Graph Prefetching Using Data

Structure Knowledge
SAM AINSWORTH, TIMOTHY M. JONES

Background and Motivation

Graph applications are memory latency bound

cCaches & Prefetching are existing solution for memory
latency

cHowever, irregular access patterns hinder their
usefulness

Key insight: accesses seem irregular at individual
load/store level, but have predictable structure
when we consider the high-level algorithm

ce.g. Breadth-first search (BFS)

__]

Background and Motivation

Existing SW/HW prefetching is insufficient

1.2

1.15

1.1
1.05 IIII
.

Speedup
Speedup

V2 OO0 3P\ 2 W ol W
oo (A 8\ 00\) Q‘O\E\\\:\ x W A\ A0
(a) Hardware prefetchers (b) Hardware vs software

Figure 3: Hardware and software prefetching on Graph 500
search with scale 21, edge factor 10.

Background and Motivation - BFS

Unvisited

<> @

Will be visited after

visiting C! So we can
prefetch after visiting B

Prefetching with Algorithmic Knowledge

Design a hardware prefetcher that relies on
access patterns specific to algorithms

°Target BFS, but can support a wider range of
algorithms/access patterns

°Specific to Compressed Sparse Row (CSR) format
-Prefetcher snoop reads/writes from L1 cache

Achieve an average of 2.3x speedup

__]

Review: Compressed Sparse Row (CSR)

Sparse representation, with a vertex list indirecting
to an edge list
cAuthors add a visited list and work list specifically for BFS

Work List Vertex List Edge List Visited
5 0 1 False
° 4 2 2 True
1 3 7 True
— 2 4 5 0 True
3 7 6 True
7 10 0 \ True
a ° 11 1 False
12 1 True
i (4) : 2
3
OO :
2

(a) Graph (b) CSR breadth-first search

Figure 1: A compressed sparse row format graph and
breadth-first search on it.

Poor Locality of Accesses in Graphs

— 90
2 80 '
(O]
§ 70
— 60 ’ Edge factor 15 ——
© 50 4 Edge factor 10 —e—
) Edge factor 5 ——
40 ‘ ‘ ‘
15 17 19 21 23
Scale
(a) Stall rate
—~ 60
Edge factor 15 ——

® 55| Edge facior 10 ——
% 50 Edge factor 5 =——+—
@ 45 —)
2 40 // B Edge List M Visited List
= 35 O Vertex List @Work List

15 17 19 21 23

Scale
(b) L1 miss rate (c) Source of misses

Overview of Approach

Prefetch all relevant data of o-distance away from the
current worklist entry:

visited[edgelist [vertexList [workList [n+o]]]]

Prefetcher snoops the core-to-L1 mem. accesses to
determine which data to prefetch

Vertex-Offset Mode

Observation Action
Load from workList [n] Prefetch workList [n+o]
Prefetch vid = workList [n] Prefetch vertexList [vid]
Prefetch from vertexList [vid] Prefetch edgeList [vertexList[vid]] to
edgeList [vertexList [vid+1]] (12 lines max)
Prefetch vid = edgeList[eid] Prefetch visited[vid]

System Architecture

| Work List | _
Main | Vertex List |,;,:::::»‘*"""To / From L2 Cache
Memory | Edgelist || . .
| Visited List_____..'..i. cgmmor
- § _ Prefetch Regs
........ = Address
y = Dcache Generator
------- Prefetched Data
> | Request
L2 Cache Queue
P : <« DTLB |« Prefetcher

t t T T Config

Core

(a) System overview

Prefetcher Microarchitecture

Snoops & Prefetched Data
From L1 Cache

—>

To DTLB Ereefﬁtecsr;
& L1 Cache q
Queue

N\

Ajdress Bounds Registm

Work List Start

Work List End

A
Y

Addres

Vertex List Start

Vertex List End

Filter Edge List Start

Edge List End

Visited List Start

Visited List End

A

Y Y

\/‘

Prefetch
Address
Generator

EWMA Unit

Work List Time EWMA

Data Time EWMA

Ratio Register

(b) Prefetcher microarchitecture detail

Programmer
must specify
these bounds

Determining Prefetch Distance

Easy Case: Time to process a vertex (work _list_time) is
less than time to pre-fetch the next vertex (data _time)

o x work_list_time = data_time

cwork_list_time and data_time vary wildly => use exponentially
weighted moving averages (EWMA)

ocUse a safe bound because EWMA often underestimates

data time: ,
- k x data_time

o= 1-
- work_list_time

__]

Determining Prefetch Distance

Problem: work_list_time > data_time

°Pre-fetched data is not used timely, might get kicked
out of cache before it is used!

°Happens with high-degree vertices

Solution: Large vertex mode

°Base prefetch on how far along we have processed the
high-degree vertex

»Possible because we know the range of the edge indices
oPrefetch within edgelist for larger vertex

cFetch need vertex in worklist when almost done with
current vertex’s edges

__]

Extensions

Technique can be extended to other algorithms:

cParallel BFS

°Sequentially scanning vertex and edge data (e.g.
PageRank)

Methodology

gemb5 simulator

Set of algorithms from Graph500 and the Boost
Graph Library:

°BFS-like traversal: Connected components, BFS,
betweenness-centrality, ST connectivity

°Sequential access: PageRank, sequential coloring

Evaluation - BFS-like traversal

Stride m—— Graph
Stride-Indirect m—

s Semoh

Speedup

1 3 | | |] | | | |
e 66‘0 s\ 99\%\96\ Os\ge’\ 53-2‘\ el %\ 681\0 5\9959,\ gel %\ge\ 532‘\ el\0

(a) Graph 500

Evaluation - BFS-like traversal

Stride m— Graph
Stride-Indirect m—

O — —

Speedup

Significantly improved L1 hit-rate

No Prefetching Graph Prefetching

Search

0.8

0.6

0.4

L1 Cache Read Hit Rate

0.2

0
%‘\66\5\98 ge\ ge\g\e)\ 66\ Gc:\)ge\ 96\2‘\6\(%\ 10(\ \Neb 036 10(\ \NG‘O 066 »LO(\ \NG‘O oad

Figure 7: Hit rates in the L1 cache with and without
prefetching.

Prefetching has low overheads

s16e10 I s19e15 T amazon I
s19e5 mmmEm s21e10 web I
s19e10 road I

30
25
20
15

I LY e

CC Search BFS BC ST

Extra Memory Accesses (%)

Figure 8: Percentage of additional memory accesses as a
result of using our prefetcher.

s16e10 N s19e15 T amazon I
s19e5 WM s21e10 web I
s19e10 . road I
[0}
s 1
o
5§ o8
g
2 06 —
-}
- 04
CC Search BFS BC ST

Figure 9: Rates of prefetched cache lines that are used
before leaving the L1 cache.

Prefetching Analysis

Most of the benefit comes from prefetching
visited & edge lists -> as expected!

Visited Edge mmmm Vertex mmmmm Work ——3

{ fg g CC———— Seafch ,,,,,,,,,,,,,,,,, .
c | | | | | | | |
2
)
el R H B A B0l B B H B -
o
S 04 a
[0} ! ! : : | : : :
ol
o o2 I

0 g s 1 s s s s g

eD \6

\ge\ e ,Z\e\ ge\s\ge%ge\ge\a\e\o 7,00 \Ne\o (0"3'6 ’LO(\ \Ne‘o (0'ad 10(\ \Ne‘o (0'36

AO
6,\66 6\9

Figure 10: The proportion of speedup from prefetching
each data structure within the breadth first search.

Prefetching works for other traversal types

Example: parallel BFS

Number of Cores

Figure 11: Speedup relative to 1 core with a parallel imple-

mentation of Graphb00 search with scale 21, edge factor
10 using OpenMP.

Prefetching works for other traversal types

Stride = Graph

Speedup

amaZO“ weP (030 amaZO“ weP (Oad

Figure 12: Speedup for different types of prefetching when
running PageRank and Sequential Colouring.

Conclusion

Prefetching with knowledge of the graph
traversal order significantly improves its
performance

°Works for different traversal types (BFS, sequential
scan, ...)

