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Background and Motivation

Graph applications are memory latency bound

cCaches & Prefetching are existing solution for memory
latency

cHowever, irregular access patterns hinder their
usefulness

Key insight: accesses seem irregular at individual
load/store level, but have predictable structure
when we consider the high-level algorithm

ce.g. Breadth-first search (BFS)
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Background and Motivation

Existing SW/HW prefetching is insufficient
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Figure 3: Hardware and software prefetching on Graph 500
search with scale 21, edge factor 10.




Background and Motivation - BFS

Unvisited
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Will be visited after

visiting C! So we can
prefetch after visiting B




Prefetching with Algorithmic Knowledge

Design a hardware prefetcher that relies on
access patterns specific to algorithms

°Target BFS, but can support a wider range of
algorithms/access patterns

°Specific to Compressed Sparse Row (CSR) format
-Prefetcher snoop reads/writes from L1 cache

Achieve an average of 2.3x speedup
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Review: Compressed Sparse Row (CSR)

Sparse representation, with a vertex list indirecting
to an edge list
cAuthors add a visited list and work list specifically for BFS
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Figure 1: A compressed sparse row format graph and
breadth-first search on it.




Poor Locality of Accesses in Graphs
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Overview of Approach

Prefetch all relevant data of o-distance away from the
current worklist entry:

visited[edgelist [vertexList [workList [n+o]]]]

Prefetcher snoops the core-to-L1 mem. accesses to
determine which data to prefetch

Vertex-Offset Mode

Observation Action
Load from workList [n] Prefetch workList [n+o]
Prefetch vid = workList [n] Prefetch vertexList [vid]
Prefetch from vertexList [vid] Prefetch edgeList [vertexList[vid]] to
edgeList [vertexList [vid+1]] (12 lines max)
Prefetch vid = edgeList[eid] Prefetch visited[vid]




System Architecture

| Work List | _
Main | Vertex List | .....,;,:::::»‘*"""To / From L2 Cache
Memory | Edgelist || . .
| Visited List_____..'..i. cgmmor
- § _ Prefetch Regs
........ = Address
y = Dcache Generator
------- Prefetched Data
> | Request
L2 Cache Queue
P : <« DTLB |« Prefetcher

t t T T Config

Core

(a) System overview




Prefetcher Microarchitecture
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Programmer
must specify
these bounds




Determining Prefetch Distance

Easy Case: Time to process a vertex (work _list_time) is
less than time to pre-fetch the next vertex (data _time)

o x work_list_time = data_time

cwork_list_time and data_time vary wildly => use exponentially
weighted moving averages (EWMA)

ocUse a safe bound because EWMA often underestimates

data time: ,
- k x data_time

o= 1-
- work_list_time
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Determining Prefetch Distance

Problem: work_list_time > data_time

°Pre-fetched data is not used timely, might get kicked
out of cache before it is used!

°Happens with high-degree vertices

Solution: Large vertex mode

°Base prefetch on how far along we have processed the
high-degree vertex

»Possible because we know the range of the edge indices
oPrefetch within edgelist for larger vertex

cFetch need vertex in worklist when almost done with
current vertex’s edges
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Extensions

Technique can be extended to other algorithms:

cParallel BFS

°Sequentially scanning vertex and edge data (e.g.
PageRank)




Methodology

gemb5 simulator

Set of algorithms from Graph500 and the Boost
Graph Library:

°BFS-like traversal: Connected components, BFS,
betweenness-centrality, ST connectivity

°Sequential access: PageRank, sequential coloring




Evaluation - BFS-like traversal
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Evaluation - BFS-like traversal

Stride m— Graph
Stride-Indirect m—

O — —

Speedup




Significantly improved L1 hit-rate
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Figure 7: Hit rates in the L1 cache with and without
prefetching.




Prefetching has low overheads
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Figure 8: Percentage of additional memory accesses as a
result of using our prefetcher.
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Figure 9: Rates of prefetched cache lines that are used
before leaving the L1 cache.




Prefetching Analysis

Most of the benefit comes from prefetching
visited & edge lists -> as expected!
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Figure 10: The proportion of speedup from prefetching
each data structure within the breadth first search.




Prefetching works for other traversal types

Example: parallel BFS
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Figure 11: Speedup relative to 1 core with a parallel imple-

mentation of Graphb00 search with scale 21, edge factor
10 using OpenMP.




Prefetching works for other traversal types
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Figure 12: Speedup for different types of prefetching when
running PageRank and Sequential Colouring.




Conclusion

Prefetching with knowledge of the graph
traversal order significantly improves its
performance

°Works for different traversal types (BFS, sequential
scan, ...)




