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Giant graph datasets

Graph |V| |E| (symmetrized)

com-Orkut 3M 234M

Twitter 41M 1.46B

Friendster 124M 3.61B

Hyperlink2012-Host 101M 2.04B

Facebook (2011) 721M 68.4B

Hyperlink2014 1.7B 124B

Hyperlink2012 3.5B 225B

Facebook (2017) > 2B > 300B

Google (2017) ? ?

: Publicly available graphs used in our experiments

: Private graph datasets



Traditional approaches
One possible way to solve large graph problems:

• Hand-write MPI/OpenMP/Cilk codes 
• Run a powerful machine or a large cluster



Traditional approaches
One possible way to solve large graph problems:

• Hand-write MPI/OpenMP/Cilk codes 
• Run a powerful machine or a large cluster

Benefits
• Good performance 
• Can hand-code custom optimizations



Traditional approaches
One possible way to solve large graph problems:

• Hand-write MPI/OpenMP/Cilk codes 
• Run a powerful machine or a large cluster

Benefits
• Good performance 
• Can hand-code custom optimizations

Downsides
• Usually require a lot of code 
• Need lots of expertise to write and understand codes 
• Not everyone has a supercomputer
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Graph processing frameworks

High level goals
• Simple set of primitives (interface) 
• Implementations easy to write and understand 
• Algorithms can handle very large graphs

Additional goals:
• Primitives have theoretical guarantees 
• Support common optimizations “under the hood” 
• Implementations competitive with non-framework codes

Ex: Pregel, GraphLab, Ligra, GraphX, GraphChi…

Our goals:
• All of the above on a single affordable shared memory machine
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Ligra

[1] Shun and Blelloch, 2013, Ligra: A Lightweight Graph Processing Framework for Shared Memory 

Shared memory graph processing framework [1]
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Benefits
• Designed to express frontier-based algorithms 
• Primitives and implementations have theoretical guarantees 
• Optimizations (direction-optimizing, compression [2]) 
• Implementations are simple to write and understand 

• Competitive with hand-tuned codes

Downsides
• Some algorithms may not be efficiently implementable

Ligra

This work: Made Ligra codes run on the largest publicly 
available graphs on a single machine

[1] Shun and Blelloch, 2013, Ligra: A Lightweight Graph Processing Framework for Shared Memory 

Shared memory graph processing framework [1]

[2] Shun, Dhulipala and Blelloch, 2013, Smaller and Faster: Parallel Processing of Compressed 
Graphs with Ligra+  

https://people.eecs.berkeley.edu/~jshun/ligra.pdf
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Primitives
• Frontier data-structure (vertexSubset) 
• Map over vertices in a frontier 
• Map over out-edges of a frontier

Ligra: Frontier-based algorithms

Example: Breadth-First Search

Round 1 Round 2 Round 4

: in frontier : unvisited : visited

Round 3

Some useful graph algorithms cannot be efficiently 
implemented in frontier-based frameworks
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Given:                       with positive integer edge weights, G = (V, E, w) s � V
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Frontier-based: On each step, visit all neighbors that had 
their distance decrease 
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Example: Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2
3

2

1

1

3 1

Round 3 

2Frontier: 4 5 6Not work-efficient!



Sequential Weighted Breadth-First Search
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Idea:
• Run Dijkstra’s algorithm, but use buckets instead of a PQ 
• Represent buckets using dynamic arrays 
• Simple, efficient implementation running in                     work O(D + |E|)



Sequential Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2
3

2

1

1

3 1

Round 1 2 7 3

5

6s

0 1 2 3 4 5



Sequential Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2
3

2

1

1

3 1

Round 1 2 7 3

5

6s

0 1 2 3 4 5



Sequential Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2
3

2

1

1

3 1

Round 1 2 7 3

5

6s 1

0 1 2 3 4 5

4



Sequential Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2
3

2

1

1

3 1

Round 1 2 7 3

5

61

0 1 2 3 4 5

4



Sequential Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2
3

2

1

1

3 1

Round 2 2 7 3

5

61

0 1 2 3 4 5

4



Sequential Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2
3

2

1

1

3 1

Round 2 2 7 3

5

61

0 1 2 3 4 5

4



Sequential Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2
3

2

1

1

3 1

Round 2 2 7 3

5

61

0 1 2 3 4 5

4

2



Sequential Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2
3

2

1

1

3 1

Round 2 7 36

0 1 2 3 4 5

4

2



Sequential Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2
3

2

1

1

3 1

Round 3 7 36

0 1 2 3 4 5

4

2



Sequential Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2
3

2

1

1

3 1

Round 3 7 36

0 1 2 3 4 5

4

2



Sequential Weighted Breadth-First Search

s
1

4

2

5

6

3

7

1 1

2
3

2

1

1

3 1

Round 3 7 36

0 1 2 3 4 5

4

2                                 where D is the graph diameterO(D + |E|) work
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Bucketing

This algorithms is actually parallelizable 
• In each step:

1. Process all vertices in the next bucket in parallel 
2. Update buckets of neighbors in parallel

The algorithm uses buckets to organize work for future iterations
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process 

vertices one 
by one
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Parallel Weighted Breadth-First Search
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(2) Insert 

neighbors 
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work
depth

O(D + |E|)
O(D log |V |)

Resulting algorithm performs:

(assuming efficient bucketing)
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Parallel bucketing

1. Multiple vertices insert into the same bucket in parallel 
2. Possible to make work-efficient parallel implementations?

Difficulties

Goals
• Simplify expressing algorithms using an interface 
• Theoretically efficient, reusable implementation

Bucketing is useful for more than just wBFS
• k-core (coreness) 
• Delta-Stepping 
• Parallel Approximate Set Cover
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Shared memory framework for bucketing-based algorithms

Extend Ligra with an interface for bucketing
• Theoretical bounds for primitives 
• Fast implementations of primitives 

Can implement a bucketing algorithm with

expected work and 
O((K + L) log n) depth w.h.p.

• n vertices 
• T total buckets 
• U updates

over K Update calls, and L calls to NextBucket

O(n + T + U)Bucketing implementation is work-efficient
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Work-efficient implementations of 4 bucketing-based algorithms:
• k-core (coreness) 
• Weighted Breadth-First Search 
• Delta-Stepping 
• Parallel Approximate Set Cover

Codes are simple
• All implementations < 100 LoC

First work-efficient k-core algorithm with non-trivial parallelism

Compute k-cores of largest publicly available graph (~200B edges) 
in ~3 minutes and approximate set-cover in ~2 minutes

Results: Julienne

Codes competitive with, or outperform existing implementations
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Julienne: Interface

Ligra

Graph

vertexSubset

Julienne

Bucketing Interface Bucketing Interface:

(1) Create bucket structure

(2) Get the next bucket (vertexSubset)

(3) Update buckets of a subset  
     of identifiers
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Julienne: Interface

n : int

D : identifier � bucket id

O : bucket order

MakeBuckets : buckets

Initialize bucket structure

1

4 2 7 3

5

6

D(1) = 0, D(2) = 1, D(3) = 4, . . .
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Julienne: Interface

2 7 3

5

6

1

4 NextBucket : bucket

Extract identifiers in the next non-empty bucket

Order: increasing
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74 2

1

3

5

[(1,3), (7,2), (6,2)]

6

Update buckets for k identifiers

UpdateBuckets
k : int

F : int � (identifier, bucket dest)

1

7 6



Julienne: Interface

74 2 1 3

5

[(1,3), (7,2), (6,2)]

6

Update buckets for k identifiers

UpdateBuckets
k : int

F : int � (identifier, bucket dest)
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• n identifiers 
• T total buckets 
• K calls to UpdateBuckets, where each updates the ids in

O(n + T +
K�

i=0

|Si|) work in 

Si

Implementation:
• Use dynamic arrays
• Update lazily



Parallel Bucketing

Can implement parallel bucketing with:
• n identifiers 
• T total buckets 
• K calls to UpdateBuckets, where each updates the ids in 
• L calls to NextBucket

O(n + T +
K�

i=0

|Si|) expected work and in 

O((K + L) log n) depth w.h.p.

Si



Parallel Bucketing

Can implement parallel bucketing with:
• n identifiers 
• T total buckets 
• K calls to UpdateBuckets, where each updates the ids in 
• L calls to NextBucket

O(n + T +
K�

i=0

|Si|) expected work and in 

O((K + L) log n) depth w.h.p.

Si

Implementation:
• Use dynamic arrays
• MakeBuckets: call UpdateBuckets. NextBucket: parallel filter
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Parallel Bucketing

UpdateBuckets:
• Use work-efficient semisort [Gu et al. 2015] 
• Given k (key, value) pairs, semisorts in          expected work        

and               depth w.h.p.

[(3,9), (4,7), …, (2,1), (1,1)]

[(2,1), (1,1), (7,1), …, (4,7), (6,7), …, (3,9)] 

All ids going to bucket 1

O(k)

O(log k)

• Prefix sum to compute #ids going to each bucket
• Resize buckets and inject all ids in parallel

Please see paper for details on practical implementation and 
optimizations
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Example: k-core and coreness

a

2-core3-core

1-core

k-core : maximal connected subgraph of G s.t. all vertices  
             have degree � k

            : largest k-core that v participates in �(v)

�(a) = 3

Can efficiently compute k-cores after computing coreness
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k-core and Coreness
Sequential Peeling:

• Bucket sort vertices by degree 
• Remove the minimum degree vertex, set its core number 

•  Update the buckets of its neighbors

Each vertex and edge is processed exactly once:

Existing parallel algorithms:
• Scan all remaining vertices when computing each core

number of peeling steps done by the parallel algorithm� =

W = O(|E| + |V |)

W = O(|E| + �|V |)

D = O(� log |V |)
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We process each edge at most once in each direction:

On the largest graph we test on, � = 130, 728

On 72 cores, our code finishes in a few minutes, but the  
work-inefficient algorithm does not terminate within 3 hours

# buckets � |V |

# calls to UpdateBuckets = �

# calls to NextBucket = �

# updates = O(|E|)

Therefore the algorithm runs in:

expected workO(|E| + |V |)
depth w.h.p.O(� log |V |)

Efficient peeling using Julienne



Summary of results

Algorithm Work Depth

k-core

wBFS

Delta-stepping

Approx Set Cover

O(|E| + |V |) O(� log |V |)

O(D + |E|) O(D log |V |)

O(w�) O(d� log |V |)

O(M) O(log3 M)

M : sum of sizes of sets

: diameterD

: work and number of rounds of the delta-stepping algorithmw�, d�

� : number of rounds of parallel peeling

[2]

[1] Meyer, Sanders: Δ-stepping: a parallelizable shortest path algorithm
[2] Blelloch, Peng, Tangwongsan: Linear-work greedy parallel approximate set cover and variants

[1]

http://www.sciencedirect.com/science/article/pii/S0196677403000762
http://dl.acm.org/authorize?437654


Experiments: k-core
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• Between 4-41x speedup over sequential peeling 
• Speedups are smaller on small graphs with large 
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Experiments: Delta-stepping

• 18-32x self-relative speedup, 17-30x speedup over DIMACS solver 
• 1.1-1.7x faster than best existing implementation of Delta-Stepping 
• 1.8-5.2x faster than (work-inefficient) Bellman-Ford
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Experiments: Hyperlink Graphs
Hyperlink graphs extracted from Common Crawl Corpus

Graph |V| |E| |E|(symmetrized)

HL2014 1.7B 64B 124B

HL2012 3.5B 128B 225B

• Previous analyses use supercomputers [1] or external memory [2] 
• HL2012-Sym requires ~2TB of memory uncompressed

[1] Slota et al., 2015, Supercomputing for Web Graph Analytics
[2] Zheng et al., 2015, FlashGraph: Processing Billion-Node Graphs on  
     an Array of Commodity SSDs



Experiments: Hyperlink Graphs

• Able to process in main-memory of 1TB machine by compressing 
• 23-43x speedup across applications 
• Compression is crucial 

• Julienne/Ligra codes run without any modifications  
• Can’t run other codes on these graphs without significant effort

Graph k-core wBFS Set Cover

HL2014 97.2 9.02 45.1

HL2012 206 — 104

Running time in seconds on 72 cores with hyperthreading 
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Conclusion
Julienne: framework for bucketing-based algorithms
• Codes: 

• Simple (< 100 lines each) 
• Theoretically efficient 
• Good performance in practice 
• Code will be included as part of github.com/jshun/ligra 

• Future work: Trusses, Nucleus Decomposition, Densest Subgraph

d � 2�

d � �

k-core Delta-stepping 
wBFS

Parallel Approximate 
Set Cover

http://github.com/jshun/ligra


Thank you!

Please feel free to reach out to ldhulipa@cs.cmu.edu
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