Julienne: A Framework for Parallel Graph Algorithms using Work-efficient Bucketing

Laxman Dhulipala Joint work with Guy Blelloch and Julian Shun

SPAA 2017

Giant graph datasets

Graph	[V]	E (symmetrized)
com-Orkut	ЗM	234M
Twitter	41M	1.46B
Friendster	124M	3.61B
Hyperlink2012-Host	101M	2.04B
Facebook (2011)	721M	68.4B
Hyperlink2014	1.7B	124B
Hyperlink2012	3.5B	225B
Facebook (2017)	> 2B	> 300B
Google (2017)	?	?

Publicly available graphs used in our experiments

: Private graph datasets

Traditional approaches

One possible way to solve large graph problems:

- Hand-write MPI/OpenMP/Cilk codes
- Run a powerful machine or a large cluster

Traditional approaches

One possible way to solve large graph problems:

- Hand-write MPI/OpenMP/Cilk codes
- Run a powerful machine or a large cluster

Benefits

- Good performance
- Can hand-code custom optimizations

Traditional approaches

One possible way to solve large graph problems:

- Hand-write MPI/OpenMP/Cilk codes
- Run a powerful machine or a large cluster

Benefits

- Good performance
- Can hand-code custom optimizations

Downsides

- Usually require a lot of code
- Need lots of expertise to write and understand codes
- Not everyone has a supercomputer

High level goals

- Simple set of primitives (interface)
- Implementations easy to write and understand
- Algorithms can handle very large graphs

High level goals

- Simple set of primitives (interface)
- Implementations easy to write and understand
- Algorithms can handle very large graphs

Ex: Pregel, GraphLab, Ligra, GraphX, GraphChi...

High level goals

- Simple set of primitives (interface)
- Implementations easy to write and understand
- Algorithms can handle very large graphs

Ex: Pregel, GraphLab, Ligra, GraphX, GraphChi...

Additional goals:

- Primitives have theoretical guarantees
- Support common optimizations "under the hood"
- Implementations competitive with non-framework codes

High level goals

- Simple set of primitives (interface)
- Implementations easy to write and understand
- Algorithms can handle very large graphs

Ex: Pregel, GraphLab, Ligra, GraphX, GraphChi...

Additional goals:

- Primitives have theoretical guarantees
- Support common optimizations "under the hood"
- Implementations competitive with non-framework codes

Our goals:

• All of the above on a single affordable shared memory machine

An "affordable" machine

An "affordable" machine

Dell PowerEdge R930

- 72-cores (4 x 2.4GHz 18-core E7-8867 v4 Xeon processors)
- 1TB of main memory
- Costs less than a mid-range BMW

An "affordable" machine

Dell PowerEdge R930

- 72-cores (4 x 2.4GHz 18-core E7-8867 v4 Xeon processors)
- 1TB of main memory
- Costs less than a mid-range BMW

Shared memory graph processing framework [1]

[1] Shun and Blelloch, 2013, Ligra: A Lightweight Graph Processing Framework for Shared Memory
[2] Shun, Dhulipala and Blelloch, 2013, Smaller and Faster: Parallel Processing of Compressed
<u>Graphs with Ligra+</u>

Ligra

Shared memory graph processing framework [1]

Benefits

- Designed to express frontier-based algorithms
- Primitives and implementations have theoretical guarantees
- Optimizations (direction-optimizing, compression [2])
- Implementations are simple to write and understand
 - Competitive with hand-tuned codes

[1] Shun and Blelloch, 2013, Ligra: A Lightweight Graph Processing Framework for Shared Memory
[2] Shun, Dhulipala and Blelloch, 2013, Smaller and Faster: Parallel Processing of Compressed
Graphs with Ligra+

Ligra

Shared memory graph processing framework [1]

Benefits

- Designed to express frontier-based algorithms
- Primitives and implementations have theoretical guarantees
- Optimizations (direction-optimizing, compression [2])
- Implementations are simple to write and understand
 - Competitive with hand-tuned codes

Downsides

• Some algorithms may not be efficiently implementable

[1] Shun and Blelloch, 2013, Ligra: A Lightweight Graph Processing Framework for Shared Memory
[2] Shun, Dhulipala and Blelloch, 2013, Smaller and Faster: Parallel Processing of Compressed
<u>Graphs with Ligra+</u>

Ligra

Shared memory graph processing framework [1]

Benefits

- Designed to express frontier-based algorithms
- Primitives and implementations have theoretical guarantees
- Optimizations (direction-optimizing, compression [2])
- Implementations are simple to write and understand
 - Competitive with hand-tuned codes

Downsides

• Some algorithms may not be efficiently implementable

This work: Made Ligra codes run on the largest publicly available graphs on a single machine

[1] Shun and Blelloch, 2013, Ligra: A Lightweight Graph Processing Framework for Shared Memory
[2] Shun, Dhulipala and Blelloch, 2013, Smaller and Faster: Parallel Processing of Compressed
<u>Graphs with Ligra+</u>

Primitives

- Frontier data-structure (vertexSubset)
- Map over vertices in a frontier
- Map over out-edges of a frontier

Primitives

- Frontier data-structure (vertexSubset)
- Map over vertices in a frontier
- Map over out-edges of a frontier

Example: Breadth-First Search

Primitives

- Frontier data-structure (vertexSubset)
- Map over vertices in a frontier
- Map over out-edges of a frontier

Example: Breadth-First Search

Round 1

: in frontier

Primitives

- Frontier data-structure (vertexSubset)
- Map over vertices in a frontier
- Map over out-edges of a frontier

Example: Breadth-First Search

Round 1

🔵 : in frontier

: unvisited

Primitives

- Frontier data-structure (vertexSubset)
- Map over vertices in a frontier
- Map over out-edges of a frontier

Example: Breadth-First Search

Primitives

- Frontier data-structure (vertexSubset)
- Map over vertices in a frontier
- Map over out-edges of a frontier

Example: Breadth-First Search

Primitives

- Frontier data-structure (vertexSubset)
- Map over vertices in a frontier
- Map over out-edges of a frontier

Example: Breadth-First Search

Some useful graph algorithms cannot be efficiently implemented in frontier-based frameworks

Given: G = (V, E, w) with *positive integer edge weights*, $s \subseteq V$ Problem: Compute the shortest path distances from **s**

Given: G = (V, E, w) with *positive integer edge weights*, $s \subseteq V$ Problem: Compute the shortest path distances from **s**

Frontier-based: On each step, visit all neighbors that had their distance decrease

Round 3

Round 3

Kouna 3

Idea:

- Run Dijkstra's algorithm, but use *buckets* instead of a PQ
- Represent buckets using dynamic arrays
- Simple, efficient implementation running in O(D + |E|) work

Round 1

Bucketing

The algorithm uses buckets to organize work for future iterations

Bucketing

The algorithm uses buckets to *organize work* for future iterations

Bucketing

The algorithm uses buckets to *organize work* for future iterations

This algorithms is actually parallelizable

- In each step:
 - 1. Process all vertices in the next bucket in parallel
 - 2. Update buckets of neighbors in parallel

Parallel Weighted Breadth-First Search

Parallel Weighted Breadth-First Search

Parallel Weighted Breadth-First Search

Parallel bucketing

Bucketing is useful for more than just wBFS

- k-core (coreness)
- Delta-Stepping
- Parallel Approximate Set Cover

Parallel bucketing

Bucketing is useful for more than just wBFS

- k-core (coreness)
- Delta-Stepping
- Parallel Approximate Set Cover

Goals

- Simplify expressing algorithms using an interface
- Theoretically efficient, reusable implementation

Parallel bucketing

Bucketing is useful for more than just wBFS

- k-core (coreness)
- Delta-Stepping
- Parallel Approximate Set Cover

Goals

- Simplify expressing algorithms using an interface
- Theoretically efficient, reusable implementation

Difficulties

- 1. Multiple vertices insert into the same bucket in parallel
- 2. Possible to make work-efficient parallel implementations?

Shared memory framework for *bucketing-based algorithms*

Shared memory framework for *bucketing-based algorithms*

Extend Ligra with an interface for bucketing

- Theoretical bounds for primitives
- Fast implementations of primitives

Shared memory framework for *bucketing-based algorithms*

Extend Ligra with an interface for bucketing

- Theoretical bounds for primitives
- Fast implementations of primitives

Can implement a bucketing algorithm with

- n vertices
- T total buckets
- U updates

over K Update calls, and L calls to NextBucket

O(n + T + U) expected work and $O((K + L) \log n)$ depth w.h.p.

Shared memory framework for *bucketing-based algorithms*

Extend Ligra with an interface for bucketing

- Theoretical bounds for primitives
- Fast implementations of primitives

Can implement a bucketing algorithm with

- n vertices
- T total buckets
- U updates

over K^I'

Bucketing implementation is work-efficient

Work-efficient implementations of 4 bucketing-based algorithms:

- k-core (coreness)
- Weighted Breadth-First Search
- Delta-Stepping
- Parallel Approximate Set Cover

Work-efficient implementations of 4 bucketing-based algorithms:

- k-core (coreness)
- Weighted Breadth-First Search
- Delta-Stepping
- Parallel Approximate Set Cover

Codes are simple

• All implementations < 100 LoC

Work-efficient implementations of 4 bucketing-based algorithms:

- k-core (coreness)
- Weighted Breadth-First Search
- Delta-Stepping
- Parallel Approximate Set Cover

Codes are simple

• All implementations < 100 LoC

Codes competitive with, or outperform existing implementations

Work-efficient implementations of 4 bucketing-based algorithms:

- k-core (coreness)
- Weighted Breadth-First Search
- Delta-Stepping
- Parallel Approximate Set Cover

Codes are simple

• All implementations < 100 LoC

Codes competitive with, or outperform existing implementations

First work-efficient k-core algorithm with non-trivial parallelism

Work-efficient implementations of 4 bucketing-based algorithms:

- k-core (coreness)
- Weighted Breadth-First Search
- Delta-Stepping
- Parallel Approximate Set Cover

Codes are simple

• All implementations < 100 LoC

Codes competitive with, or outperform existing implementations

First work-efficient k-core algorithm with non-trivial parallelism

Compute k-cores of largest publicly available graph (~200B edges) in ~3 minutes and approximate set-cover in ~2 minutes

Bucketing Interface:

- (1) Create bucket structure
- (2) Get the next bucket (vertexSubset)
- (3) Update buckets of a subset of identifiers

MakeBuckets : buckets

- $n:\mathsf{int}$
- $D:\mathsf{identifier}\to\mathsf{bucket_id}$
- $O:\mathsf{bucket_order}$

Initialize bucket structure

$D(1) = 0, D(2) = 1, D(3) = 4, \dots$

MakeBuckets : buckets n : int

- $D: \mathsf{identifier} \to \mathsf{bucket_id}$
- $O: \mathsf{bucket_order}$

Initialize bucket structure

MakeBuckets : buckets n : int

- $D:\mathsf{identifier}\to\mathsf{bucket_id}$
- $O:\mathsf{bucket_order}$

Initialize bucket structure

NextBucket : bucket

NextBucket: bucket

NextBucket: bucket

UpdateBuckets k : int $F : int \rightarrow (identifier, bucket_dest)$

[(1,3), (7,2), (6,2)]

UpdateBuckets k : int $F : int \rightarrow (identifier, bucket_dest)$

[(1,3), (7,2), (6,2)]

UpdateBuckets k : int $F : int \rightarrow (identifier, bucket_dest)$

[(1,3), (7,2), (6,2)]

UpdateBuckets k : int $F : int \rightarrow (identifier, bucket_dest)$

[(1,3), (7,2), (6,2)]

UpdateBuckets k : int $F : int \rightarrow (identifier, bucket_dest)$

Sequential Bucketing

Can implement sequential bucketing with:

- n identifiers
- T total buckets
- K calls to UpdateBuckets, where each updates the ids in ${\cal S}_i$

in
$$O(n+T+\sum_{i=0}^{K}|S_i|)$$
 work

Sequential Bucketing

Can implement sequential bucketing with:

- n identifiers
- T total buckets
- K calls to UpdateBuckets, where each updates the ids in S_i

in
$$O(n+T+\sum_{i=0}^{K}|S_i|)$$
 work

Implementation:

- Use dynamic arrays
- Update lazily

Can implement parallel bucketing with:

- n identifiers
- T total buckets
- K calls to UpdateBuckets, where each updates the ids in S_i
- L calls to NextBucket

in
$$O(n + T + \sum_{i=0}^{K} |S_i|)$$
 expected work and

 $O((K+L)\log n)$ depth w.h.p.

Can implement parallel bucketing with:

- n identifiers
- T total buckets
- K calls to UpdateBuckets, where each updates the ids in S_i
- L calls to NextBucket

in
$$O(n + T + \sum_{i=0}^{K} |S_i|)$$
 expected work and

$$O((K+L)\log n)$$
 depth w.h.p.

Implementation:

- Use dynamic arrays
- MakeBuckets: call UpdateBuckets. NextBucket: parallel filter

UpdateBuckets:

- Use work-efficient semisort [Gu et al. 2015]
- Given k (key, value) pairs, semisorts in O(k) expected work and O(log k) depth w.h.p.

UpdateBuckets:

- Use work-efficient semisort [Gu et al. 2015]
- Given k (key, value) pairs, semisorts in O(k) expected work and O(log k) depth w.h.p.

[(3,9), (4,7), ..., (2,1), (1,1)]

UpdateBuckets:

- Use work-efficient semisort [Gu et al. 2015]
- Given k (key, value) pairs, semisorts in O(k) expected work and O(log k) depth w.h.p.

All ids going to bucket 1

UpdateBuckets:

- Use work-efficient semisort [Gu et al. 2015]
- Given k (key, value) pairs, semisorts in O(k) expected work and O(log k) depth w.h.p.

All ids going to bucket 1

- Prefix sum to compute #ids going to each bucket
- Resize buckets and inject all ids in parallel

UpdateBuckets:

- Use work-efficient semisort [Gu et al. 2015]
- Given k (key, value) pairs, semisorts in O(k) expected work and O(log k) depth w.h.p.

All ids going to bucket 1

- Prefix sum to compute #ids going to each bucket
- Resize buckets and inject all ids in parallel

Please see paper for details on practical implementation and optimizations

k-core : maximal connected subgraph of G s.t. all vertices have degree $\geq k$

k-core : maximal connected subgraph of G s.t. all vertices have degree $\geq k$

k-core : maximal connected subgraph of G s.t. all vertices have degree $\geq k$

k-core : maximal connected subgraph of G s.t. all vertices have degree $\geq k$

k-core : maximal connected subgraph of G s.t. all vertices have degree $\geq k$

k-core : maximal connected subgraph of G s.t. all vertices have degree $\geq k$

k-core : maximal connected subgraph of G s.t. all vertices have degree $\geq k$

 $\lambda(v)$: largest k-core that v participates in

Can efficiently compute k-cores after computing coreness

Sequential Peeling:

- Bucket sort vertices by degree
- Remove the minimum degree vertex, set its core number
 - Update the buckets of its neighbors

Sequential Peeling:

- Bucket sort vertices by degree
- Remove the minimum degree vertex, set its core number
 - Update the buckets of its neighbors

Each vertex and edge is processed exactly once:

W = O(|E| + |V|)

Sequential Peeling:

- Bucket sort vertices by degree
- Remove the minimum degree vertex, set its core number
 - Update the buckets of its neighbors

Each vertex and edge is processed exactly once:

W = O(|E| + |V|)

Existing parallel algorithms:

• Scan all remaining vertices when computing each core

Sequential Peeling:

- Bucket sort vertices by degree
- Remove the minimum degree vertex, set its core number
 - Update the buckets of its neighbors

Each vertex and edge is processed exactly once:

W = O(|E| + |V|)

Existing parallel algorithms:

• Scan all remaining vertices when computing each core

 $\rho = {\rm number} ~{\rm of}$ peeling steps done by the parallel algorithm

 $W = O(|E| + \rho|V|)$ $D = O(\rho \log |V|)$

Insert vertices in bucket structure by degree

Insert vertices in bucket structure by degree

Insert vertices in bucket structure by degree

Insert vertices in bucket structure by degree

While not all vertices have been processed yet:

1. Extract the next bucket, set core numbers

Insert vertices in bucket structure by degree

While not all vertices have been processed yet:

1. Extract the next bucket, set core numbers

Insert vertices in bucket structure by degree

While not all vertices have been processed yet:

1. Extract the next bucket, set core numbers

Insert vertices in bucket structure by degree

- 1. Extract the next bucket, set core numbers
- 2. Sum edges removed from each neighbor of this frontier

Insert vertices in bucket structure by degree

- 1. Extract the next bucket, set core numbers
- 2. Sum edges removed from each neighbor of this frontier

Insert vertices in bucket structure by degree

- 1. Extract the next bucket, set core numbers
- 2. Sum edges removed from each neighbor of this frontier
- 3. Compute the new buckets for the neighbors

Insert vertices in bucket structure by degree

- 1. Extract the next bucket, set core numbers
- 2. Sum edges removed from each neighbor of this frontier
- 3. Compute the new buckets for the neighbors

Insert vertices in bucket structure by degree

- 1. Extract the next bucket, set core numbers
- 2. Sum edges removed from each neighbor of this frontier
- 3. Compute the new buckets for the neighbors
- 4. Update the bucket structure with the (neighbors, buckets)

Insert vertices in bucket structure by degree

While not all vertices have been processed yet:

- 1. Extract the next bucket, set core numbers
- 2. Sum edges removed from each neighbor of this frontier
- 3. Compute the new buckets for the neighbors
- 4. Update the bucket structure with the (neighbors, buckets)

Insert vertices in bucket structure by degree

While not all vertices have been processed yet:

- 1. Extract the next bucket, set core numbers
- 2. Sum edges removed from each neighbor of this frontier
- 3. Compute the new buckets for the neighbors
- 4. Update the bucket structure with the (neighbors, buckets)

Insert vertices in bucket structure by degree

While not all vertices have been processed yet:

- 1. Extract the next bucket, set core numbers
- 2. Sum edges removed from each neighbor of this frontier
- 3. Compute the new buckets for the neighbors
- 4. Update the bucket structure with the (neighbors, buckets)

We process each edge at most once in each direction:

We process each edge at most once in each direction: # updates = O(|E|)

We process each edge at most once in each direction: # updates = O(|E|)# buckets $\leq |V|$

We process each edge at most once in each direction:

- # updates = O(|E|)
- # buckets $\leq |V|$
- # calls to NextBucket = ρ

We process each edge at most once in each direction:

- # updates = O(|E|)
- # buckets $\leq |V|$
- # calls to NextBucket = ρ
- # calls to UpdateBuckets = ρ

We process each edge at most once in each direction:

- # updates = O(|E|)
- # buckets $\leq |V|$
- # calls to NextBucket = ρ
- # calls to UpdateBuckets = ρ

Therefore the algorithm runs in:

O(|E| + |V|) expected work $O(\rho \log |V|)$ depth w.h.p.

We process each edge at most once in each direction:

- # updates = O(|E|)
- # buckets $\leq |V|$
- # calls to NextBucket = ρ
- # calls to UpdateBuckets = ρ

Therefore the algorithm runs in:

O(|E| + |V|) expected work $O(\rho \log |V|)$ depth w.h.p.

On the largest graph we test on, $\rho=130,728$

We process each edge at most once in each direction:

- # updates = O(|E|)
- # buckets $\leq |V|$
- # calls to NextBucket = ρ
- # calls to UpdateBuckets = ρ

Therefore the algorithm runs in:

O(|E| + |V|) expected work $O(\rho \log |V|)$ depth w.h.p.

On the largest graph we test on, $\rho=130,728$

On 72 cores, our code finishes in a few minutes, but the work-inefficient algorithm does not terminate within 3 hours

We process each edge at most once in each direction: # updates = $\Omega(|T|)$ # buckets \leq # calls to Ne # calls to Up Therefore the On the larges ut the On 72 cores, work-inefficient agentifier does not terminate within 3 hours **Efficient peeling using Julienne**

Summary of results

Algorithm	Work	Depth	
k-core	O(E + V)	$O(ho \log V)$	
wBFS	O(D+ E)	$O(D \log V)$	
Delta-stepping	$O(w_{\Delta})$	$O(d_{\Delta} \log V)$	[1]
Approx Set Cover	O(M)	$O(\log^3 M)$	[2]

 $\rho\,$: number of rounds of parallel peeling

D : diameter

 w_{Δ}, d_{Δ} : work and number of rounds of the delta-stepping algorithm

 ${\cal M}\,$: sum of sizes of sets

[1] Meyer, Sanders: <u>Δ-stepping: a parallelizable shortest path algorithm</u>
 [2] Blelloch, Peng, Tangwongsan: <u>Linear-work greedy parallel approximate set cover and variants</u>

Experiments: k-core

Across all inputs:

- Between 4-41x speedup over sequential peeling
- Speedups are smaller on small graphs with large ρ
- 2-9x faster than work-inefficient implementation

Experiments: Delta-stepping

Across all inputs:

- 18-32x self-relative speedup, 17-30x speedup over DIMACS solver
- 1.1-1.7x faster than best existing implementation of Delta-Stepping
- 1.8-5.2x faster than (work-inefficient) Bellman-Ford

Experiments: Hyperlink Graphs

Hyperlink graphs extracted from Common Crawl Corpus

Graph	[V]	E	E (symmetrized)
HL2014	1.7B	64B	124B
HL2012	3.5B	128B	225B

- Previous analyses use supercomputers [1] or external memory [2]
- HL2012-Sym requires ~2TB of memory uncompressed

[1] Slota et al., 2015, Supercomputing for Web Graph Analytics

[2] Zheng et al., 2015, FlashGraph: Processing Billion-Node Graphs on an Array of Commodity SSDs

Experiments: Hyperlink Graphs

Graph	k-core	wBFS	Set Cover
HL2014	97.2	9.02	45.1
HL2012	206		104

Running time in seconds on 72 cores with hyperthreading

- Able to process in main-memory of 1TB machine by compressing
- 23-43x speedup across applications
- Compression is crucial
 - Julienne/Ligra codes run without any modifications
 - Can't run other codes on these graphs without significant effort

Conclusion

Julienne: framework for bucketing-based algorithms

Conclusion

Julienne: framework for bucketing-based algorithms

- Codes:
 - Simple (< 100 lines each)
 - Theoretically efficient
 - Good performance in practice
 - Code will be included as part of <u>github.com/jshun/ligra</u>
- Future work: Trusses, Nucleus Decomposition, Densest Subgraph

Thank you!

Please feel free to reach out to <u>Idhulipa@cs.cmu.edu</u>

