Real World and Synthetic Graphs

6.886 Andrew Xia Feb 14th, 2018

Ch 13: Structure of the Web

World Wide Web as a Network Metaphor

- Web pages
- Browser
- Hypertext: edges in a directed graph

Citation Network

Arrow of time

Web as a Directed Graph

- Path: two nodes A, B are linked if there exists a set of edges that lead A to B
- Connected: all pairs are linked via paths
 - Strongly connected
- Reachability
- Connected components
 - Strongly connected components (DAG)

Bow-Tie Structure of Graph

Web 2.0

- Software that gets better the more people use it
- The wisdom of crowds

Ch 18: Power Laws, Rich-Get-Richer Phenomena

In Links

- In link: full set of links pointing to a given webpage
- What fraction of web pages have k in-links?
 - Proportional to 1/k²
 - $F(k) = a/k^{c}$
 - Log F(k) = log(a) c log(k)

Rich Get Richer Model

- Assume that pages are created in order 1, ... N
- When page *j* created...
 - With probability p, point to page i < j
 - With probability 1-p, choose page i, choose a page that page i points to
 - Repeat for multiple links
- Preferential Attachment
- Shortcomings
 - Only consult one prior page
 - Imitation, but not rational decision-making

The Long Tail

- Are most sales generated by small, popular set of items, or by larger population of items individually less popular?
- What number of items have popularity k?
- Search tools, recommendation systems

Ch 20: Small World Phenomena

Stanley Milgram: Six Degrees of Separation

- Short Paths are in Abundance
- People are effective at finding shortest path even with only local information
- Triadic closure in network

(a) Pure exponential growth produces a small world

(b) Triadic closure reduces the growth rate

Watts-Strogatz Model

- Social Network is highly clustered
- **Homophily:** connected to all other nodes up to *r* grid steps away
- Weak ties: link to *k* other nodes selected from the grid
- Grid step: manhattan distance
- **Delivery time**: expected number of steps to reach target

Clustering Exponent

- Generate k random edges such that probability decays with distance
- Clustering exponent q
- $Pr = d(v,w)^{-q}$
- Most efficient when q = 2
 - Intuition: total number of nodes within distance d is d^2
- Rank-based friendship
 - Instead of geographical distance, rank by order of distance

Social Foci

Core-Periphery Structure

References

• D. Easley, J. Kleinberg, Networks, Crowds, and Markets: Reasoning About a Highly Connected World, Cambridge University Press, Cambridge, UK, 2010

Thanks!