
1

Graph Prefetching Using Data 
Structure Knowledge
SAM AINSWORTH, TIMOTHY M. JONES



Background and Motivation
Graph applications are memory latency bound
◦Caches & Prefetching are existing solution for memory 
latency

◦However, irregular access patterns hinder their 
usefulness

Key insight: accesses seem irregular at individual 
load/store level, but have predictable structure 
when we consider the high-level algorithm
◦e.g. Breadth-first search (BFS)

2



Background and Motivation
Existing SW/HW prefetching is insufficient
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Figure 3: Hardware and software prefetching on Graph 500
search with scale 21, edge factor 10.

patterns, as in breadth-first search, these stride patterns do
not appear.

Figure 3(a) shows the impact of existing prefetchers on
the Graph 500 search benchmark on a Core i5 4570. L2
prefetchers, which consist of two distinct prefetchers, bring
almost no benefit, and all combined bring only 17% improve-
ment. The largest contribution is from the L1 data cache’s
DCU IP prefetcher, which prefetches based on sequential
load history and the instruction pointer. This increases per-
formance by 12%, most likely from prefetching edge list data
that is stored contiguously for each vertex.

Software Prefetching In contrast to hardware techniques,
software prefetch instruction can be inserted into the code
when the programmer can give an indication of the most
critical data. Figure 4 shows in detail the data that is prof-
itably prefetched in software. Since prefetches cannot use
the results of a prior prefetch, any loads to obtain data
require stalling; i.e.; to software prefetch the visited list,
we must issue real loads from the work, vertex and edge
lists, causing stalls. Therefore there is a trade-o↵ between
prefetching information close to the work list to reduce loads
(e.g., the vertex list) and the larger amount of information
further away, (e.g., the visited list).

Although we wish to prefetch every edge for each vertex,
this results in too many additional instructions, swamping
the benefits. In addition, we cannot e�ciently analyse the
prefetch distance in software, meaning we must use a fixed
distance even though the workload characteristics change
throughout execution. Combined, these limitations mean
that the best strategy was to add software prefetch between
lines 4 and 5 in algorithm 1, to fetch in the first two cache
lines containing edge list information for a vertex at an o↵set
of 4 on the work list. Varying o↵sets and the number of cache
lines prefetched gave no additional increase in performance,
and attempting to prefetch other data structures in advance,
such as the vertex list and work list, reduced performance.

Combining prefetchers, in figure 3(b), shows that over 35%
performance improvement can be achieved through software
prefetch of the edge list for future vertices, but this still
leaves significant performance on the table: the processor is
still stalled 80% of the time at this graph scale.

2.4 Opportunity
Although breadth-first searches currently have poor per-

formance due to high L1 cache miss rates, and existing
prefetchers are unable to bring significant benefit, the nature
of the search algorithm does lend itself to a di↵erent type of
prefetching. A key feature that distinguishes breadth-first
searches from many other data-dependent traversals is that
the nodes to be visited are generally known a great deal
of time in advance [34]: upon each visit to a node we add

Figure 4: Loads as a result of visiting a node in a breadth
first search. Those which can be prefetched in software
with any observable benefit are shown with dark shading.

its neighbors to a FIFO queue. This known order can be
exploited by a prefetcher with knowledge of the traversal.
However, to determine the addresses to load requires mul-

tiple loads of values itself, making the prefetcher non-trivial.
For example, the first neighbor of a node, n, in the work
list, is obtained by first loading n from the work list, then
using the result to index into the vertex list, and finally
using this data to index into the edge list. This requires
three load requests and a number of address calculations
(array-base+ index ⇥data-size). Thus a prefetcher needs to
be able to deal with this inherent complexity, and be able
to use data loaded from addresses in memory.

3. A GRAPH PREFETCHER
We present a prefetcher for traversals of graphs in CSR

format, which snoops loads to the cache made by both the
CPU and the prefetcher itself to drive new prefetch requests.
Figure 5 gives an overview of the system, which sits alongside
the L1. Although it is more common to target the L2 cache,
prefetching into the L1 provides the best opportunity for
miss-latency reduction, and modern cores include prefetch-
ers at both the L1 and L2 levels [42]. The prefetcher also
has a direct connection from the CPU to enable configura-
tion, and another to the DTLB to enable address transla-
tion, since our prefetcher works on virtual addresses. Virtual
address prefetchers have been proposed previously [43] and
implemented in the Itanium 2 on the instruction side [29].
As described in section 2.2, the majority of the benefits

come from prefetching the edge and visited lists. However,
these are accessed using the work list and vertex list. There-
fore, the prefetcher is configured with the address bounds of
all four of these structures (needed so that it can calculate
addresses from indices), and prefetches issued for each, so a
side e↵ect of bringing in the data we care most about is that
we also prefetch work list and vertex list information.

3.1 Basic Operation
When the application thread is processing vertex n from

the work list, we need to prefetch data for vertex n + o,
where o is an o↵set representing the distance ahead that
we wish to fetch, based on our expected ratio of fetch versus
traversal latencies. Section 3.2 gives more information about
the calculation of o. To prefetch all information related to
the search, the prefetcher needs to perform a fetch of

visited[edgeList[vertexList[workList[n+o]]]]



Background and Motivation - BFS
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Prefetching with Algorithmic Knowledge
Design a hardware prefetcher that relies on 
access patterns specific to algorithms
◦Target BFS, but can support a wider range of 
algorithms/access patterns

◦Specific to Compressed Sparse Row (CSR) format
◦Prefetcher snoop reads/writes from L1 cache

Achieve an average of 2.3x speedup
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Review: Compressed Sparse Row (CSR)
Sparse representation, with a vertex list indirecting
to an edge list
◦Authors add a visited list and work list specifically for BFS
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Figure 1: A compressed sparse row format graph and
breadth-first search on it.

1 Queue workList = {startNode}
2 Array visited[startNode] = true
3 while worklist 6= ? do
4 Node N = workList.dequeue()
5 foreach Edge E 2 N do
6 if visited[E.to] is false then
7 workList.enqueue(E.to)
8 visited[E.to] = true
9 end

10 end
11 end

Algorithm 1: Breadth-first search.

pressed sparse row format is the de facto standard represen-
tation of sparse graphs for high-performance compute due to
its highly e�cient storage format: most current work on high
performance breadth-first search also focuses on this [34,
32]. Although other representations (such as GraphLab [26])
have good distribution properties, they perform more poorly
due to additional overheads, such as data duplication [30].

We introduce a prefetcher that snoops reads of an in-
memory queue to calculate and schedule highly accurate
and timely loads of edge and vertex information into the L1
cache. For computation based around breadth-first search
on compressed sparse row format graphs, our prefetcher
achieves average speedups of 2.3⇥, and up to 3.3⇥, across
a range of applications and graph sizes. We also extend the
prefetcher for sequential iteration on such graphs, as used
in PageRank [35], which achieves average speedups of 2.4⇥
and up to 3.2⇥.

2. BACKGROUND
Compressed sparse row (CSR) data structures are an e�-

cient sparse matrix representation that are commonly used
for in-memory sparse graphs [1, 34] due to their compact na-
ture. They can be used to store adjacency information for
graphs by using two arrays: the edge list, which stores the
non-zero elements of the adjacency matrix as a one dimen-
sional array; and the vertex list, which contains the start
edge list array index for each vertex. An example graph is
shown in figure 1(a); the CSR format vertex list and edge
list are shown in figure 1(b). Note that the CSR structures
contain indices, not pointers, into the data arrays.

2.1 Breadth-First Search
Breadth-first search is a common access pattern in graph

workloads: it can be used as a basic computation kernel to
perform unweighted distance calculations, connected com-
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Figure 2: Core stall rate and L1 cache read miss rate for
Graph 500 search. Loads from the edge and visited lists
account for 94% of the misses.

ponents [34], maximum flows via the Edmonds-Karp algo-
rithm [11], optimal decision tree walking in AI [7], between-
ness centrality [5], and many other algorithms. More re-
cently, the concept has been applied to very large graphs as
a kernel within many sub-linear algorithms, that only oper-
ate on a small fraction of the input data [37].
An overview of breadth-first search is shown in algorithm 1

and an example of one iteration of the outer loop shown in
figure 1(b). From the starting vertex, computation moves
through the graph adding vertices to a FIFO work list queue
(implemented as an array) in the order observed via the
edges out of each node. For example, stating at vertex 5 in
figure 1(a), nodes are visited for breadth-first search in the
order 5, 4, 1, 2, 3, 7, 0, 6.

2.2 Stalling Behavior
The main issue with breadth-first search is that there is

no temporal or spatial locality in accesses to the vertex list,
and only locality in edge list accesses for a single vertex,
meaning that graphs larger than the last-level cache get lit-
tle benefit from caching. Figure 2(a) shows that the Graph
500 search benchmark [32], running on an Intel Core i5 4570
processor, experiences stall rates approaching 90%, increas-
ing with graph size.1 This is due to L1 cache misses ap-
proaching 50%, as can be seen in figure 2(b). Figure 2(c)
shows the breakdown of the extra time spent dealing with
misses for di↵erent types of data, using gem5 for the same
benchmark with scale 16 and edge factor 10. The majority
of additional time is due to edge list misses (69%), because
the edge list is twenty times larger than the vertex list. In
addition, the array that records whether each vertex has
been visited or not is also a significant source of miss time
(25%). Although this is the same size as the vertex list, it
is accessed frequently (once for each edge into a vertex) in
a seemingly random order.

2.3 Conventional Prefetching Techniques
Stride Prefetching In today’s conventional commodity
processors, stride-based prefetchers generally pervade [42].
These prefetchers work well for sequential accesses through
arrays and matrices, but for irregular, data-dependent access

1Section 4 gives more detail on benchmarks, graphs and
experimental setup.



Poor Locality of Accesses in Graphs
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Figure 1: A compressed sparse row format graph and
breadth-first search on it.

1 Queue workList = {startNode}
2 Array visited[startNode] = true
3 while worklist 6= ? do
4 Node N = workList.dequeue()
5 foreach Edge E 2 N do
6 if visited[E.to] is false then
7 workList.enqueue(E.to)
8 visited[E.to] = true
9 end

10 end
11 end

Algorithm 1: Breadth-first search.

pressed sparse row format is the de facto standard represen-
tation of sparse graphs for high-performance compute due to
its highly e�cient storage format: most current work on high
performance breadth-first search also focuses on this [34,
32]. Although other representations (such as GraphLab [26])
have good distribution properties, they perform more poorly
due to additional overheads, such as data duplication [30].

We introduce a prefetcher that snoops reads of an in-
memory queue to calculate and schedule highly accurate
and timely loads of edge and vertex information into the L1
cache. For computation based around breadth-first search
on compressed sparse row format graphs, our prefetcher
achieves average speedups of 2.3⇥, and up to 3.3⇥, across
a range of applications and graph sizes. We also extend the
prefetcher for sequential iteration on such graphs, as used
in PageRank [35], which achieves average speedups of 2.4⇥
and up to 3.2⇥.

2. BACKGROUND
Compressed sparse row (CSR) data structures are an e�-

cient sparse matrix representation that are commonly used
for in-memory sparse graphs [1, 34] due to their compact na-
ture. They can be used to store adjacency information for
graphs by using two arrays: the edge list, which stores the
non-zero elements of the adjacency matrix as a one dimen-
sional array; and the vertex list, which contains the start
edge list array index for each vertex. An example graph is
shown in figure 1(a); the CSR format vertex list and edge
list are shown in figure 1(b). Note that the CSR structures
contain indices, not pointers, into the data arrays.

2.1 Breadth-First Search
Breadth-first search is a common access pattern in graph

workloads: it can be used as a basic computation kernel to
perform unweighted distance calculations, connected com-
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Graph 500 search. Loads from the edge and visited lists
account for 94% of the misses.

ponents [34], maximum flows via the Edmonds-Karp algo-
rithm [11], optimal decision tree walking in AI [7], between-
ness centrality [5], and many other algorithms. More re-
cently, the concept has been applied to very large graphs as
a kernel within many sub-linear algorithms, that only oper-
ate on a small fraction of the input data [37].
An overview of breadth-first search is shown in algorithm 1

and an example of one iteration of the outer loop shown in
figure 1(b). From the starting vertex, computation moves
through the graph adding vertices to a FIFO work list queue
(implemented as an array) in the order observed via the
edges out of each node. For example, stating at vertex 5 in
figure 1(a), nodes are visited for breadth-first search in the
order 5, 4, 1, 2, 3, 7, 0, 6.

2.2 Stalling Behavior
The main issue with breadth-first search is that there is

no temporal or spatial locality in accesses to the vertex list,
and only locality in edge list accesses for a single vertex,
meaning that graphs larger than the last-level cache get lit-
tle benefit from caching. Figure 2(a) shows that the Graph
500 search benchmark [32], running on an Intel Core i5 4570
processor, experiences stall rates approaching 90%, increas-
ing with graph size.1 This is due to L1 cache misses ap-
proaching 50%, as can be seen in figure 2(b). Figure 2(c)
shows the breakdown of the extra time spent dealing with
misses for di↵erent types of data, using gem5 for the same
benchmark with scale 16 and edge factor 10. The majority
of additional time is due to edge list misses (69%), because
the edge list is twenty times larger than the vertex list. In
addition, the array that records whether each vertex has
been visited or not is also a significant source of miss time
(25%). Although this is the same size as the vertex list, it
is accessed frequently (once for each edge into a vertex) in
a seemingly random order.

2.3 Conventional Prefetching Techniques
Stride Prefetching In today’s conventional commodity
processors, stride-based prefetchers generally pervade [42].
These prefetchers work well for sequential accesses through
arrays and matrices, but for irregular, data-dependent access

1Section 4 gives more detail on benchmarks, graphs and
experimental setup.



Overview of Approach
Prefetch all relevant data of o-distance away from the 
current worklist entry:

Prefetcher snoops the core-to-L1 mem. accesses to 
determine which data to prefetch
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Figure 3: Hardware and software prefetching on Graph 500
search with scale 21, edge factor 10.

patterns, as in breadth-first search, these stride patterns do
not appear.

Figure 3(a) shows the impact of existing prefetchers on
the Graph 500 search benchmark on a Core i5 4570. L2
prefetchers, which consist of two distinct prefetchers, bring
almost no benefit, and all combined bring only 17% improve-
ment. The largest contribution is from the L1 data cache’s
DCU IP prefetcher, which prefetches based on sequential
load history and the instruction pointer. This increases per-
formance by 12%, most likely from prefetching edge list data
that is stored contiguously for each vertex.

Software Prefetching In contrast to hardware techniques,
software prefetch instruction can be inserted into the code
when the programmer can give an indication of the most
critical data. Figure 4 shows in detail the data that is prof-
itably prefetched in software. Since prefetches cannot use
the results of a prior prefetch, any loads to obtain data
require stalling; i.e.; to software prefetch the visited list,
we must issue real loads from the work, vertex and edge
lists, causing stalls. Therefore there is a trade-o↵ between
prefetching information close to the work list to reduce loads
(e.g., the vertex list) and the larger amount of information
further away, (e.g., the visited list).

Although we wish to prefetch every edge for each vertex,
this results in too many additional instructions, swamping
the benefits. In addition, we cannot e�ciently analyse the
prefetch distance in software, meaning we must use a fixed
distance even though the workload characteristics change
throughout execution. Combined, these limitations mean
that the best strategy was to add software prefetch between
lines 4 and 5 in algorithm 1, to fetch in the first two cache
lines containing edge list information for a vertex at an o↵set
of 4 on the work list. Varying o↵sets and the number of cache
lines prefetched gave no additional increase in performance,
and attempting to prefetch other data structures in advance,
such as the vertex list and work list, reduced performance.

Combining prefetchers, in figure 3(b), shows that over 35%
performance improvement can be achieved through software
prefetch of the edge list for future vertices, but this still
leaves significant performance on the table: the processor is
still stalled 80% of the time at this graph scale.

2.4 Opportunity
Although breadth-first searches currently have poor per-

formance due to high L1 cache miss rates, and existing
prefetchers are unable to bring significant benefit, the nature
of the search algorithm does lend itself to a di↵erent type of
prefetching. A key feature that distinguishes breadth-first
searches from many other data-dependent traversals is that
the nodes to be visited are generally known a great deal
of time in advance [34]: upon each visit to a node we add

Figure 4: Loads as a result of visiting a node in a breadth
first search. Those which can be prefetched in software
with any observable benefit are shown with dark shading.

its neighbors to a FIFO queue. This known order can be
exploited by a prefetcher with knowledge of the traversal.
However, to determine the addresses to load requires mul-

tiple loads of values itself, making the prefetcher non-trivial.
For example, the first neighbor of a node, n, in the work
list, is obtained by first loading n from the work list, then
using the result to index into the vertex list, and finally
using this data to index into the edge list. This requires
three load requests and a number of address calculations
(array-base+ index ⇥data-size). Thus a prefetcher needs to
be able to deal with this inherent complexity, and be able
to use data loaded from addresses in memory.

3. A GRAPH PREFETCHER
We present a prefetcher for traversals of graphs in CSR

format, which snoops loads to the cache made by both the
CPU and the prefetcher itself to drive new prefetch requests.
Figure 5 gives an overview of the system, which sits alongside
the L1. Although it is more common to target the L2 cache,
prefetching into the L1 provides the best opportunity for
miss-latency reduction, and modern cores include prefetch-
ers at both the L1 and L2 levels [42]. The prefetcher also
has a direct connection from the CPU to enable configura-
tion, and another to the DTLB to enable address transla-
tion, since our prefetcher works on virtual addresses. Virtual
address prefetchers have been proposed previously [43] and
implemented in the Itanium 2 on the instruction side [29].
As described in section 2.2, the majority of the benefits

come from prefetching the edge and visited lists. However,
these are accessed using the work list and vertex list. There-
fore, the prefetcher is configured with the address bounds of
all four of these structures (needed so that it can calculate
addresses from indices), and prefetches issued for each, so a
side e↵ect of bringing in the data we care most about is that
we also prefetch work list and vertex list information.

3.1 Basic Operation
When the application thread is processing vertex n from

the work list, we need to prefetch data for vertex n + o,
where o is an o↵set representing the distance ahead that
we wish to fetch, based on our expected ratio of fetch versus
traversal latencies. Section 3.2 gives more information about
the calculation of o. To prefetch all information related to
the search, the prefetcher needs to perform a fetch of

visited[edgeList[vertexList[workList[n+o]]]]
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Figure 5: A graph prefetcher, configured with in-memory data structures, to which it snoops accesses.

Vertex-O↵set Mode

Observation Action

Load from workList[n] Prefetch workList[n+o]

Prefetch vid = workList[n] Prefetch vertexList[vid]

Prefetch from vertexList[vid] Prefetch edgeList[vertexList[vid]] to
edgeList[vertexList[vid+1]] (12 lines max)

Prefetch vid = edgeList[eid] Prefetch visited[vid]

Large-Vertex Mode

Observation Action

Prefetch vid = workList[n] Prefetch vertexList[vid]

Prefetch eid = vertexList[vid] Prefetch edgeList[eid] to
edgeList[eid + 8*lineSize - 1]

Load from edgeList[eid] where
(eid % (4*lineSize)) == 0

Prefetch edgeList[eid + 4*lineSize] to
edgeList[eid + 8*lineSize - 1]

Prefetch vid = edgeList[eid] Prefetch visited[vid]

Prefetch edgeList[vertexList[vid+1]] Prefetch workList[n+1]

Table 1: Actions taken by the prefetcher in response to observations on L1 activity.

for all edges out of this node. Prefetching the first data,
workList[n+o], gives the vertex ID, v, of the node and
vertexList[v] brings in the start edge index. The end edge
index (vertexList[v+1]) is usually in the same cache line;
if not then we estimate that there will be two cache lines
of edge data for the vertex. For each edge, e, prefetching
edgeList[e] gives the node ID of a neighbouring vertex to
v, which is also the index into the visited list.

The prefetcher snoops L1 accesses by the core. Observa-
tion of an access to workList[n] triggers a chain of depen-
dent prefetches for node v, starting with the generation of
a prefetch to workList[n+o], which the L1 issues when an
MSHR is available. The prefetcher snoops the memory bus
and detects the return of the data, which it copies. It can
then calculate the address in the vertex list to access, and
issue a prefetch for that. Similar actions are performed to
generate prefetches for the edge and visited lists.

3.2 Scheduling Prefetches
The key questions with any prefetcher are what to prefetch

and when. In the ideal case, we prefetch all the information
for the node at o↵set o from the current node on the work list
using equation 1, where work list time is the average time
between processing nodes on the work list and data time
is the average time to fetch in data required by a single
vertex. In other words, all the data for node n + o on the

work list will arrive in the cache just in time for it to be
required. This technique was proposed by Mowry et al. [31]
to set prefetch distances in a static compiler pass. Here we
provide a dynamic implementation to make use of runtime
data.

o ⇤ work list time = data time (1)

Since work list time and data time can vary wildly both
between and within applications, depending on the num-
ber of edges out of each node in the graph, we use expo-
nentially weighted moving averages (EWMAs) to estimate
their values for any given point in time. Equation 2 gives
the generalised EWMA equation. We use ↵ = 8 to estimate
work list time and ↵ = 16 to estimate data time, which
is more heavily dampened to avoid chance edges in the L2
from reducing the estimate too dramatically. We evaluate
the impact of altering ↵ in section 5.

avg time
new

=
new time + (↵� 1)avg time

old

↵

(2)

The EWMA approach works well for graphs of di↵erent
sizes, as well as those with a highly-variable number of edges
per vertex. Due to the bias of breadth-first search [20], a
search is more likely to visit larger vertices first and smaller
ones towards the end, and thus the search proceeds in phases.

Vertex-O↵set Mode When data time > work list time
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Figure 5: A graph prefetcher, configured with in-memory data structures, to which it snoops accesses.

Vertex-O↵set Mode

Observation Action

Load from workList[n] Prefetch workList[n+o]

Prefetch vid = workList[n] Prefetch vertexList[vid]

Prefetch from vertexList[vid] Prefetch edgeList[vertexList[vid]] to
edgeList[vertexList[vid+1]] (12 lines max)

Prefetch vid = edgeList[eid] Prefetch visited[vid]

Large-Vertex Mode

Observation Action

Prefetch vid = workList[n] Prefetch vertexList[vid]

Prefetch eid = vertexList[vid] Prefetch edgeList[eid] to
edgeList[eid + 8*lineSize - 1]

Load from edgeList[eid] where
(eid % (4*lineSize)) == 0

Prefetch edgeList[eid + 4*lineSize] to
edgeList[eid + 8*lineSize - 1]

Prefetch vid = edgeList[eid] Prefetch visited[vid]

Prefetch edgeList[vertexList[vid+1]] Prefetch workList[n+1]

Table 1: Actions taken by the prefetcher in response to observations on L1 activity.

for all edges out of this node. Prefetching the first data,
workList[n+o], gives the vertex ID, v, of the node and
vertexList[v] brings in the start edge index. The end edge
index (vertexList[v+1]) is usually in the same cache line;
if not then we estimate that there will be two cache lines
of edge data for the vertex. For each edge, e, prefetching
edgeList[e] gives the node ID of a neighbouring vertex to
v, which is also the index into the visited list.

The prefetcher snoops L1 accesses by the core. Observa-
tion of an access to workList[n] triggers a chain of depen-
dent prefetches for node v, starting with the generation of
a prefetch to workList[n+o], which the L1 issues when an
MSHR is available. The prefetcher snoops the memory bus
and detects the return of the data, which it copies. It can
then calculate the address in the vertex list to access, and
issue a prefetch for that. Similar actions are performed to
generate prefetches for the edge and visited lists.

3.2 Scheduling Prefetches
The key questions with any prefetcher are what to prefetch

and when. In the ideal case, we prefetch all the information
for the node at o↵set o from the current node on the work list
using equation 1, where work list time is the average time
between processing nodes on the work list and data time
is the average time to fetch in data required by a single
vertex. In other words, all the data for node n + o on the

work list will arrive in the cache just in time for it to be
required. This technique was proposed by Mowry et al. [31]
to set prefetch distances in a static compiler pass. Here we
provide a dynamic implementation to make use of runtime
data.

o ⇤ work list time = data time (1)

Since work list time and data time can vary wildly both
between and within applications, depending on the num-
ber of edges out of each node in the graph, we use expo-
nentially weighted moving averages (EWMAs) to estimate
their values for any given point in time. Equation 2 gives
the generalised EWMA equation. We use ↵ = 8 to estimate
work list time and ↵ = 16 to estimate data time, which
is more heavily dampened to avoid chance edges in the L2
from reducing the estimate too dramatically. We evaluate
the impact of altering ↵ in section 5.

avg time
new

=
new time + (↵� 1)avg time

old

↵

(2)

The EWMA approach works well for graphs of di↵erent
sizes, as well as those with a highly-variable number of edges
per vertex. Due to the bias of breadth-first search [20], a
search is more likely to visit larger vertices first and smaller
ones towards the end, and thus the search proceeds in phases.

Vertex-O↵set Mode When data time > work list time
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Figure 5: A graph prefetcher, configured with in-memory data structures, to which it snoops accesses.

Vertex-O↵set Mode

Observation Action

Load from workList[n] Prefetch workList[n+o]

Prefetch vid = workList[n] Prefetch vertexList[vid]

Prefetch from vertexList[vid] Prefetch edgeList[vertexList[vid]] to
edgeList[vertexList[vid+1]] (12 lines max)

Prefetch vid = edgeList[eid] Prefetch visited[vid]

Large-Vertex Mode

Observation Action

Prefetch vid = workList[n] Prefetch vertexList[vid]

Prefetch eid = vertexList[vid] Prefetch edgeList[eid] to
edgeList[eid + 8*lineSize - 1]

Load from edgeList[eid] where
(eid % (4*lineSize)) == 0

Prefetch edgeList[eid + 4*lineSize] to
edgeList[eid + 8*lineSize - 1]

Prefetch vid = edgeList[eid] Prefetch visited[vid]

Prefetch edgeList[vertexList[vid+1]] Prefetch workList[n+1]

Table 1: Actions taken by the prefetcher in response to observations on L1 activity.

for all edges out of this node. Prefetching the first data,
workList[n+o], gives the vertex ID, v, of the node and
vertexList[v] brings in the start edge index. The end edge
index (vertexList[v+1]) is usually in the same cache line;
if not then we estimate that there will be two cache lines
of edge data for the vertex. For each edge, e, prefetching
edgeList[e] gives the node ID of a neighbouring vertex to
v, which is also the index into the visited list.

The prefetcher snoops L1 accesses by the core. Observa-
tion of an access to workList[n] triggers a chain of depen-
dent prefetches for node v, starting with the generation of
a prefetch to workList[n+o], which the L1 issues when an
MSHR is available. The prefetcher snoops the memory bus
and detects the return of the data, which it copies. It can
then calculate the address in the vertex list to access, and
issue a prefetch for that. Similar actions are performed to
generate prefetches for the edge and visited lists.

3.2 Scheduling Prefetches
The key questions with any prefetcher are what to prefetch

and when. In the ideal case, we prefetch all the information
for the node at o↵set o from the current node on the work list
using equation 1, where work list time is the average time
between processing nodes on the work list and data time
is the average time to fetch in data required by a single
vertex. In other words, all the data for node n + o on the

work list will arrive in the cache just in time for it to be
required. This technique was proposed by Mowry et al. [31]
to set prefetch distances in a static compiler pass. Here we
provide a dynamic implementation to make use of runtime
data.

o ⇤ work list time = data time (1)

Since work list time and data time can vary wildly both
between and within applications, depending on the num-
ber of edges out of each node in the graph, we use expo-
nentially weighted moving averages (EWMAs) to estimate
their values for any given point in time. Equation 2 gives
the generalised EWMA equation. We use ↵ = 8 to estimate
work list time and ↵ = 16 to estimate data time, which
is more heavily dampened to avoid chance edges in the L2
from reducing the estimate too dramatically. We evaluate
the impact of altering ↵ in section 5.

avg time
new

=
new time + (↵� 1)avg time

old

↵

(2)

The EWMA approach works well for graphs of di↵erent
sizes, as well as those with a highly-variable number of edges
per vertex. Due to the bias of breadth-first search [20], a
search is more likely to visit larger vertices first and smaller
ones towards the end, and thus the search proceeds in phases.

Vertex-O↵set Mode When data time > work list time

Programmer 
must specify
these bounds



Determining Prefetch Distance
Easy Case: Time to process a vertex (work_list_time) is 
less than time to pre-fetch the next vertex (data_time)

◦work_list_time and data_time vary wildly => use exponentially 
weighted moving averages (EWMA)

◦Use a safe bound because EWMA often underestimates 
data_time:

11
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Structure Configuration

Core 3-Wide, out-of-order, 3.2GHz
ROB 40 Entries
L/S Queues 16 / 16 Entries
Issue Queue 32 Entries
Registers 128 Int, 128 FP
ALUs 3 Int, 2 FP, 1 Mult/Div
Branch Pred. Tournament with 2048-entry local,

8192-entry global, 2048-entry chooser,
2048-entry BTB, 16-entry RAS

L1 TLB 64 entry, fully associative
L2 TLB 4096 entry, 8-way assoc, 8-cycle hit lat
Page Table Walker 3 simultaneous walks
L1 Caches 32kB, 2-way, 2-cycle hit lat, 12 MSHRs
L2 Cache 1MB, 16-way, 12-cycle hit lat, 16 MSHRs
Memory DDR3-1600 11-11-11-28 800MHz
Prefetcher 200-entry queue, BFS prefetcher
Operating System Ubuntu 14.04 LTS

Table 2: Core and memory experimental setup.

then we use equation 3 to prefetch at an o↵set from the
current node on the work list, where k is a multiplicative
constant to mitigate the fact that an average always under-
estimates the maximum time to fetch (2 in our simulations),
and also to bias the timeliness of the prefetcher to make it
more conservative, ensuring data arrives in the cache before
it is requested.

o = 1 +
k ⇤ data time
work list time

(3)

The vertex-o↵set mode is used when prefetching all infor-
mation for a node on the work list takes more time than the
application takes to process each node. In this situation we
need to start prefetches for several vertices in advance, in
order to ensure the data is in the cache when the program
wants to use it.

Large-Vertex Mode On the other hand, when data time <

work list time, then each vertex takes longer to process than
the time to load in all data for the next. Prefetching at a
simple o↵set of 1 from the work list runs the risk of bring-
ing data into the L1 that gets evicted before it is used. In
this case we enter large-vertex mode, where we base our
prefetches on the progress of computation through the cur-
rent vertex’s edges. As we know the range of edge list indices
required, we prefetch 21 cache lines’ worth of data, followed
by prefetches of stride size 14 upon read observation. In
other words, we continually prefetch

firstLine = edgeList[idx + 14*lineSize]

where idx is the current edge list index being processed, and
lineSize is the size of a cache line. This means we have a
constant, small fetch distance in these situations.

We schedule a fetch for the next vertex in the work list
when we are four cache lines away from the end of the cur-
rent vertex’s edge list. Although we could use a variable
distance based on past history, this access pattern involves
comparatively few cache lines at once, so we can a↵ord to
be conservative, targeting the case where little work is done
between edges, and all other cases will be adequately accom-
modated as a result.

3.3 Implementation
Given the two modes of operation described in section 3.2,

the prefetcher can be implemented as several finite state ma-

chines that react to activity in the L1 cache that it snoops.
Table 1 shows the events that the prefetcher observes, along
with the actions it takes in response.

Configuration Unfortunately it is too complex for the
prefetcher to learn the address bounds of each list in mem-
ory, therefore the application must explicitly specify these as
a configuration step prior to traversing the graph. Although
this requires a recompilation to make use of the prefetcher,
functionality can be hidden in a library call and for high per-
formance applications this is unlikely to be a major hurdle.

Operation Whenever an address from a load or prefetch is
observed, it is compared to each of the ranges to determine
whether it is providing data from one of the lists. If so, then
an appropriate prefetch can be issued to bring in more data
that will be used in the future. For example, when in vertex-
o↵set mode, a load from the work list kicks o↵ prefetching
data for a later vertex on the work list using the o↵set cal-
culated in section 3.2. On the other hand, observation of a
prefetch from the work list means that the prefetcher can
read the data and proceed to prefetch from the vertex list.
The prefetcher assumes that consecutive values in the ver-

tex list are available in the same cache line, which greatly
reduces the complexity of the state machine as it never needs
to calculate on data from multiple cache lines at the same
time. The downside is that it reduces the capability of the
prefetcher in cases where the start and end index of a vertex
actually are in di↵erent cache lines. In these cases we as-
sume all edge list information will be contained in two cache
lines and, if we’re in large-vertex mode, then we correct this
information once the true value has been loaded in by the
application itself.

3.4 Hardware Requirements
Our prefetcher consists of 5 structures, as shown in fig-

ure 5a. Snooped addresses and prefetched data from the
L1 cache are processed by the address filter. This uses the
address bounds registers to determine which data structure
the access belongs to, or to avoid prefetching based on L1
accesses to memory outside these structures. We require
8 64-bit registers to store the bounds of the 4 lists when
traversing a CSR graph.
Accesses that pass the address filter move into the prefetch

address generator. This contains 2 adders to generate up to
two new addresses to prefetch, based on the rules shown in
table 1. In addition, for prefetches to the work list, it reads
the values of the three registers from within the EWMA
unit. The output is up to two prefetch addresses which are
written into the prefetch request queue.
Alongside the three registers (two EMWAs and one ra-

tio), the EMWA unit contains logic for updating them. The
EWMAs are e�cient to implement [8], requiring an adder
and a multiplier each, and can sample accesses to the lists
to estimate their latencies. The ratio register requires a di-
vider, but as this is updated infrequently it need not be high
performance.
In total, the prefetcher requires just over 1.6KB of storage

(200 ⇥ 64-bit prefetch request queue entries and 11 times

64-bit registers), 4 adders, 2 multipliers and a divider. This
compares favorably to stride prefetchers (typically 1KB
storage) and history-based prefetchers, such as Markov [15],
which require large stores (32KB to MBs[12]) of past infor-
mation to predict the future.
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Figure 5: A graph prefetcher, configured with in-memory data structures, to which it snoops accesses.

Vertex-O↵set Mode

Observation Action

Load from workList[n] Prefetch workList[n+o]

Prefetch vid = workList[n] Prefetch vertexList[vid]

Prefetch from vertexList[vid] Prefetch edgeList[vertexList[vid]] to
edgeList[vertexList[vid+1]] (12 lines max)

Prefetch vid = edgeList[eid] Prefetch visited[vid]

Large-Vertex Mode

Observation Action

Prefetch vid = workList[n] Prefetch vertexList[vid]

Prefetch eid = vertexList[vid] Prefetch edgeList[eid] to
edgeList[eid + 8*lineSize - 1]

Load from edgeList[eid] where
(eid % (4*lineSize)) == 0

Prefetch edgeList[eid + 4*lineSize] to
edgeList[eid + 8*lineSize - 1]

Prefetch vid = edgeList[eid] Prefetch visited[vid]

Prefetch edgeList[vertexList[vid+1]] Prefetch workList[n+1]

Table 1: Actions taken by the prefetcher in response to observations on L1 activity.

for all edges out of this node. Prefetching the first data,
workList[n+o], gives the vertex ID, v, of the node and
vertexList[v] brings in the start edge index. The end edge
index (vertexList[v+1]) is usually in the same cache line;
if not then we estimate that there will be two cache lines
of edge data for the vertex. For each edge, e, prefetching
edgeList[e] gives the node ID of a neighbouring vertex to
v, which is also the index into the visited list.

The prefetcher snoops L1 accesses by the core. Observa-
tion of an access to workList[n] triggers a chain of depen-
dent prefetches for node v, starting with the generation of
a prefetch to workList[n+o], which the L1 issues when an
MSHR is available. The prefetcher snoops the memory bus
and detects the return of the data, which it copies. It can
then calculate the address in the vertex list to access, and
issue a prefetch for that. Similar actions are performed to
generate prefetches for the edge and visited lists.

3.2 Scheduling Prefetches
The key questions with any prefetcher are what to prefetch

and when. In the ideal case, we prefetch all the information
for the node at o↵set o from the current node on the work list
using equation 1, where work list time is the average time
between processing nodes on the work list and data time
is the average time to fetch in data required by a single
vertex. In other words, all the data for node n + o on the

work list will arrive in the cache just in time for it to be
required. This technique was proposed by Mowry et al. [31]
to set prefetch distances in a static compiler pass. Here we
provide a dynamic implementation to make use of runtime
data.

o ⇤ work list time = data time (1)

Since work list time and data time can vary wildly both
between and within applications, depending on the num-
ber of edges out of each node in the graph, we use expo-
nentially weighted moving averages (EWMAs) to estimate
their values for any given point in time. Equation 2 gives
the generalised EWMA equation. We use ↵ = 8 to estimate
work list time and ↵ = 16 to estimate data time, which
is more heavily dampened to avoid chance edges in the L2
from reducing the estimate too dramatically. We evaluate
the impact of altering ↵ in section 5.

avg time
new

=
new time + (↵� 1)avg time

old

↵

(2)

The EWMA approach works well for graphs of di↵erent
sizes, as well as those with a highly-variable number of edges
per vertex. Due to the bias of breadth-first search [20], a
search is more likely to visit larger vertices first and smaller
ones towards the end, and thus the search proceeds in phases.

Vertex-O↵set Mode When data time > work list time



Determining Prefetch Distance
Problem: work_list_time > data_time
◦Pre-fetched data is not used timely, might get kicked 
out of cache before it is used!

◦Happens with high-degree vertices
Solution: Large vertex mode
◦Base prefetch on how far along we have processed the 
high-degree vertex
»Possible because we know the range of the edge indices

◦Prefetch within edgeList for larger vertex
◦Fetch need vertex in worklist when almost done with 
current vertex’s edges

12



Extensions
Technique can be extended to other algorithms:
◦Parallel BFS
◦Sequentially scanning vertex and edge data (e.g. 
PageRank)

13



Methodology
gem5 simulator
Set of algorithms from Graph500 and the Boost 
Graph Library:
◦BFS-like traversal: Connected components, BFS, 
betweenness-centrality, ST connectivity

◦Sequential access: PageRank, sequential coloring

14



Evaluation - BFS-like traversal
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Figure 6: Speedups for our hardware graph prefetcher against stride and stride-indirect schemes.
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Figure 7: Hit rates in the L1 cache with and without
prefetching.

5. EVALUATION
We first evaluate our prefetcher on breadth-first-search-

based applications and analyse the results. Then we move
on to algorithms that perform sequential access through data
structures, and parallel breadth-first search.

5.1 Performance
Our hardware prefetcher brings average speedups of 2.8⇥

on Graph 500 and 1.8⇥ on BGL algorithms. Figure 6 shows
the performance of the breadth-first search (BFS) hardware
prefetcher against the best stride scheme under simulation,
and a stride-indirect scheme as suggested by Yu et al. [44],
which strides on the edge list into the visited list. Stride
prefetching performs poorly, obtaining an average of 1.1⇥.
Stride-indirect performs only slightly better with an average
of 1.2⇥, as breadth first searches do not exhibit this pat-
tern significantly, causing a large number of unused memory
accesses. For comparison, under the same simulation con-
ditions, augmenting binaries with software prefetching gave
speedups of no more than 1.1⇥.

Our hardware prefetcher increases performance by over
2⇥ across the board for Graph 500. In the BGL algorithms,
basic breadth-first searches perform comparably to Graph
500’s search, but betweenness centrality achieves a much
smaller performance increase, averaging 20%, due to signif-
icantly more calculation and non-breadth-first-search data
accesses. In fact, the Boost betweenness centrality code in-
volves data-dependent accesses to various queue structures
and dependency metrics, which are only accessed on some
edge visits and are not possible to prefetch accurately. This
algorithm also accesses two data structures indexed by the
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Figure 8: Percentage of additional memory accesses as a
result of using our prefetcher.
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before leaving the L1 cache.

edge value: the visited list, and also a distance vector. For
evaluation, we implemented an extension for the prefetcher
to set two “visited” lists, allowing both to be prefetched,
improving on average by an extra 5%.
Around 20% of our benefit comes from prefetching TLB

entries; due to the heavily irregular data accesses observed,
and the large data size, many pages are in active use at
once. However, by virtue of prefetching these entries when
performing prefetching of the data itself, these entries should
be in the L2 TLB when the main thread reaches a given load,
avoiding stalls on table walks.

5.2 Analysis
We now analyse the e↵ect of our prefetcher on the system,

considering the changes in L1 hit rates, memory accesses and
utilisation of prefetched data, shown in figures 7 to 9.
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Figure 6: Speedups for our hardware graph prefetcher against stride and stride-indirect schemes.
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prefetching.

5. EVALUATION
We first evaluate our prefetcher on breadth-first-search-

based applications and analyse the results. Then we move
on to algorithms that perform sequential access through data
structures, and parallel breadth-first search.

5.1 Performance
Our hardware prefetcher brings average speedups of 2.8⇥

on Graph 500 and 1.8⇥ on BGL algorithms. Figure 6 shows
the performance of the breadth-first search (BFS) hardware
prefetcher against the best stride scheme under simulation,
and a stride-indirect scheme as suggested by Yu et al. [44],
which strides on the edge list into the visited list. Stride
prefetching performs poorly, obtaining an average of 1.1⇥.
Stride-indirect performs only slightly better with an average
of 1.2⇥, as breadth first searches do not exhibit this pat-
tern significantly, causing a large number of unused memory
accesses. For comparison, under the same simulation con-
ditions, augmenting binaries with software prefetching gave
speedups of no more than 1.1⇥.

Our hardware prefetcher increases performance by over
2⇥ across the board for Graph 500. In the BGL algorithms,
basic breadth-first searches perform comparably to Graph
500’s search, but betweenness centrality achieves a much
smaller performance increase, averaging 20%, due to signif-
icantly more calculation and non-breadth-first-search data
accesses. In fact, the Boost betweenness centrality code in-
volves data-dependent accesses to various queue structures
and dependency metrics, which are only accessed on some
edge visits and are not possible to prefetch accurately. This
algorithm also accesses two data structures indexed by the
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edge value: the visited list, and also a distance vector. For
evaluation, we implemented an extension for the prefetcher
to set two “visited” lists, allowing both to be prefetched,
improving on average by an extra 5%.
Around 20% of our benefit comes from prefetching TLB

entries; due to the heavily irregular data accesses observed,
and the large data size, many pages are in active use at
once. However, by virtue of prefetching these entries when
performing prefetching of the data itself, these entries should
be in the L2 TLB when the main thread reaches a given load,
avoiding stalls on table walks.

5.2 Analysis
We now analyse the e↵ect of our prefetcher on the system,

considering the changes in L1 hit rates, memory accesses and
utilisation of prefetched data, shown in figures 7 to 9.
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Figure 6: Speedups for our hardware graph prefetcher against stride and stride-indirect schemes.
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Figure 7: Hit rates in the L1 cache with and without
prefetching.

5. EVALUATION
We first evaluate our prefetcher on breadth-first-search-

based applications and analyse the results. Then we move
on to algorithms that perform sequential access through data
structures, and parallel breadth-first search.

5.1 Performance
Our hardware prefetcher brings average speedups of 2.8⇥

on Graph 500 and 1.8⇥ on BGL algorithms. Figure 6 shows
the performance of the breadth-first search (BFS) hardware
prefetcher against the best stride scheme under simulation,
and a stride-indirect scheme as suggested by Yu et al. [44],
which strides on the edge list into the visited list. Stride
prefetching performs poorly, obtaining an average of 1.1⇥.
Stride-indirect performs only slightly better with an average
of 1.2⇥, as breadth first searches do not exhibit this pat-
tern significantly, causing a large number of unused memory
accesses. For comparison, under the same simulation con-
ditions, augmenting binaries with software prefetching gave
speedups of no more than 1.1⇥.

Our hardware prefetcher increases performance by over
2⇥ across the board for Graph 500. In the BGL algorithms,
basic breadth-first searches perform comparably to Graph
500’s search, but betweenness centrality achieves a much
smaller performance increase, averaging 20%, due to signif-
icantly more calculation and non-breadth-first-search data
accesses. In fact, the Boost betweenness centrality code in-
volves data-dependent accesses to various queue structures
and dependency metrics, which are only accessed on some
edge visits and are not possible to prefetch accurately. This
algorithm also accesses two data structures indexed by the
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Figure 8: Percentage of additional memory accesses as a
result of using our prefetcher.
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edge value: the visited list, and also a distance vector. For
evaluation, we implemented an extension for the prefetcher
to set two “visited” lists, allowing both to be prefetched,
improving on average by an extra 5%.
Around 20% of our benefit comes from prefetching TLB

entries; due to the heavily irregular data accesses observed,
and the large data size, many pages are in active use at
once. However, by virtue of prefetching these entries when
performing prefetching of the data itself, these entries should
be in the L2 TLB when the main thread reaches a given load,
avoiding stalls on table walks.

5.2 Analysis
We now analyse the e↵ect of our prefetcher on the system,

considering the changes in L1 hit rates, memory accesses and
utilisation of prefetched data, shown in figures 7 to 9.
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Figure 6: Speedups for our hardware graph prefetcher against stride and stride-indirect schemes.
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Figure 7: Hit rates in the L1 cache with and without
prefetching.

5. EVALUATION
We first evaluate our prefetcher on breadth-first-search-

based applications and analyse the results. Then we move
on to algorithms that perform sequential access through data
structures, and parallel breadth-first search.

5.1 Performance
Our hardware prefetcher brings average speedups of 2.8⇥

on Graph 500 and 1.8⇥ on BGL algorithms. Figure 6 shows
the performance of the breadth-first search (BFS) hardware
prefetcher against the best stride scheme under simulation,
and a stride-indirect scheme as suggested by Yu et al. [44],
which strides on the edge list into the visited list. Stride
prefetching performs poorly, obtaining an average of 1.1⇥.
Stride-indirect performs only slightly better with an average
of 1.2⇥, as breadth first searches do not exhibit this pat-
tern significantly, causing a large number of unused memory
accesses. For comparison, under the same simulation con-
ditions, augmenting binaries with software prefetching gave
speedups of no more than 1.1⇥.

Our hardware prefetcher increases performance by over
2⇥ across the board for Graph 500. In the BGL algorithms,
basic breadth-first searches perform comparably to Graph
500’s search, but betweenness centrality achieves a much
smaller performance increase, averaging 20%, due to signif-
icantly more calculation and non-breadth-first-search data
accesses. In fact, the Boost betweenness centrality code in-
volves data-dependent accesses to various queue structures
and dependency metrics, which are only accessed on some
edge visits and are not possible to prefetch accurately. This
algorithm also accesses two data structures indexed by the
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result of using our prefetcher.
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before leaving the L1 cache.

edge value: the visited list, and also a distance vector. For
evaluation, we implemented an extension for the prefetcher
to set two “visited” lists, allowing both to be prefetched,
improving on average by an extra 5%.
Around 20% of our benefit comes from prefetching TLB

entries; due to the heavily irregular data accesses observed,
and the large data size, many pages are in active use at
once. However, by virtue of prefetching these entries when
performing prefetching of the data itself, these entries should
be in the L2 TLB when the main thread reaches a given load,
avoiding stalls on table walks.

5.2 Analysis
We now analyse the e↵ect of our prefetcher on the system,

considering the changes in L1 hit rates, memory accesses and
utilisation of prefetched data, shown in figures 7 to 9.



Prefetching Analysis
Most of the benefit comes from prefetching 
visited & edge lists -> as expected!
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Figure 10: The proportion of speedup from prefetching
each data structure within the breadth first search.

L1 Cache Read Hit Rates Our hardware prefetcher
boosts L1 hit rates, and even small increases can result in
large performance gains. In Graph 500 benchmarks, the
baseline hit rates are mostly under 40% and these increase
to over 80%. However, in BGL algorithms, baseline hit rates
are already high at 80% or more, due to a large number of
register spills. These result in loads to addresses that are
still in the L1 cache, which are relatively unimportant in the
overall run time of the program. Our prefetcher increases
the hit rate marginally, but crucially these additional hits
are to time-sensitive data from the edge and visited lists,
resulting in significant speedups.

Memory Accesses If a prefetcher fetches too much in-
correct data from main memory, then a potentially severe
ine�ciency comes about in terms of power usage. To this
end, any prefetcher targeting the reduction of energy usage
by reducing stalls needs to keep such fetches to a minimum.
Figure 8 shows the percentage increase in memory bytes ac-
cessed from main memory for each of the benchmarks and
graphs we tested. The average is 9%, which translates into
150MB/s (or approximately 3 cache lines every 4,000 cy-
cles) extra data being fetched. Betweenness Centrality on
the web input su↵ers from the most extra accesses: as it has
very low locality and a small number of edges per vertex,
the assumption that we will access every edge in a loaded
cache line shortly after loading is incorrect. Indeed, this
input receives only minor benefit from prefetching visited
information, as can be seen in figure 10; without visited
prefetching we gain 1.24⇥ for 2% extra memory accesses.

L1 Prefetch Utilisation Figure 9 shows the proportion
of prefetches that are used before eviction from the L1 cache.
These values are more dependent on timeliness than the
number of extra memory accesses: for a prefetched cache
line to be read from the L1 it needs to be fetched a short
time beforehand. However, even when prefetched data is
evicted from the L1 before being used, we still gain the ben-
efits of having it in the L2 cache instead of main memory.

The vast majority of prefetched cache lines are read at
least once from the L1 for most test cases. A notable ex-
ception is the web input for BGL algorithms, where around
half of prefetches aren’t used before being evicted from the
L1. Still, significant performance improvement is observed
for this input; the prefetcher’s fetches stay in the L2 and im-
prove performance through avoiding main memory accesses.

Breakdown of Speedup Figure 10 characterises where
performance improvement is being observed from within each
benchmark. The Graph 500 based benchmarks gain signifi-
cantly more speedup from visited information than the BGL
based algorithms do: this is because Graph 500 stores 64 bit
information per vertex (the parent vertex and the compo-
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mentation of Graph500 search with scale 21, edge factor
10 using OpenMP.

 1

 1.5

 2

 2.5

 3

 3.5

amazon web road
amazon web road

S
p

e
e

d
u

p

PR SC

Stride Graph

Figure 12: Speedup for di↵erent types of prefetching when
running PageRank and Sequential Colouring.

nent, for search and connected components respectively),
whereas the Boost Graph Library code stores a 2 bit colour
value for visited information. This means that the Boost
code’s visited information is more likely to fit in the last
level cache. However, as the data size increases, this will not
be the case, so for larger graphs a more significant speedup
from visited information prefetching will be observed.

5.3 Generalised Prefetching
We now show how our prefetcher can be used to accelerate

other traversals on CSR graphs, as described in section 3.5.

Parallel Breadth-First Search Figure 11 shows the per-
formance of our prefetcher on a parallel implementation of
Graph500 search using OpenMP, with a separate prefetcher
per core. Each prefetcher works independently, but all are
accessing the same data structures. We attain similar speedup
to using the sequential algorithm, showing that our prefetcher
can aid both single-threaded and multithreaded applications.
In addition, the speedups scale at the same rate both with
and without prefetching, but prefetching is significantly more
beneficial than parallelising the algorithm: 4 cores with no
prefetching brings a speedup of 1.6⇥ whereas a single core
with our graph prefetcher achieves 2.9⇥.

Sequential Iteration Prefetching Figure 12 shows the
performance of our extension for sequential-indirect access
patterns, along with the same stride baseline setup from sec-
tion 5.1. As this pattern is very predictable, few prefetches
are wasted: all of our simulations resulted in under 0.1%
extra memory accesses, with an average utilisation rate of
97% for prefetches in the L1 cache.
Notably, though the performance di↵erential between stride

and our prefetcher for the web and amazon graphs is very
large, it is much smaller for the road-based graph. This re-
flects the latter’s domain: roads tend to have very localised



Prefetching works for other traversal types
Example: parallel BFS
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Figure 10: The proportion of speedup from prefetching
each data structure within the breadth first search.

L1 Cache Read Hit Rates Our hardware prefetcher
boosts L1 hit rates, and even small increases can result in
large performance gains. In Graph 500 benchmarks, the
baseline hit rates are mostly under 40% and these increase
to over 80%. However, in BGL algorithms, baseline hit rates
are already high at 80% or more, due to a large number of
register spills. These result in loads to addresses that are
still in the L1 cache, which are relatively unimportant in the
overall run time of the program. Our prefetcher increases
the hit rate marginally, but crucially these additional hits
are to time-sensitive data from the edge and visited lists,
resulting in significant speedups.

Memory Accesses If a prefetcher fetches too much in-
correct data from main memory, then a potentially severe
ine�ciency comes about in terms of power usage. To this
end, any prefetcher targeting the reduction of energy usage
by reducing stalls needs to keep such fetches to a minimum.
Figure 8 shows the percentage increase in memory bytes ac-
cessed from main memory for each of the benchmarks and
graphs we tested. The average is 9%, which translates into
150MB/s (or approximately 3 cache lines every 4,000 cy-
cles) extra data being fetched. Betweenness Centrality on
the web input su↵ers from the most extra accesses: as it has
very low locality and a small number of edges per vertex,
the assumption that we will access every edge in a loaded
cache line shortly after loading is incorrect. Indeed, this
input receives only minor benefit from prefetching visited
information, as can be seen in figure 10; without visited
prefetching we gain 1.24⇥ for 2% extra memory accesses.

L1 Prefetch Utilisation Figure 9 shows the proportion
of prefetches that are used before eviction from the L1 cache.
These values are more dependent on timeliness than the
number of extra memory accesses: for a prefetched cache
line to be read from the L1 it needs to be fetched a short
time beforehand. However, even when prefetched data is
evicted from the L1 before being used, we still gain the ben-
efits of having it in the L2 cache instead of main memory.

The vast majority of prefetched cache lines are read at
least once from the L1 for most test cases. A notable ex-
ception is the web input for BGL algorithms, where around
half of prefetches aren’t used before being evicted from the
L1. Still, significant performance improvement is observed
for this input; the prefetcher’s fetches stay in the L2 and im-
prove performance through avoiding main memory accesses.

Breakdown of Speedup Figure 10 characterises where
performance improvement is being observed from within each
benchmark. The Graph 500 based benchmarks gain signifi-
cantly more speedup from visited information than the BGL
based algorithms do: this is because Graph 500 stores 64 bit
information per vertex (the parent vertex and the compo-
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Figure 11: Speedup relative to 1 core with a parallel imple-
mentation of Graph500 search with scale 21, edge factor
10 using OpenMP.
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Figure 12: Speedup for di↵erent types of prefetching when
running PageRank and Sequential Colouring.

nent, for search and connected components respectively),
whereas the Boost Graph Library code stores a 2 bit colour
value for visited information. This means that the Boost
code’s visited information is more likely to fit in the last
level cache. However, as the data size increases, this will not
be the case, so for larger graphs a more significant speedup
from visited information prefetching will be observed.

5.3 Generalised Prefetching
We now show how our prefetcher can be used to accelerate

other traversals on CSR graphs, as described in section 3.5.

Parallel Breadth-First Search Figure 11 shows the per-
formance of our prefetcher on a parallel implementation of
Graph500 search using OpenMP, with a separate prefetcher
per core. Each prefetcher works independently, but all are
accessing the same data structures. We attain similar speedup
to using the sequential algorithm, showing that our prefetcher
can aid both single-threaded and multithreaded applications.
In addition, the speedups scale at the same rate both with
and without prefetching, but prefetching is significantly more
beneficial than parallelising the algorithm: 4 cores with no
prefetching brings a speedup of 1.6⇥ whereas a single core
with our graph prefetcher achieves 2.9⇥.

Sequential Iteration Prefetching Figure 12 shows the
performance of our extension for sequential-indirect access
patterns, along with the same stride baseline setup from sec-
tion 5.1. As this pattern is very predictable, few prefetches
are wasted: all of our simulations resulted in under 0.1%
extra memory accesses, with an average utilisation rate of
97% for prefetches in the L1 cache.
Notably, though the performance di↵erential between stride

and our prefetcher for the web and amazon graphs is very
large, it is much smaller for the road-based graph. This re-
flects the latter’s domain: roads tend to have very localised
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Figure 10: The proportion of speedup from prefetching
each data structure within the breadth first search.

L1 Cache Read Hit Rates Our hardware prefetcher
boosts L1 hit rates, and even small increases can result in
large performance gains. In Graph 500 benchmarks, the
baseline hit rates are mostly under 40% and these increase
to over 80%. However, in BGL algorithms, baseline hit rates
are already high at 80% or more, due to a large number of
register spills. These result in loads to addresses that are
still in the L1 cache, which are relatively unimportant in the
overall run time of the program. Our prefetcher increases
the hit rate marginally, but crucially these additional hits
are to time-sensitive data from the edge and visited lists,
resulting in significant speedups.

Memory Accesses If a prefetcher fetches too much in-
correct data from main memory, then a potentially severe
ine�ciency comes about in terms of power usage. To this
end, any prefetcher targeting the reduction of energy usage
by reducing stalls needs to keep such fetches to a minimum.
Figure 8 shows the percentage increase in memory bytes ac-
cessed from main memory for each of the benchmarks and
graphs we tested. The average is 9%, which translates into
150MB/s (or approximately 3 cache lines every 4,000 cy-
cles) extra data being fetched. Betweenness Centrality on
the web input su↵ers from the most extra accesses: as it has
very low locality and a small number of edges per vertex,
the assumption that we will access every edge in a loaded
cache line shortly after loading is incorrect. Indeed, this
input receives only minor benefit from prefetching visited
information, as can be seen in figure 10; without visited
prefetching we gain 1.24⇥ for 2% extra memory accesses.

L1 Prefetch Utilisation Figure 9 shows the proportion
of prefetches that are used before eviction from the L1 cache.
These values are more dependent on timeliness than the
number of extra memory accesses: for a prefetched cache
line to be read from the L1 it needs to be fetched a short
time beforehand. However, even when prefetched data is
evicted from the L1 before being used, we still gain the ben-
efits of having it in the L2 cache instead of main memory.

The vast majority of prefetched cache lines are read at
least once from the L1 for most test cases. A notable ex-
ception is the web input for BGL algorithms, where around
half of prefetches aren’t used before being evicted from the
L1. Still, significant performance improvement is observed
for this input; the prefetcher’s fetches stay in the L2 and im-
prove performance through avoiding main memory accesses.

Breakdown of Speedup Figure 10 characterises where
performance improvement is being observed from within each
benchmark. The Graph 500 based benchmarks gain signifi-
cantly more speedup from visited information than the BGL
based algorithms do: this is because Graph 500 stores 64 bit
information per vertex (the parent vertex and the compo-
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Figure 11: Speedup relative to 1 core with a parallel imple-
mentation of Graph500 search with scale 21, edge factor
10 using OpenMP.
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Figure 12: Speedup for di↵erent types of prefetching when
running PageRank and Sequential Colouring.

nent, for search and connected components respectively),
whereas the Boost Graph Library code stores a 2 bit colour
value for visited information. This means that the Boost
code’s visited information is more likely to fit in the last
level cache. However, as the data size increases, this will not
be the case, so for larger graphs a more significant speedup
from visited information prefetching will be observed.

5.3 Generalised Prefetching
We now show how our prefetcher can be used to accelerate

other traversals on CSR graphs, as described in section 3.5.

Parallel Breadth-First Search Figure 11 shows the per-
formance of our prefetcher on a parallel implementation of
Graph500 search using OpenMP, with a separate prefetcher
per core. Each prefetcher works independently, but all are
accessing the same data structures. We attain similar speedup
to using the sequential algorithm, showing that our prefetcher
can aid both single-threaded and multithreaded applications.
In addition, the speedups scale at the same rate both with
and without prefetching, but prefetching is significantly more
beneficial than parallelising the algorithm: 4 cores with no
prefetching brings a speedup of 1.6⇥ whereas a single core
with our graph prefetcher achieves 2.9⇥.

Sequential Iteration Prefetching Figure 12 shows the
performance of our extension for sequential-indirect access
patterns, along with the same stride baseline setup from sec-
tion 5.1. As this pattern is very predictable, few prefetches
are wasted: all of our simulations resulted in under 0.1%
extra memory accesses, with an average utilisation rate of
97% for prefetches in the L1 cache.
Notably, though the performance di↵erential between stride

and our prefetcher for the web and amazon graphs is very
large, it is much smaller for the road-based graph. This re-
flects the latter’s domain: roads tend to have very localised



Conclusion
Prefetching with knowledge of the graph 
traversal order significantly improves its 
performance
◦Works for different traversal types (BFS, sequential 
scan, ...)
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