
Julienne: A Framework for Parallel Graph Algorithms 
using Work-efficient Bucketing

Laxman Dhulipala
Joint work with Guy Blelloch and Julian Shun

SPAA 2017



Giant graph datasets

Graph |V| |E| (symmetrized)

com-Orkut 3M 234M

Twitter 41M 1.46B

Friendster 124M 3.61B

Hyperlink2012-Host 101M 2.04B

Facebook (2011) 721M 68.4B

Hyperlink2014 1.7B 124B

Hyperlink2012 3.5B 225B

Facebook (2017) > 2B > 300B

Google (2017) ? ?

: Publicly available graphs used in our experiments

: Private graph datasets



Traditional approaches
One possible way to solve large graph problems:

• Hand-write MPI/OpenMP/Cilk codes 
• Run a powerful machine or a large cluster



Traditional approaches
One possible way to solve large graph problems:

• Hand-write MPI/OpenMP/Cilk codes 
• Run a powerful machine or a large cluster

Benefits
• Good performance 
• Can hand-code custom optimizations



Traditional approaches
One possible way to solve large graph problems:

• Hand-write MPI/OpenMP/Cilk codes 
• Run a powerful machine or a large cluster

Benefits
• Good performance 
• Can hand-code custom optimizations

Downsides
• Usually require a lot of code 
• Need lots of expertise to write and understand codes 
• Not everyone has a supercomputer



Graph processing frameworks

High level goals
• Simple set of primitives (interface) 
• Implementations easy to write and understand 
• Algorithms can handle very large graphs



Graph processing frameworks

High level goals
• Simple set of primitives (interface) 
• Implementations easy to write and understand 
• Algorithms can handle very large graphs

Ex: Pregel, GraphLab, Ligra, GraphX, GraphChi…



Graph processing frameworks

High level goals
• Simple set of primitives (interface) 
• Implementations easy to write and understand 
• Algorithms can handle very large graphs

Additional goals:
• Primitives have theoretical guarantees 
• Support common optimizations “under the hood” 
• Implementations competitive with non-framework codes

Ex: Pregel, GraphLab, Ligra, GraphX, GraphChi…



Graph processing frameworks

High level goals
• Simple set of primitives (interface) 
• Implementations easy to write and understand 
• Algorithms can handle very large graphs

Additional goals:
• Primitives have theoretical guarantees 
• Support common optimizations “under the hood” 
• Implementations competitive with non-framework codes

Ex: Pregel, GraphLab, Ligra, GraphX, GraphChi…

Our goals:
• All of the above on a single affordable shared memory machine



An “affordable” machine



An “affordable” machine

Dell PowerEdge R930

• 72-cores (4 x 2.4GHz 18-core E7-8867 v4 Xeon processors)
• 1TB of main memory
• Costs less than a mid-range BMW



An “affordable” machine

Dell PowerEdge R930

• 72-cores (4 x 2.4GHz 18-core E7-8867 v4 Xeon processors)
• 1TB of main memory
• Costs less than a mid-range BMW



Ligra

[1] Shun and Blelloch, 2013, Ligra: A Lightweight Graph Processing Framework for Shared Memory 

Shared memory graph processing framework [1]

[2] Shun, Dhulipala and Blelloch, 2013, Smaller and Faster: Parallel Processing of Compressed 
Graphs with Ligra+  

https://people.eecs.berkeley.edu/~jshun/ligra.pdf
https://people.eecs.berkeley.edu/~jshun/ligra.pdf
https://people.eecs.berkeley.edu/~jshun/ligra.pdf


Benefits
• Designed to express frontier-based algorithms 
• Primitives and implementations have theoretical guarantees 
• Optimizations (direction-optimizing, compression [2]) 
• Implementations are simple to write and understand 

• Competitive with hand-tuned codes

Ligra

[1] Shun and Blelloch, 2013, Ligra: A Lightweight Graph Processing Framework for Shared Memory 

Shared memory graph processing framework [1]

[2] Shun, Dhulipala and Blelloch, 2013, Smaller and Faster: Parallel Processing of Compressed 
Graphs with Ligra+  

https://people.eecs.berkeley.edu/~jshun/ligra.pdf
https://people.eecs.berkeley.edu/~jshun/ligra.pdf
https://people.eecs.berkeley.edu/~jshun/ligra.pdf


Benefits
• Designed to express frontier-based algorithms 
• Primitives and implementations have theoretical guarantees 
• Optimizations (direction-optimizing, compression [2]) 
• Implementations are simple to write and understand 

• Competitive with hand-tuned codes

Downsides
• Some algorithms may not be efficiently implementable

Ligra

[1] Shun and Blelloch, 2013, Ligra: A Lightweight Graph Processing Framework for Shared Memory 

Shared memory graph processing framework [1]

[2] Shun, Dhulipala and Blelloch, 2013, Smaller and Faster: Parallel Processing of Compressed 
Graphs with Ligra+  

https://people.eecs.berkeley.edu/~jshun/ligra.pdf
https://people.eecs.berkeley.edu/~jshun/ligra.pdf
https://people.eecs.berkeley.edu/~jshun/ligra.pdf


Benefits
• Designed to express frontier-based algorithms 
• Primitives and implementations have theoretical guarantees 
• Optimizations (direction-optimizing, compression [2]) 
• Implementations are simple to write and understand 

• Competitive with hand-tuned codes

Downsides
• Some algorithms may not be efficiently implementable

Ligra

This work: Made Ligra codes run on the largest publicly 
available graphs on a single machine

[1] Shun and Blelloch, 2013, Ligra: A Lightweight Graph Processing Framework for Shared Memory 

Shared memory graph processing framework [1]

[2] Shun, Dhulipala and Blelloch, 2013, Smaller and Faster: Parallel Processing of Compressed 
Graphs with Ligra+  

https://people.eecs.berkeley.edu/~jshun/ligra.pdf
https://people.eecs.berkeley.edu/~jshun/ligra.pdf
https://people.eecs.berkeley.edu/~jshun/ligra.pdf


Primitives
• Frontier data-structure (vertexSubset) 
• Map over vertices in a frontier 
• Map over out-edges of a frontier

Ligra: Frontier-based algorithms



Primitives
• Frontier data-structure (vertexSubset) 
• Map over vertices in a frontier 
• Map over out-edges of a frontier

Ligra: Frontier-based algorithms

Example: Breadth-First Search



Primitives
• Frontier data-structure (vertexSubset) 
• Map over vertices in a frontier 
• Map over out-edges of a frontier

Ligra: Frontier-based algorithms

Example: Breadth-First Search

Round 1

: in frontier : unvisited : visited



Primitives
• Frontier data-structure (vertexSubset) 
• Map over vertices in a frontier 
• Map over out-edges of a frontier

Ligra: Frontier-based algorithms

Example: Breadth-First Search

Round 1 Round 2

: in frontier : unvisited : visited



Primitives
• Frontier data-structure (vertexSubset) 
• Map over vertices in a frontier 
• Map over out-edges of a frontier

Ligra: Frontier-based algorithms

Example: Breadth-First Search

Round 1 Round 2

: in frontier : unvisited : visited

Round 3



Primitives
• Frontier data-structure (vertexSubset) 
• Map over vertices in a frontier 
• Map over out-edges of a frontier

Ligra: Frontier-based algorithms

Example: Breadth-First Search

Round 1 Round 2 Round 4

: in frontier : unvisited : visited

Round 3



Primitives
• Frontier data-structure (vertexSubset) 
• Map over vertices in a frontier 
• Map over out-edges of a frontier

Ligra: Frontier-based algorithms

Example: Breadth-First Search

Round 1 Round 2 Round 4

: in frontier : unvisited : visited

Round 3

Some useful graph algorithms cannot be efficiently 
implemented in frontier-based frameworks



Example: Weighted Breadth-First Search

Problem: Compute the shortest path distances from s
Given:                       with positive integer edge weights, G = (V, E, w) s � V

s
1

4

2

5

6

3

7

1 1

2
3

2

1

1

3 1



Example: Weighted Breadth-First Search

Problem: Compute the shortest path distances from s
Given:                       with positive integer edge weights, G = (V, E, w) s � V

s
1

4

2

5

6

3

7

1 1

2
3

2

1

1

3 1

Frontier-based: On each step, visit all neighbors that had 
their distance decrease 



Example: Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2
3

2

1

1

3 1

Round 1 

sFrontier:



Example: Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2
3

2

1

1

3 1

Round 1 

sFrontier:



Example: Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2
3

2

1

1

3 1

Round 2 

1Frontier: 4



Example: Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2
3

2

1

1

3 1

Round 2 

1Frontier: 4



Example: Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2
3

2

1

1

3 1

Round 3 

2Frontier: 4 5 6



Example: Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2
3

2

1

1

3 1

Round 3 

2Frontier: 4 5 6



Example: Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2
3

2

1

1

3 1

Round 3 

2Frontier: 4 5 6Not work-efficient!



Sequential Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2
3

2

1

1

3 1

Idea:
• Run Dijkstra’s algorithm, but use buckets instead of a PQ 
• Represent buckets using dynamic arrays 
• Simple, efficient implementation running in                     work O(D + |E|)



Sequential Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2
3

2

1

1

3 1

Round 1 2 7 3

5

6s

0 1 2 3 4 5



Sequential Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2
3

2

1

1

3 1

Round 1 2 7 3

5

6s

0 1 2 3 4 5



Sequential Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2
3

2

1

1

3 1

Round 1 2 7 3

5

6s 1

0 1 2 3 4 5

4



Sequential Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2
3

2

1

1

3 1

Round 1 2 7 3

5

61

0 1 2 3 4 5

4



Sequential Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2
3

2

1

1

3 1

Round 2 2 7 3

5

61

0 1 2 3 4 5

4



Sequential Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2
3

2

1

1

3 1

Round 2 2 7 3

5

61

0 1 2 3 4 5

4



Sequential Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2
3

2

1

1

3 1

Round 2 2 7 3

5

61

0 1 2 3 4 5

4

2



Sequential Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2
3

2

1

1

3 1

Round 2 7 36

0 1 2 3 4 5

4

2



Sequential Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2
3

2

1

1

3 1

Round 3 7 36

0 1 2 3 4 5

4

2



Sequential Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2
3

2

1

1

3 1

Round 3 7 36

0 1 2 3 4 5

4

2



Sequential Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2
3

2

1

1

3 1

Round 3 7 36

0 1 2 3 4 5

4

2                                 where D is the graph diameterO(D + |E|) work



Bucketing
The algorithm uses buckets to organize work for future iterations



Bucketing
The algorithm uses buckets to organize work for future iterations



Bucketing

This algorithms is actually parallelizable 
• In each step:

1. Process all vertices in the next bucket in parallel 
2. Update buckets of neighbors in parallel

The algorithm uses buckets to organize work for future iterations



Sequential Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2
3

2

1

1

3 1

Round 3 7 36

0 1 2 3 4 5

4

2

Sequential: 
process 

vertices one 
by one



Parallel Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2
3

2

1

1

3 1

Round 3 7 36

0 1 2 3 4 5

4

2
(1) Process 

vertices in the 
same bucket 

in parallel



Parallel Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2
3

2

1

1

3 1

Round 3 7 36

0 1 2 3 4 5

4

2
(2) Insert 

neighbors 
into buckets 

in parallel7 36

0 1 2 3 4 5

4

2

3

6

5



Parallel Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2
3

2

1

1

3 1

Round 3 7 36

0 1 2 3 4 5

4

2
(2) Insert 

neighbors 
into buckets 

in parallel7 36

0 1 2 3 4 5

4

2

3

6

5

work
depth

O(D + |E|)
O(D log |V |)

Resulting algorithm performs:

(assuming efficient bucketing)



Parallel bucketing

Bucketing is useful for more than just wBFS
• k-core (coreness) 
• Delta-Stepping 
• Parallel Approximate Set Cover



Parallel bucketing

Goals
• Simplify expressing algorithms using an interface 
• Theoretically efficient, reusable implementation

Bucketing is useful for more than just wBFS
• k-core (coreness) 
• Delta-Stepping 
• Parallel Approximate Set Cover



Parallel bucketing

1. Multiple vertices insert into the same bucket in parallel 
2. Possible to make work-efficient parallel implementations?

Difficulties

Goals
• Simplify expressing algorithms using an interface 
• Theoretically efficient, reusable implementation

Bucketing is useful for more than just wBFS
• k-core (coreness) 
• Delta-Stepping 
• Parallel Approximate Set Cover



Results: Julienne

Shared memory framework for bucketing-based algorithms



Results: Julienne

Shared memory framework for bucketing-based algorithms

Extend Ligra with an interface for bucketing
• Theoretical bounds for primitives 
• Fast implementations of primitives 



Results: Julienne

Shared memory framework for bucketing-based algorithms

Extend Ligra with an interface for bucketing
• Theoretical bounds for primitives 
• Fast implementations of primitives 

Can implement a bucketing algorithm with

expected work and 
O((K + L) log n) depth w.h.p.

• n vertices 
• T total buckets 
• U updates

over K Update calls, and L calls to NextBucket

O(n + T + U)



Results: Julienne

Shared memory framework for bucketing-based algorithms

Extend Ligra with an interface for bucketing
• Theoretical bounds for primitives 
• Fast implementations of primitives 

Can implement a bucketing algorithm with

expected work and 
O((K + L) log n) depth w.h.p.

• n vertices 
• T total buckets 
• U updates

over K Update calls, and L calls to NextBucket

O(n + T + U)Bucketing implementation is work-efficient



Work-efficient implementations of 4 bucketing-based algorithms:
• k-core (coreness) 
• Weighted Breadth-First Search 
• Delta-Stepping 
• Parallel Approximate Set Cover

Results: Julienne



Work-efficient implementations of 4 bucketing-based algorithms:
• k-core (coreness) 
• Weighted Breadth-First Search 
• Delta-Stepping 
• Parallel Approximate Set Cover

Codes are simple
• All implementations < 100 LoC

Results: Julienne



Work-efficient implementations of 4 bucketing-based algorithms:
• k-core (coreness) 
• Weighted Breadth-First Search 
• Delta-Stepping 
• Parallel Approximate Set Cover

Codes are simple
• All implementations < 100 LoC

Results: Julienne

Codes competitive with, or outperform existing implementations



Work-efficient implementations of 4 bucketing-based algorithms:
• k-core (coreness) 
• Weighted Breadth-First Search 
• Delta-Stepping 
• Parallel Approximate Set Cover

Codes are simple
• All implementations < 100 LoC

First work-efficient k-core algorithm with non-trivial parallelism

Results: Julienne

Codes competitive with, or outperform existing implementations



Work-efficient implementations of 4 bucketing-based algorithms:
• k-core (coreness) 
• Weighted Breadth-First Search 
• Delta-Stepping 
• Parallel Approximate Set Cover

Codes are simple
• All implementations < 100 LoC

First work-efficient k-core algorithm with non-trivial parallelism

Compute k-cores of largest publicly available graph (~200B edges) 
in ~3 minutes and approximate set-cover in ~2 minutes

Results: Julienne

Codes competitive with, or outperform existing implementations



Julienne: Interface

Ligra

Graph

vertexSubset

Julienne

Bucketing Interface



Julienne: Interface

Ligra

Graph

vertexSubset

Julienne

Bucketing Interface Bucketing Interface:

(1) Create bucket structure

(2) Get the next bucket (vertexSubset)

(3) Update buckets of a subset  
     of identifiers



Julienne: Interface

n : int

D : identifier � bucket id

O : bucket order

MakeBuckets : buckets

Initialize bucket structure



Julienne: Interface

n : int

D : identifier � bucket id

O : bucket order

MakeBuckets : buckets

Initialize bucket structure

D(1) = 0, D(2) = 1, D(3) = 4, . . .



Julienne: Interface

n : int

D : identifier � bucket id

O : bucket order

MakeBuckets : buckets

Initialize bucket structure

1

4 2 7 3

5

6

D(1) = 0, D(2) = 1, D(3) = 4, . . .



Julienne: Interface

NextBucket : bucket

1

4 2 7 3

5

6

Extract identifiers in the next non-empty bucket



Julienne: Interface

NextBucket : bucket

1

4 2 7 3

5

6

Extract identifiers in the next non-empty bucket

Order: increasing



Julienne: Interface

1

4 2 7 3

5

6

NextBucket : bucket

Extract identifiers in the next non-empty bucket

Order: increasing



Julienne: Interface

2 7 3

5

6

1

4 NextBucket : bucket

Extract identifiers in the next non-empty bucket

Order: increasing



Julienne: Interface

1

4 2 7 3

5

6

Update buckets for k identifiers

UpdateBuckets
k : int

F : int � (identifier, bucket dest)



Julienne: Interface

1

4 2 7 3

5

6

[(1,3), (7,2), (6,2)]

Update buckets for k identifiers

UpdateBuckets
k : int

F : int � (identifier, bucket dest)



Julienne: Interface

1

4 2 7 3

5

6

[(1,3), (7,2), (6,2)]

Update buckets for k identifiers

UpdateBuckets
k : int

F : int � (identifier, bucket dest)



Julienne: Interface

74 2

1

3

5

[(1,3), (7,2), (6,2)]

6

Update buckets for k identifiers

UpdateBuckets
k : int

F : int � (identifier, bucket dest)

1

7 6



Julienne: Interface

74 2 1 3

5

[(1,3), (7,2), (6,2)]

6

Update buckets for k identifiers

UpdateBuckets
k : int

F : int � (identifier, bucket dest)



Sequential Bucketing

Can implement sequential bucketing with:
• n identifiers 
• T total buckets 
• K calls to UpdateBuckets, where each updates the ids in

O(n + T +
K�

i=0

|Si|) work in 

Si



Sequential Bucketing

Can implement sequential bucketing with:
• n identifiers 
• T total buckets 
• K calls to UpdateBuckets, where each updates the ids in

O(n + T +
K�

i=0

|Si|) work in 

Si

Implementation:
• Use dynamic arrays
• Update lazily



Parallel Bucketing

Can implement parallel bucketing with:
• n identifiers 
• T total buckets 
• K calls to UpdateBuckets, where each updates the ids in 
• L calls to NextBucket

O(n + T +
K�

i=0

|Si|) expected work and in 

O((K + L) log n) depth w.h.p.

Si



Parallel Bucketing

Can implement parallel bucketing with:
• n identifiers 
• T total buckets 
• K calls to UpdateBuckets, where each updates the ids in 
• L calls to NextBucket

O(n + T +
K�

i=0

|Si|) expected work and in 

O((K + L) log n) depth w.h.p.

Si

Implementation:
• Use dynamic arrays
• MakeBuckets: call UpdateBuckets. NextBucket: parallel filter



Parallel Bucketing

UpdateBuckets:
• Use work-efficient semisort [Gu et al. 2015] 
• Given k (key, value) pairs, semisorts in          expected work        

and               depth w.h.p.
O(k)

O(log k)



Parallel Bucketing

UpdateBuckets:
• Use work-efficient semisort [Gu et al. 2015] 
• Given k (key, value) pairs, semisorts in          expected work        

and               depth w.h.p.

[(3,9), (4,7), …, (2,1), (1,1)]

O(k)

O(log k)



Parallel Bucketing

UpdateBuckets:
• Use work-efficient semisort [Gu et al. 2015] 
• Given k (key, value) pairs, semisorts in          expected work        

and               depth w.h.p.

[(3,9), (4,7), …, (2,1), (1,1)]

[(2,1), (1,1), (7,1), …, (4,7), (6,7), …, (3,9)] 

All ids going to bucket 1

O(k)

O(log k)



Parallel Bucketing

UpdateBuckets:
• Use work-efficient semisort [Gu et al. 2015] 
• Given k (key, value) pairs, semisorts in          expected work        

and               depth w.h.p.

[(3,9), (4,7), …, (2,1), (1,1)]

[(2,1), (1,1), (7,1), …, (4,7), (6,7), …, (3,9)] 

All ids going to bucket 1

O(k)

O(log k)

• Prefix sum to compute #ids going to each bucket
• Resize buckets and inject all ids in parallel



Parallel Bucketing

UpdateBuckets:
• Use work-efficient semisort [Gu et al. 2015] 
• Given k (key, value) pairs, semisorts in          expected work        

and               depth w.h.p.

[(3,9), (4,7), …, (2,1), (1,1)]

[(2,1), (1,1), (7,1), …, (4,7), (6,7), …, (3,9)] 

All ids going to bucket 1

O(k)

O(log k)

• Prefix sum to compute #ids going to each bucket
• Resize buckets and inject all ids in parallel

Please see paper for details on practical implementation and 
optimizations



Example: k-core and coreness

k-core : maximal connected subgraph of G s.t. all vertices  
             have degree � k

            : largest k-core that v participates in �(v)



Example: k-core and coreness

a

k-core : maximal connected subgraph of G s.t. all vertices  
             have degree � k

            : largest k-core that v participates in �(v)



Example: k-core and coreness

a

1-core

k-core : maximal connected subgraph of G s.t. all vertices  
             have degree � k

            : largest k-core that v participates in �(v)



Example: k-core and coreness

a

2-core

1-core

k-core : maximal connected subgraph of G s.t. all vertices  
             have degree � k

            : largest k-core that v participates in �(v)



Example: k-core and coreness

a

2-core3-core

1-core

k-core : maximal connected subgraph of G s.t. all vertices  
             have degree � k

            : largest k-core that v participates in �(v)



Example: k-core and coreness

a

2-core3-core

1-core

k-core : maximal connected subgraph of G s.t. all vertices  
             have degree � k

            : largest k-core that v participates in �(v)

�(a) = 3



Example: k-core and coreness

a

2-core3-core

1-core

k-core : maximal connected subgraph of G s.t. all vertices  
             have degree � k

            : largest k-core that v participates in �(v)

�(a) = 3

Can efficiently compute k-cores after computing coreness



k-core and Coreness
Sequential Peeling:

• Bucket sort vertices by degree 
• Remove the minimum degree vertex, set its core number 

•  Update the buckets of its neighbors



k-core and Coreness
Sequential Peeling:

• Bucket sort vertices by degree 
• Remove the minimum degree vertex, set its core number 

•  Update the buckets of its neighbors

Each vertex and edge is processed exactly once:
W = O(|E| + |V |)



k-core and Coreness
Sequential Peeling:

• Bucket sort vertices by degree 
• Remove the minimum degree vertex, set its core number 

•  Update the buckets of its neighbors

Each vertex and edge is processed exactly once:

Existing parallel algorithms:
• Scan all remaining vertices when computing each core

W = O(|E| + |V |)



k-core and Coreness
Sequential Peeling:

• Bucket sort vertices by degree 
• Remove the minimum degree vertex, set its core number 

•  Update the buckets of its neighbors

Each vertex and edge is processed exactly once:

Existing parallel algorithms:
• Scan all remaining vertices when computing each core

number of peeling steps done by the parallel algorithm� =

W = O(|E| + |V |)

W = O(|E| + �|V |)

D = O(� log |V |)



Work-efficient Peeling

Insert vertices in bucket structure by degree



Work-efficient Peeling

Insert vertices in bucket structure by degree



Work-efficient Peeling

Insert vertices in bucket structure by degree
While not all vertices have been processed yet:



Work-efficient Peeling

Insert vertices in bucket structure by degree
While not all vertices have been processed yet:

1. Extract the next bucket, set core numbers



Work-efficient Peeling

Insert vertices in bucket structure by degree
While not all vertices have been processed yet:

1. Extract the next bucket, set core numbers



Work-efficient Peeling

Insert vertices in bucket structure by degree
While not all vertices have been processed yet:

1. Extract the next bucket, set core numbers



Work-efficient Peeling

Insert vertices in bucket structure by degree
While not all vertices have been processed yet:

1. Extract the next bucket, set core numbers
2. Sum edges removed from each neighbor of this frontier



Work-efficient Peeling

Insert vertices in bucket structure by degree
While not all vertices have been processed yet:

1. Extract the next bucket, set core numbers
2. Sum edges removed from each neighbor of this frontier

(1)
(2)
(1)



Work-efficient Peeling

Insert vertices in bucket structure by degree
While not all vertices have been processed yet:

1. Extract the next bucket, set core numbers
2. Sum edges removed from each neighbor of this frontier
3. Compute the new buckets for the neighbors

(1)
(2)
(1)



Work-efficient Peeling

Insert vertices in bucket structure by degree
While not all vertices have been processed yet:

1. Extract the next bucket, set core numbers
2. Sum edges removed from each neighbor of this frontier
3. Compute the new buckets for the neighbors

(1)
(2)
(1)

(0)
(3)
(2)



Work-efficient Peeling

Insert vertices in bucket structure by degree
While not all vertices have been processed yet:

1. Extract the next bucket, set core numbers
2. Sum edges removed from each neighbor of this frontier
3. Compute the new buckets for the neighbors
4. Update the bucket structure with the (neighbors, buckets)

(1)
(2)
(1)

(0)
(3)
(2)



Work-efficient Peeling

Insert vertices in bucket structure by degree
While not all vertices have been processed yet:

1. Extract the next bucket, set core numbers
2. Sum edges removed from each neighbor of this frontier

(1)
(2)
(1)

3. Compute the new buckets for the neighbors

(0)
(3)
(2)

4. Update the bucket structure with the (neighbors, buckets)



Work-efficient Peeling

Insert vertices in bucket structure by degree
While not all vertices have been processed yet:

1. Extract the next bucket, set core numbers
2. Sum edges removed from each neighbor of this frontier

(1)
(2)
(1)

3. Compute the new buckets for the neighbors

(0)
(3)
(2)

4. Update the bucket structure with the (neighbors, buckets)



Work-efficient Peeling

Insert vertices in bucket structure by degree
While not all vertices have been processed yet:

1. Extract the next bucket, set core numbers
2. Sum edges removed from each neighbor of this frontier
3. Compute the new buckets for the neighbors
4. Update the bucket structure with the (neighbors, buckets)



Work-efficient Peeling



Work-efficient Peeling
We process each edge at most once in each direction:



Work-efficient Peeling
We process each edge at most once in each direction:
# updates = O(|E|)



Work-efficient Peeling
We process each edge at most once in each direction:

# buckets � |V |
# updates = O(|E|)



Work-efficient Peeling
We process each edge at most once in each direction:

# buckets � |V |

# calls to NextBucket = �

# updates = O(|E|)



Work-efficient Peeling
We process each edge at most once in each direction:

# buckets � |V |

# calls to UpdateBuckets = �

# calls to NextBucket = �

# updates = O(|E|)



Work-efficient Peeling
We process each edge at most once in each direction:

# buckets � |V |

# calls to UpdateBuckets = �

# calls to NextBucket = �

# updates = O(|E|)

Therefore the algorithm runs in:

expected workO(|E| + |V |)
depth w.h.p.O(� log |V |)



Work-efficient Peeling
We process each edge at most once in each direction:

On the largest graph we test on, � = 130, 728

# buckets � |V |

# calls to UpdateBuckets = �

# calls to NextBucket = �

# updates = O(|E|)

Therefore the algorithm runs in:

expected workO(|E| + |V |)
depth w.h.p.O(� log |V |)



Work-efficient Peeling
We process each edge at most once in each direction:

On the largest graph we test on, � = 130, 728

On 72 cores, our code finishes in a few minutes, but the  
work-inefficient algorithm does not terminate within 3 hours

# buckets � |V |

# calls to UpdateBuckets = �

# calls to NextBucket = �

# updates = O(|E|)

Therefore the algorithm runs in:

expected workO(|E| + |V |)
depth w.h.p.O(� log |V |)



Work-efficient Peeling
We process each edge at most once in each direction:

On the largest graph we test on, � = 130, 728

On 72 cores, our code finishes in a few minutes, but the  
work-inefficient algorithm does not terminate within 3 hours

# buckets � |V |

# calls to UpdateBuckets = �

# calls to NextBucket = �

# updates = O(|E|)

Therefore the algorithm runs in:

expected workO(|E| + |V |)
depth w.h.p.O(� log |V |)

Efficient peeling using Julienne



Summary of results

Algorithm Work Depth

k-core

wBFS

Delta-stepping

Approx Set Cover

O(|E| + |V |) O(� log |V |)

O(D + |E|) O(D log |V |)

O(w�) O(d� log |V |)

O(M) O(log3 M)

M : sum of sizes of sets

: diameterD

: work and number of rounds of the delta-stepping algorithmw�, d�

� : number of rounds of parallel peeling

[2]

[1] Meyer, Sanders: Δ-stepping: a parallelizable shortest path algorithm
[2] Blelloch, Peng, Tangwongsan: Linear-work greedy parallel approximate set cover and variants

[1]

http://www.sciencedirect.com/science/article/pii/S0196677403000762
http://dl.acm.org/authorize?437654


Experiments: k-core

 10

 100

 1000

 1  2  4  8  16  32  64 72 72h

R
u

n
n

in
g

 t
im

e
 (

se
co

n
d

s)

Number of threads

Julienne (work-efficient)
Ligra (work-inefficient)

• Between 4-41x speedup over sequential peeling 
• Speedups are smaller on small graphs with large 
• 2-9x faster than work-inefficient implementation  

�

|V| = 121M
|E| = 3.6B

Friendster

Across all inputs:



Experiments: Delta-stepping

• 18-32x self-relative speedup, 17-30x speedup over DIMACS solver 
• 1.1-1.7x faster than best existing implementation of Delta-Stepping 
• 1.8-5.2x faster than (work-inefficient) Bellman-Ford

 10

 100

 1  2  4  8  16  32  64 72 72h

R
u

n
n

in
g

 t
im

e
 (

se
co

n
d

s)

Number of threads

Julienne
Galois

Gap
Ligra (Bellman-Ford)

|V| = 121M
|E| = 3.6B

Friendster

Across all inputs:



Experiments: Hyperlink Graphs
Hyperlink graphs extracted from Common Crawl Corpus

Graph |V| |E| |E|(symmetrized)

HL2014 1.7B 64B 124B

HL2012 3.5B 128B 225B

• Previous analyses use supercomputers [1] or external memory [2] 
• HL2012-Sym requires ~2TB of memory uncompressed

[1] Slota et al., 2015, Supercomputing for Web Graph Analytics
[2] Zheng et al., 2015, FlashGraph: Processing Billion-Node Graphs on  
     an Array of Commodity SSDs



Experiments: Hyperlink Graphs

• Able to process in main-memory of 1TB machine by compressing 
• 23-43x speedup across applications 
• Compression is crucial 

• Julienne/Ligra codes run without any modifications  
• Can’t run other codes on these graphs without significant effort

Graph k-core wBFS Set Cover

HL2014 97.2 9.02 45.1

HL2012 206 — 104

Running time in seconds on 72 cores with hyperthreading 



Conclusion
Julienne: framework for bucketing-based algorithms

d � 2�

d � �

k-core Delta-stepping 
wBFS

Parallel Approximate 
Set Cover



Conclusion
Julienne: framework for bucketing-based algorithms
• Codes: 

• Simple (< 100 lines each) 
• Theoretically efficient 
• Good performance in practice 
• Code will be included as part of github.com/jshun/ligra 

• Future work: Trusses, Nucleus Decomposition, Densest Subgraph

d � 2�

d � �

k-core Delta-stepping 
wBFS

Parallel Approximate 
Set Cover

http://github.com/jshun/ligra


Thank you!

Please feel free to reach out to ldhulipa@cs.cmu.edu

d � 2�

d � �

k-core Delta-stepping 
wBFS

Parallel Approximate 
Set Cover

mailto:ldhulipa@cs.cmu.edu

