’, sum)

What is the depth?
D(n) = D(n/2)+O(1)
D(1) = O(1)
à D(n) = O(log n)

What is the work?
W(n) = W(n/2)+O(n)
W(1) = O(1)
à W(n) = O(n)
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FILTER
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Filter
• Definition: Given a sequence A=[x0, x1,…, xn-1] 

and a Boolean array of flags B[b0, b1,…, bn-1], 
output an array A’ containing just the elements 
A[i] where B[i] = true (maintaining relative 
order)

• Example:

• Can you implement filter using prefix sum?

2 4 3 1 3

2 3 1

T F T T FA = B =

A’ =
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Filter Implementation
2 4 3 1 3 T F T T FA = B =

A’ =

1 0 1 1 0

Prefix sum

0 1 1 2 3B’ =

Total sum = 3

Allocate array of size 3

//Assume B’[n] = total sum
parallel-for i=0 to n-1:

if(B’[i] != B’[i+1]): 
A’[B’[i]] = A[i];

2 3 1
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PARALLEL
BREADTH-FIRST SEARCH
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Parallel BFS Algorithm

s0

1

1

2

2

2

2

1

Frontier

• Can process each frontier in parallel
∙ Parallelize over both the vertices and their 

outgoing edges
• Races, load balancing
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Parallel BFS Code
BFS(Offsets, Edges, source) {

parent, frontier, frontierNext, and degrees are arrays
parallel_for(int i=0; i<n; i++) parent[i] = -1;
frontier[0] = source, frontierSize = 1, parent[source] = source;

while(frontierSize > 0) {
parallel_for(int i=0; i<frontierSize; i++) 

degrees[i] = Offsets[frontier[i]+1] – Offsets[frontier[i]];
perform prefix sum on degrees array 
parallel_for(int i=0; i<frontierSize; i++) {

v = frontier[i], index = degrees[i], d = Offsets[v+1]-Offsets[v];
for(int j=0; j<d; j++) { //can be parallel

ngh = Edges[Offsets[v]+j];
if(parent[ngh] == -1 && compare-and-swap(&parent[ngh], -1, v)) {

frontierNext[index+j] = ngh;
} else { frontierNext[index+j] = -1; }

}
}
filter out “-1” from frontierNext, store in frontier, and update frontierSize to be 

the size of frontier (all done using prefix sum)
}

}

2 4 3 1 3
frontierSize = 5

0 2 6 9 10

Prefix sum

v5v2 v3 v4v1

24 9 -1 15 89 -1 -1 25 90 99 -1 -1 424 9 15 89 25 90 99 4 frontierSize = 8frontier = 
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BFS Work-Depth Analysis
• Number of iterations <= diameter ! of graph
• Each iteration takes O(log m) depth for 

prefix sum and filter (assuming inner loop is 
parallelized)

• Sum of frontier sizes = n
• Each edge traversed once -> m total visits
• Work of prefix sum on each iteration is 

proportional to frontier size -> Θ(n) total
• Work of filter on each iteration is proportional 

to number of edges traversed -> Θ(m) total
Work = Θ(n+m)

Depth = O(! log m)
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Performance of Parallel BFS

• 31.8x speedup on 40 cores with hyperthreading
• Sequential BFS is 54% faster than parallel BFS on 

1 thread

• Random graph with n=107 and m=108

∙ 10 edges per vertex
• 40-core machine with 2-way hyperthreading
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POINTER JUMPING AND
LIST RANKING
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Pointer Jumping
• Have every node in linked list or rooted tree 

point to the end (root)

for j=0 to ceil(log n)-1:
parallel-for i=0 to n-1:

P[i] = P[P[i]];

What is the work and depth?
W = O(n log n)
D = O(log n)

Source: “Parallel Algorithms” by Guy E. Blelloch and Bruce M. Maggs
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List Ranking
• Have every node in linked list determine its 

distance to the end
parallel-for i=0 to n-1:

if P[i] == i then V[i] = 0 else V[i] = 1

for j=0 to ceil(log n)-1:
parallel-for i=0 to n-1:

temp = V[P[i]]
//sync
V[i] = V[i] + temp;
//sync
temp2 = P[P[i]];
//sync
P[i] = temp2;

1 1 1 1 1 02 2 2 2 1 04 4 3 2 1 05 4 3 2 1 0
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Work-Depth Analysis
parallel-for i=0 to n-1:

if P[i] == i then V[i] = 0 else V[i] = 1

for j=0 to ceil(log n)-1:
temp, temp2;
parallel-for i=0 to n-1:

temp = V[P[i]];
temp2 = P[P[i]];

parallel-for i=0 to n-1:
V[i] = V[i] + temp;
P[i] = temp2;

What is the work and depth? W = O(n log n)
D = O(log n)

Sequential algorithm only requires O(n) work
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Work-Efficient List Ranking
ListRanking(list P)

1. If list has two or fewer nodes, then return //base case
2. Every node flips a fair coin
3. For each vertex u (except the last vertex), if u flipped Tails 

and P[u] flipped Heads then u will be paired with P[u]
A. rank(u) = rank(u)+rank(P[u])
B. P[u] = P[P[u]]

4. Recursively call ListRanking on smaller list
5. Insert contracted nodes v back into list with rank(v) = 

rank(v) + rank(P[v])

1 1 1 1 01

T H T T H T

2 1 2 0
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Work-Efficient List Ranking

1 1 1 1 01

T H T T H T

2 1 2 0

Apply recursively

5 3 2 0

Contract

Expand

5 3 2 1 04
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Work-Depth Analysis

W = O(n)
D = O(log n)

• Number of pairs per round is (n-1)/4 in 
expectation
∙ For all nodes u except for the last node, probability 

of u flipping Tails and P[u] flipping Heads is 1/4
∙ Linearity of expectations gives (n-1)/4 pairs overall

• Each round takes linear work and O(1) depth
• Expected work: W(n) ≤ W(7n/8) + O(n) 
• Expected depth: D(n) ≤ D(7n/8) + O(1)

• Can show depth with high probability with 
Chernoff bound
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CONNECTED COMPONENTS
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Connected Components
• Given an undirected graph, label all vertices 

such that L(u) = L(v) if and only if there is a 
path between u and v

• BFS depth is proportional to diameter
∙ Works well for graphs with small diameter

• Today we will see a randomized algorithm that 
takes O((n+m)log n) work and O(log n) depth
∙ Deterministic version in paper
∙ We will study a work-efficient parallel algorithm in a 

couple of lectures
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Random Mate
• Idea: Form a set of non-overlapping star 

subgraphs and contract them
• Each vertex flips a coin. For each Heads 

vertex, pick an arbitrary Tails neighbor (if 
there is one) and point to it

Tails

Heads

Source: “Parallel Algorithms” by Guy E. Blelloch and Bruce M. Maggs
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Random Mate

Tails

Heads Form stars

Contract

Repeat until each component
has a single vertex

Expand vertices back in reverse 
order with label of neighbor

Source: “Parallel Algorithms” by Guy E. Blelloch and Bruce M. Maggs



© 2018 Julian Shun 51

Random Mate Algorithm
CC_Random_Mate(L, E)

if(|E| = 0) Return L //base case
else

1. Flip coins for all vertices
2. For v where coin(v)=Heads, hook to arbitrary Tails neighbor 

w and set L(v) = w
3. E’ = { (L(u),L(v)) | (u,v) ∈ E and L(u) ≠ L(v) }
4. L’ = CC_Random_Mate(L, E’)
5. For v where coin(v)=Heads, set L’(v) = L’(w) where w is the 

Tails neighbor that v hooked to in Step 2
6. Return L’

• Each iteration requires O(m+n) work and O(1) 
depth
∙ Assumes we do not pack vertices and edges

• Each iteration eliminates 1/4 of the vertices in 
expectation
W = O((m+n)log n) expected D = O(log n) w.h.p.
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(Minimum) Spanning Forest
• Spanning Forest: Keep track of edges used 

for hooking
∙ Edges will only hook two components that are not 

yet connected
• Minimum Spanning Forest: 
∙ For each “Heads” vertex v, instead of picking an 

arbitrary neighbor to hook to, pick neighbor w 
where (v, w) is the minimum weight edge incident 
to v

∙ Can find this edge using priority concurrent write



© 2018 Julian Shun 53

Minimum Spanning Forest

Form stars with
min-weight edge

Contract

Repeat

Source: “Parallel Algorithms” by Guy E. Blelloch and Bruce M. Maggs
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PARALLEL BELLMAN-FORD
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Bellman-Ford Algorithm
Bellman-Ford(G, source):

ShortestPaths = {∞, ∞, …, ∞} //size n; stores shortest path distances
ShortestPaths[source] = 0
for i=1 to n:

for each vertex v in G:
for each w in neighbors(v):

if(ShortestPaths[v] + weight(v,w) < ShortestPaths[w]):
ShortestPaths[w] = ShortestPaths[v] + weight(v,w)

if no shortest paths changed:
return ShortestPaths

report “negative cycle”

parallel
parallel

concurrent write

writeMin(&ShortestPaths[w], ShortestPaths[v] + weight(v,w))

• What is the work and depth assuming 
writeMin has unit cost?

• Work = O(mn)
• Depth = O(n)
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QUICKSORT
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static void quicksort(int64_t *left, int64_t *right)
{
int64_t *p;
if (left == right) return;
p = partition(left, right);
cilk_spawn quicksort(left, p);
quicksort(p + 1, right);
cilk_sync;

}

Parallel Quicksort

• Partition picks random pivot p and splits 
elements into left and right subarrays

• Partition can be implemented using prefix 
sum in linear work and logarithmic depth

• Overall work is O(n log n)
• What is the depth?

Slide adapted from 6.172 (Charles Leiserson and Saman Amarasinghe
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Parallel Quicksort Depth

• Pivot is chosen uniformly at random
• 1/2 chance that pivot falls in middle range, in 

which case sub-problem size is at most 3n/4
• Expected depth: 
∙ D(n) ≤ (1/2) D(3n/4) + O(log n)

= O(log2n)
• Can get high probability bound with Chernoff

bound

n/2 keys n/4 keysn/4 keys

Keys in order
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RADIX SORT
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Radix Sort
• Consider 1-bit digits

Radix_sort(A, b) //b is the number of bits of A
For i from 0 to b-1: //sort by i’th most significant bit

Flags = { (a >> i) mod 2 | a ∈ A } 
NotFlags = { !(a >> i) mod 2 | a ∈ A}
(sum0, R0) = prefixSum(NotFlags)
(sum1, R1) = prefixSum(Flags)
Parallel-for j = 0 to |A|-1:

if(Flags[j] = 0): A’[R0[j]] = A[j]
else: A’[R1[j]+sum0] = A[j]

A = A’

1 2 6 5 4 3A =

1 0 0 1 0 1Flags =

0 1 1 0 1 0NotFlags =

0 1 1 1 2 2R1 =

0 0 1 2 2 3R0 =

sum0 = 32 6 4 1 5 3A’ =

• Each iteration is stable
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Work-Depth Analysis
Radix_sort(A, b) //b is the number of bits of A

For i from 0 to b-1:
Flags = { (a >> i) mod 2 | a ∈ A } 
NotFlags = { !(a >> i) mod 2 | a ∈ A}
(sum0, R0) = prefixSum(NotFlags)
(sum1, R1) = prefixSum(Flags)
Parallel-for j = 0 to |A|-1:

if(Flags[j] = 0): A’[R0[j]] = A[j]
else: A’[R1[j]+sum0] = A[j]

A = A’

• Each iteration requires O(n) work and O(log n) 
depth

• Overall work = O(bn)
• Overall depth = O(b log n)
• For larger radixes, see Ch. 6 of "Thinking in Parallel: 

Some Basic Data-Parallel Algorithms and Techniques” 
by Uzi Vishkin
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REMOVING DUPLICATES
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Removing Duplicates with Hashing
• Given an array A of n elements, output the 

elements in A excluding duplicates
Construct a table T of size m, where m is the next prime after 2n
i = 0
While (|A| > 0)

1. Parallel-for each element j in A try to insert j into T at 
location (hash(A[j],i) mod m) //if the location was empty at 
the beginning of round i, and there are concurrent writes 
then an arbitrary one succeeds

2. Filter out elements j in A such that 
T[(hash(A[j],i) mod m)] = A[j]

3. i = i+1

• Use a new hash function on each round
• Claim: Every round, the number of elements 

decreases by a factor of 2 in expectation
W = O(n) expected D = O(log2n) w.h.p.
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Parallel Algorithms Resources
• “Introduction to Parallel Algorithms” by 

Joseph JaJa
• Ch. 27 of “Introduction to Algorithms, 3rd

Edition” by Cormen, Leiserson, Rivest, and 
Stein

• “Thinking in Parallel: Some Basic Data-Parallel 
Algorithms and Techniques” by Uzi Vishkin


