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Introduction

« Graphs are everywhere

« What can we do with
graphs?
— What patterns or

“laws” hold for most
real-world graphs?

— Can we build models of
graph generation and
evolution?
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Outlines

- Network properties — static & temporal
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Network properties — static
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Network properties — static

« Scree plot
[Chakrabarti et al]

— Eigenvalues of graph
adjacency matrix follow a
power law

— Network values (components
of principal eigenvector) also |

follow a power-law 10 10 o
Rank

Scree Plot

v}

Eiaenvalue
=
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Network properties — temporal

* Conventional Wisdom:

— Constant average degree: the number of edges grows linearly with the
number of nodes

— Slowly growing diameter: as the network grows the distances between
nodes grow

« “Recently” found [Leskovec, Kleinberg and Faloutsos, 2005]:
— Densification Power Law: networks are becoming denser over time
— Shrinking Diameter: diameter is decreasing as the network grows
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Network properties —

temporal - Densification

 Densification Power Law
— N(t) ... nodes at time t —
— E(t) ... edges at time t o Densification
- | Power Law
« Suppose that | Apr 2003
N(t+1) = 2 * N(t) i
. Q: what is your guess for E
210
E(t+1) =2 2P log (s ™ 1.69
« A: over-doubled! "ol ,.
rJan 1993
— But obeying the Densification ' L s
Power Law 10° ————
10 10 10
Number of nodes
log N(t)

10°

IMir ¢.886 Paper Presentation — Kronecker Graph — yijiangh@mit.edu



Network properties — temporal - Densification

« Densification Power Law
— networks are becoming denser over time

— the number of edges grows faster than the number of nodes — average
degree is increasing

E(t) o< N(t)®

 Densification exponenta: 1 <a<2:
— a=1: linear growth — constant out-degree
(assumed in the literature so far)
— a=2: quadratic growth — clique
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Network properties — temporal — shrinking diameter

 Prior work on Power Law

graphs hints at Slowly growing ' —~Full graph
dlametel’ 9F +E§2J’E gg 233;222 no past

— diameter ~ O(log N)
— diameter ~ O(log log N)
* Diameter Shrinks/Stabilizes
over time

— As the network grows the distances
between nodes slowly decrease

diameter i,
|

1%9 2 1 9I94 1 QIB‘B 1 B‘IBB EDID[] 2(]'[].'2 EDID4
time [years]

Diameter over time
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Network properties — These Patterns hold in many graphs

 All these patterns can be observed in many real life graphs:

World wide web [Barabasi]

On-line communities [Holme, Edling, Liljeros]

Who call whom telephone networks [Cortes]

Autonomous systems [Faloutsos, Faloutsos, Faloutsos]
Internet backbone — routers [Faloutsos, Faloutsos, Faloutsos]
Movie — actors [Barabasi]

Science citations [Leskovec, Kleinberg, Faloutsos]
Co-authorship [Leskovec, Kleinberg, Faloutsos]

Sexual relationships [Liljeros]

Click-streams [Chakrabarti]
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Problem Definition

 Given a growing graph with nodes N,, N, ...

« Generate a realistic sequence of graphs that will obey all
the patterns
— Static Patterns
« Power Law Degree Distribution
« Small Diameter
» Power Law eigenvalue and eigenvector distribution (scree plot)
— Dynamic Patterns
« Growth Power Law
« Shrinking/Constant Diameters
— And ideally we would like to prove them
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Previous work

e Lots of work

Random graph [Erdos and Renyi, 60s]
Preferential Attachment [Albert and Barabasi, 1999]

Copying model [Kleinberg, Kumar, Raghavan, Rajagopalan and
Tomkins, 1999]

Community Guided Attachment and Forest Fire Model [Leskovec,
Kleinberg and Faloutsos, 2005]

Also work on Web graph and virus propagation [Ganesh et al, Satorras
and Vespignani]++

« But all of these
— Do not obey all the patterns
— Or we are not able prove them
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Why is all this important?

 Simulations of new algorithms where real graphs are
Impossible to collect

 Predictions — predicting future from the past

»  Graph sampling — many real world graphs are too large to deal
with

 What-if scenarios
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Main contribution

1. The authors propose a generative network model called the Kronecker graph that

obeys exhibited in real work
graphs.
2. The authors present a algorithm for Kronecker graph

generation model to large real networks.
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Outlines

- Proposed graph generation model - Kronecker graph
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Problem definition

Given a growing graph with count of nodes N, N, ...
Generate a realistic sequence of graphs that will obey all the
patterns

ldea:
Leads to power laws (degree distributions)
Communities within communities
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Recursive graph generation

« There are many obvious (but wrong) ways
There are many obvious (but wrong) ways

4 R

U° S

ST RN
Initial graph Recursive expansion

- Does not obey Densification Power Law
- Has increasing diameter

IS a way of generating self-
similar matrices
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Kronecker product: Graph

v <
R .

X, Q@

Intermediate stage

1({1]0
1{1]1
O 1] 1| g

Gy

Adjacency matrix
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Go =G ® Gy

(9x9)

Adjacency matrix




Kronecker product: Definition

* The Kronecker product of matrices A and B Is given
by
/aLlB a1 oB ... (1..1‘mB\
a 1B as-B ... a-,,B
C=A®B-= . .
NxM KxL

\a’-n,‘lB a‘-rLQB R a‘n.-mB/
N*K x M*L

* We define a Kronecker product of two graphs as a
Kronecker product of their adjacency matrices
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Kronecker graphs

* \We create the self-similar graphs recursively
— Start with a initiator graph G, on N, nodes and E, edges
— The recursion will then product larger graphs G,, G,
...G, on N,% nodes
« \We obtain a growing sequence of graphs by
Iterating the Kronecker product

\—/_/
k times
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Kronecker graphs

 Continuing multiplying with G; we obtain G,

and so on ...
111]0
11| mm)
O|1(1

G

G, adjacency matrix
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Kronecker graphs — examples on bipartite graph
1

Equal with L e e e e
the right o
permutation | X

o

00000
nnnnn
.....

B51) ® B@B1) = B(15,1) v B(3,5)

* Fundamental result [Weischel 1962] is that the Kronecker product of two
complete bipartite graphs is two complete bipartite graphs

* More generally

B(ny,m1) ® B(ng, ms)

I~

B(ning, mime) U B(namy, nyms)
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Kronecker graphs — examples on bipartite graph

Kronecker exponent of bipartite 12

graph produces
exponential distribution

—
o
~

I

B(n=5,1)%=10

(00]
I
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¢
’
.

log,(Number of Vertices)
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log,(Vertex Degree)
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Outlines

- Stochastic Kronecker graph
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Stochastic Kronecker graphs

B 1[0 G169 e e
11111 j>G1G1G1 )
0111 01]G|G
(GG (3x3) Go = G1 ® Gy
(9x9)
(21x21) Probability
Kronecker 4 ofedgep,,
T 10.2510.10(0.10( 0.04
0.5| (0 2 [multiplication 0501510021006 Instance
‘ ' : ' : ‘ matrix K
0.110.3 0.05|0.02|0.15|0.06 2
For each p,
0, 0.01/0.03/0.03|0.09 flio BernoLll
probability matrix 0,=60,20, coin
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Outlines

- Properties of Kronecker graph
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Kronecker graphs: Intuition

1) Recursive growth of graph communities
— Nodes get expanded to micro communities

— Nodes in sub-community link among themselves and to nodes from
different communities

2) Node attribute representation

— Nodes are described by features
* [likes ice cream, likes chocolate] 1 0
. u=[1,0], v=[1,1]

— Parameter matrix gives the linking probability
+ p(u,v)=0.5*0.1=0.05 0fo01]03
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Properties of Kronecker graphs

* We prove that Kronecker multiplication generates
graphs that obey [PKDD’05]

— Properties of static networks
v'Power Law Degree Distribution
v"Power Law eigenvalue and eigenvector distribution
v"Small Diameter

— Properties of dynamic networks
v Densification Power Law
v Shrinking/Stabilizing Diameter

 Good news: Kronecker graphs have the necessary
expressive power

« But: How do we choose the parameters to all
of these at once?
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Outlines

- Model estimation
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Model estimation: approach

« Maximum likelihood estimation
— Given real graph G T
— Estimate Kronecker initiator graph @ (e.g., o)

which
arg max P(G|B®)

)
o

Sl e

[

* We need to (efficiently) calculate
P(G|©)

* And maximize over © (e.g., using gradient descent)

IMir ¢.886 Paper Presentation — Kronecker Graph — yijiangh@mit.edu



Fitting Kronecker graphs

« Given a graph G and Kronecker matrix @ we
calculate probability that @ generated G P(G|®)
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Challenge 1: Node correspondence

O O
0.25 | 0.10 | 0.10 | 0.04
0.5]0.2 ‘ 0.05 | 0.15 | 0.02 | 0.06
0103 0.05 | 0.02 | 0.15 | 0.06
0.01 | 0.03 | 0.03 | 0.09
AN
1 1({0]1]|0
3 o[1]1]1
2 ‘ 1111
4 olof1]1
G
2 1lo0f1]1
4 ‘ oj{1|/0]1
1 1]o0f1]1
3 1111
P(G’|®) = P(G”|O)

 Nodes are unlabeled

* Graphs G’ and G” should
have the same probability

P(G’|®) = P(G”|O)
* One needs to consider all
node correspondences o

P(G|©®) =) P(G|0,0)P(0)

 All correspondences are a
priori equally likely

* There are O(N!)
correspondences
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Challenge 2: calculating P(G|0©,s)

« Assume we solved the correspondence problem
 Calculating
P(G ‘ ®) — H ®k[o-u , Gv] H (1_®k[o-u , Gv])
(u,v)eG (u,v)eG

c... node labeling

» Takes O(N?) time
* Infeasible for large graphs (N ~ 10°)

0.25 | 0.10 | 0.10 | 0.04 11011
0.05 | 0.15 | 0.02 | 0.06 ol1lo0]1
0.05 | 0.02 | 0.15 | 0.06 o 1]ol1]1
0.01 | 0.03 | 0.03 | 0.09 olol1]1
’ ‘ G

@kc
P(G|O, o)
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Model estimation: solution

» Nawely estimating the Kronecker initiator takes O(N!N?) time:
— N! for graph isomorphism
« Metropolis sampling: N! = (big) const
— N2 for traversing the graph adjacency matrix
* Properties of Kronecker product and sparsity (E << N2): N2> E

« \We can estimate the parameters of Kronecker graph in linear
time O(E)
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Solution 1: Node correspondence

* Log-likelihood
[(O) = logZP(G\@,J)P(J)

« Gradient of log-likelihood

E 0log P(Glo, ©)
2010) =Y G P(o|G,0)

o

« Sample the permutations from P(¢|G,®) and average
the gradients
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Solution 1: Node correspondence

« Metropolis sampling:
— Start with a random permutation
— Do local moves on the permutation

— Accept the new permutation
* |f new permutation is better (gives higher likelihood) P((5|G, O)

* If new is worse accept with probability proportional to the
ratio of likelihoods

1 3 Swap node Re-evaluate the
Iabels land 4 Iikelihooi
2
4

Can compute efficiently:
Only need to account for
changes in 2 rows /
columns

AW N

O|Fr,r|O|PF
R N B~

Olr|r|F
Ol |r [P
S S N
R|lRr|O|O
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Solution 2: Calculating P(G|©,s)

 Calculating naively P(G|0,0) takes O(N?)
 |dea:

— First calculate likelihood of empty graph, a graph with 0 edges
— Correct the likelihood for edges that we observe in the graph

« By exploiting the structure of Kronecker product we obtain
closed form for likelihood of an empty graph
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Solution 2: Calculating P(G|©,s)

« \We approximate the likelihood:

Empty graph No-edge likelihood Edge likelihood

« The sum goes only over the edges
« Evaluating P(G|®,0) takes O(E) time
 Real graphs are sparse, E << N?
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Model estimation: overall solution

input : size of parameter matrix Ny, graph Gon N = \{‘ nodes, and learning rate A
output: MLE parameters © (V; x N| probability matrix)

1 initialize é)l

2 while not converged do

- evaluate gradient: %i( ‘)

update parameter estimates: (:),+1 @; iy

1(61)

)()
end

return G) = (:)r

S e

input : Parameter matrix O, and graph G
output: Log-likelihood /(©®), and gradient -

forr:=1to 71 do

O; := SamplePermutation (G, 0O)
I, = 1()g1‘3’((?r\(5UJ @)F
grad, == )O log P(G|c'),

end

return /(©) = %Zr [;, and )(};( ) = TZ grad,

2 Solution 1: Metropolis sampling

—, Solution 2: Edge-wise prob
computation

h

=2}
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Outlines

- Experimental results
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Experiments: artificial data

« Can gradient descent recover true parameters?
« Optimization problem is not convex

« How nice (without local minima) is optimization space?
— Generate a graph from random parameters
— Start at random point and use gradient descent
— We recover true parameters 98% of the times
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Convergence of properties

* How does algorithm converge to true parameters with

gradient descent iterations?
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Experiments: real networks

« Experimental setup:
— Given real graph
— Stochastic gradient descent from random initial point
— Obtain estimated parameters
— Generate synthetic graphs
— Compare properties of both graphs

« \We do not fit the properties themselves

« \We fit the likelthood and then compare the graph properties
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AS graph (N=6500, E=26500)

Autonomous systems (internet)
We search the space of ~10°0.000 permutations
Fitting takes

AS graph is undirected and estimated parameter
matrix Is symmetric:

0.98 | 0.58
0.58 | 0.06
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AS: comparing graph properties

 Generate synthetic graph using estimated parameters
« Compare the properties of two graphs

Degree distribution Hop plot
4 8
103 “ | 'AS graph —o— 0 107 |
107 F-m Kronecker ——®-— — 'S e
[ o
102 | — o 107 1 _
S 100 i © di 4
o> 107 = S
8) 2 i = i
- OF 7 510° .
10° - E :;tj AS graph —o— -
10 o ""”‘1 - "”“'2 — ""“'3 B kS | . Kropecker ;& -
10 10 10 10 10 1 2 3 4 5 6

log degree number of hops
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AS: comparing graph properties

 Spectral properties of graph adjacency matrices

Scree plot Network value
102— T L T T — 100 \II‘ T T T T T 1T T T T T
r AS graph —e— 7 - AS gréph — ]
— Kronecker -—m-— ] - Kronecker - ]
= |
1 1
D10 — >10
= o
(b} 2
(@)
(@)
0 | 1 | 2
0 10° 10" 10

log rank log rank
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Epinions graph (N=76k, E=510Kk)

» We search the space of ~101.000.000 permutations
 Fitting takes 2 hours

« The structure of the estimated parameter gives insight|0.99 | 0.54
Into the structure of the graph 0.49|0.13

Degree distribution
m.__ | Epinions ——

- wn
10° _l{! Kronecker — Il | é
2 B '\_.x-‘.“\. B @
-~ 10 \!\l e
= L &
o 0 Y — S
S 10 \ S
o _ S L
° 2 | RN a i
10 LN o

[ ) ++ Epinions S, 1

o o o * 8) 105 | | Kronegker — B

10° 10 102 10° 10% = t2 3 4 5 6 7

log degree number of hops
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Epinions graph (N=76k, E=510Kk)

Scree plot

T T T T

log eigenvalue

|Epinions e
Kronecker —m—

0
10
10°
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Scalability

* Fitting scales linearly with the number of edges

1200

1000 o -

o
-
o
I
I

Time (seconds)
Y (8}
o (-
- -
I I
| ]

(]

o

o
I

)
ﬂ-r
|

---Linear fit
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Outlines

- Discussion
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Conclusion

« Kronecker Graph model has
— provable properties
— small number of parameters

* We developed scalable algorithms for fitting
Kronecker Graphs

« We can efficiently search large space (~10%000.000)
of permutations

 Kronecker graphs fit well real networks using few
parameters

* \We match graph properties without a priori
deciding on which ones to fit
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Discussion

- Network evolution
- Dynamic Bayesian network with first order Markov dependencies

- Aseries of network snapshot evolving over time -> evolving initiator matrix
- Deeper understanding of network evolution through the lens of generating

parameters

- Different random process for stochastic Kronecker graph
- Currently Bernoulli edge generation model
- Modeling weighted or labelled networks

- Micro-scale network probe?
- Random Dot Product Graphs — estimate the individual attribute values

- Kronecker (product) graphs — attribute-attribute similarity matrix (initiator

matrix)
- Try to use given node attributes to infer “hidden” or missing node attribute

values
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