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Introduction

• Graphs are everywhere

• What can we do with 

graphs?

– What patterns or 

“laws” hold for most 

real-world graphs?

– Can we build models of 

graph generation and 

evolution?
“Needle exchange” networks of drug users
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Outlines

- Introduction

- Network properties – static & temporal

- Proposed graph generation model - Kronecker graph

- Stochastic Kronecker graph

- Properties of Kronecker graph

- Model estimation

- Experimental results

- Discussion
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Network properties – static & temporal

• Power Law degree 

distributions

log(Degree)

Many low-degree 

nodes

Few high-degree 

nodes
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Internet in December 1998
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Network properties – static & temporal

• Small-world 

[Watts, Strogatz]++

– 6 degrees of separation

– Small diameter

• Effective diameter:

– Distance at which 90% of 

pairs of nodes are reachable
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Network properties – static & temporal

• Scree plot 

[Chakrabarti et al]

– Eigenvalues of graph 

adjacency matrix follow a 

power law

– Network values (components 

of principal eigenvector) also 

follow a power-law

Scree Plot
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Network properties – static & temporal

• Conventional Wisdom:

– Constant average degree: the number of edges grows linearly with the 

number of nodes

– Slowly growing diameter: as the network grows the distances between 

nodes grow

• “Recently” found [Leskovec, Kleinberg and Faloutsos, 2005]:

– Densification Power Law: networks are becoming denser over time

– Shrinking Diameter: diameter is decreasing as the network grows
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Network properties – static & temporal - Densification

• Densification Power Law

– N(t) … nodes at time t

– E(t) … edges at time t

• Suppose that

N(t+1) = 2 * N(t)

• Q: what is your guess for 

E(t+1) =? 2 * E(t)

• A: over-doubled!

– But obeying the Densification 

Power Law

log N(t)

log E(t) 1.69

Densification 

Power Law
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Network properties – static & temporal - Densification

• Densification Power Law

– networks are becoming denser over time 

– the number of edges grows faster than the number of nodes – average 
degree is increasing

• Densification exponent a: 1 ≤ a ≤ 2:

– a=1: linear growth – constant out-degree 

(assumed in the literature so far)

– a=2: quadratic growth – clique
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Network properties – static & temporal – shrinking diameter

• Prior work on Power Law 

graphs hints at Slowly growing 

diameter:

– diameter ~ O(log N)

– diameter ~ O(log log N)

• Diameter Shrinks/Stabilizes 

over time

– As the network grows the distances 

between nodes slowly decrease

time [years]
d
ia

m
et

er

Diameter over time
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11

Network properties – These Patterns hold in many graphs

• All these patterns can be observed in many real life graphs:

– World wide web [Barabasi]

– On-line communities [Holme, Edling, Liljeros]

– Who call whom telephone networks [Cortes]

– Autonomous systems [Faloutsos, Faloutsos, Faloutsos]

– Internet backbone – routers [Faloutsos, Faloutsos, Faloutsos]

– Movie – actors [Barabasi]

– Science citations [Leskovec, Kleinberg, Faloutsos]

– Co-authorship [Leskovec, Kleinberg, Faloutsos]

– Sexual relationships [Liljeros]

– Click-streams [Chakrabarti]
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Problem Definition

• Given a growing graph with nodes N1, N2, …

• Generate a realistic sequence of graphs that will obey all 

the patterns

– Static Patterns

• Power Law Degree Distribution

• Small Diameter

• Power Law eigenvalue and eigenvector distribution (scree plot)

– Dynamic Patterns

• Growth Power Law

• Shrinking/Constant Diameters

– And ideally we would like to prove them
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Previous work

• Lots of work

– Random graph [Erdos and Renyi, 60s]

– Preferential Attachment [Albert and Barabasi, 1999]

– Copying model [Kleinberg, Kumar, Raghavan, Rajagopalan and 

Tomkins, 1999]

– Community Guided Attachment and Forest Fire Model [Leskovec, 

Kleinberg and Faloutsos, 2005]

– Also work on Web graph and virus propagation [Ganesh et al, Satorras

and Vespignani]++

• But all of these

– Do not obey all the patterns

– Or we are not able prove them
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Why is all this important?

• Simulations of new algorithms where real graphs are 

impossible to collect

• Predictions – predicting future from the past

• Graph sampling – many real world graphs are too large to deal 

with

• What-if scenarios
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Main contribution

1. The authors propose a generative network model called the Kronecker graph that 

obeys all the static and some temporal network patterns exhibited in real work 

graphs.

2. The authors present a fast and scalable algorithm for fitting Kronecker graph 

generation model to large real networks.
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Outlines

- Introduction

- Network properties – static & temporal

- Proposed graph generation model - Kronecker graph

- Stochastic Kronecker graph

- Properties of Kronecker graph

- Model estimation

- Experimental results

- Discussion
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Problem definition

Given a growing graph with count of nodes N1, N2, …

Generate a realistic sequence of graphs that will obey all the 

patterns

Idea: Self-similarity

Leads to power laws (degree distributions)

Communities within communities

…
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Recursive graph generation

There are many obvious (but wrong) ways

- Does not obey Densification Power Law

- Has increasing diameter

Kronecker Product is a way of generating self-

similar matrices

• There are many obvious (but wrong) ways

Initial graph Recursive expansion
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Kronecker product: Graph

Adjacency matrix

Intermediate stage

Adjacency matrix

(9x9)(3x3)
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Kronecker product: Definition

• The Kronecker product of matrices A and B is given 
by

• We define a Kronecker product of two graphs as a 
Kronecker product of their adjacency matrices

N x M K x L

N*K x M*L 
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Kronecker graphs

• We create the self-similar graphs recursively

– Start with a initiator graph G1 on N1 nodes and E1 edges

– The recursion will then product larger graphs G2,   G3, 

…Gk on N1
k nodes

• We obtain a growing sequence of graphs by 

iterating the Kronecker product
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Kronecker graphs

• Continuing multiplying with G1 we obtain G4

and so on …

G3 adjacency matrix
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Kronecker graphs – examples on bipartite graph
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Kronecker graphs – examples on bipartite graph

Kronecker exponent of bipartite 

graph naturally produces 

exponential distribution 
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Stochastic Kronecker graphs

(3x3)

(9x9)
(27x27)

Θ1

Instance

matrix K2

Θ2=Θ1Θ1

For each puv

flip Bernoulli 

coin

Kronecker

multiplication

Probability 

of edge puv

probability matrix
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Kronecker graphs: Intuition

1) Recursive growth of graph communities
– Nodes get expanded to micro communities

– Nodes in sub-community link among themselves and to nodes from 
different communities

2) Node attribute representation
– Nodes are described by features

• [likes ice cream, likes chocolate]

• u=[1,0],   v=[1, 1]

– Parameter matrix gives the linking probability
• p(u,v) = 0.5 * 0.1 = 0.05

0.5 0.2

0.1 0.3

1       0

1 

0

Θ1
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Properties of Kronecker graphs

• We prove that  Kronecker multiplication generates 
graphs that obey [PKDD’05]
– Properties of static networks

Power Law Degree Distribution

Power Law eigenvalue and eigenvector distribution

Small Diameter

– Properties of dynamic networks 
Densification Power Law

Shrinking/Stabilizing Diameter

• Good news: Kronecker graphs have the necessary 
expressive power

• But: How do we choose the parameters to match all 
of these at once?
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Model estimation: approach

• Maximum likelihood estimation

– Given real graph G

– Estimate Kronecker initiator graph Θ (e.g.,         ) 

which

• We need to (efficiently) calculate

• And maximize over Θ (e.g., using gradient descent)

)|( GP

)|(maxarg 


GP
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Fitting Kronecker graphs

• Given a graph G and Kronecker matrix Θ we 

calculate probability that Θ generated G P(G|Θ)
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Challenge 1: Node correspondence

• Nodes are unlabeled

• Graphs G’ and G” should 

have the same probability

P(G’|Θ) = P(G”|Θ)

• One needs to consider all 

node correspondences  σ

• All correspondences are a 

priori equally likely

• There are O(N!)

correspondences
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P(G’|Θ) = P(G”|Θ)

Θ
Θk

σ



6.886 Paper Presentation – Kronecker Graph – yijiangh@mit.edu 34 / 54

Challenge 2: calculating P(G|Θ,σ)

• Assume we solved the correspondence problem

• Calculating

• Takes O(N2) time

• Infeasible for large graphs (N ~ 105)

0.25 0.10 0.10 0.04

0.05 0.15 0.02 0.06

0.05 0.02 0.15 0.06

0.01 0.03 0.03 0.09
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0 0 1 1

σ… node labeling
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P(G|Θ, σ)
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Model estimation: solution

• Naïvely estimating the Kronecker initiator takes O(N!N2) time:

– N! for graph isomorphism 

• Metropolis sampling: N!  (big) const

– N2 for traversing the graph adjacency matrix

• Properties of Kronecker product and sparsity (E << N2): N2
 E

• We can estimate the parameters of Kronecker graph in linear 

time O(E)
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Solution 1: Node correspondence 

• Log-likelihood

• Gradient of log-likelihood

• Sample the permutations from P(σ|G,Θ) and average 
the gradients
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Solution 1: Node correspondence 

• Metropolis sampling:

– Start with a random permutation

– Do local moves on the permutation

– Accept the new permutation

• If new permutation is better (gives higher likelihood)

• If new is worse accept with probability proportional to the 
ratio of likelihoods
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1 1 1 1

0 1 1 1

1 1 1 0
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Can compute efficiently:

Only need to account for 

changes in 2 rows / 

columns

Re-evaluate the 

likelihood
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Solution 2: Calculating P(G|Θ,σ)

• Calculating naively P(G|Θ,σ) takes O(N2)

• Idea:

– First calculate likelihood of empty graph, a graph with 0 edges

– Correct the likelihood for edges that we observe in the graph

• By exploiting the structure of Kronecker product we obtain 

closed form for likelihood of an empty graph
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Solution 2: Calculating P(G|Θ,σ)

• We approximate the likelihood:

• The sum goes only over the edges 

• Evaluating P(G|Θ,σ) takes O(E) time

• Real graphs are sparse, E << N2

No-edge likelihood Edge likelihoodEmpty graph
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Model estimation: overall solution

Solution 1: Metropolis sampling

Solution 2: Edge-wise prob

computation
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Experiments: artificial data

• Can gradient descent recover true parameters?

• Optimization problem is not convex

• How nice (without local minima) is optimization space?

– Generate a graph from random parameters

– Start at random point and use gradient descent

– We recover true parameters 98% of the times
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Convergence of properties

• How does algorithm converge to true parameters with 

gradient descent iterations?
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Experiments: real networks

• Experimental setup:

– Given real graph

– Stochastic gradient descent from random initial point

– Obtain estimated parameters

– Generate synthetic graphs 

– Compare properties of both graphs

• We do not fit the properties themselves 

• We fit the likelihood and then compare the graph properties
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AS graph (N=6500, E=26500)

• Autonomous systems (internet)

• We search the space of ~1050,000 permutations

• Fitting takes 20 minutes

• AS graph is undirected and estimated parameter 

matrix is symmetric:

0.98 0.58

0.58 0.06
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AS: comparing graph properties

• Generate synthetic graph using estimated parameters

• Compare the properties of two graphs

Degree distribution Hop plot
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AS: comparing graph properties

Network valueScree plot

log rank

lo
g
 e

ig
en

va
lu

e

log rank

lo
g
 v

a
lu

e

• Spectral properties of graph adjacency matrices
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Epinions graph (N=76k, E=510k)

• We search the space of ~101,000,000 permutations

• Fitting takes 2 hours

• The structure of the estimated parameter gives insight 

into the structure of the graph

Degree distribution Hop plot
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0.99 0.54

0.49 0.13
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Epinions graph (N=76k, E=510k)

Network valueScree plot
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Scalability

• Fitting scales linearly with the number of edges
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Conclusion

• Kronecker Graph model has 

– provable properties

– small number of parameters

• We developed scalable algorithms for fitting 
Kronecker Graphs

• We can efficiently search large space (~101,000,000) 
of permutations

• Kronecker graphs fit well real networks using few 
parameters

• We match graph properties without a priori 
deciding on which ones to fit
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Discussion

- Network evolution

- Dynamic Bayesian network with first order Markov dependencies

- A series of network snapshot evolving over time -> evolving initiator matrix

- Deeper understanding of network evolution through the lens of generating 

parameters

- Different random process for stochastic Kronecker graph

- Currently Bernoulli edge generation model

- Modeling weighted or labelled networks

- Micro-scale network probe?

- Random Dot Product Graphs – estimate the individual attribute values

- Kronecker (product) graphs – attribute-attribute similarity matrix (initiator 

matrix)

- Try to use given node attributes to infer “hidden” or missing node attribute 

values
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