Direction-Optimizing BFS

Jason Priest

Traditional BFS

function breadth-first-search(vertices, source)

frontier < {source}

next < {}

parents < [-1,-1,...-1]

while frontier # {} do
top-down-step(vertices, frontier, next, parents)
frontier < next
next < {}

end while

return tree

Fig. 1. Conventional BFS Algorithm

function top-down-step(vertices, frontier, next, parents)
for v € frontier do
for n € neighbors[v] do
if parents[n] = -1 then
parents[n] < v
next < next U {n}
end if
end for
end for

Fig. 2. Single Step of Top-Down Approach

Small World
Phenomenon

Avg degree of 16

Frontier balloons rapidly
Heavily revisiting edges
Nearly all edge visits fail

Claimed Child
Failed Child |
Feer

Valid Parent

Neighbors

Step

Fig. 3. Breakdown of edges in the frontier for a sample search on kron27
(Kronecker generated 128M vertices with 2B undirected edges) on the 16-core

system.

Small World
Phenomenon

- After first few steps, nearly
all edge visits fail

Claimed Child
Failed Child
Peer

Valid Parent

Step

Fig. 4. Breakdown of edges in the frontier for a sample search on kron27

(Kronecker generated 128M vertices with 2B undirected edges) on the 16-core
system.

The |mpr0vement function bottom-up-step(vertices, frontier, next, parents)
for v € vertices do
if parents[v] = -1 then
for n € neighbors[v] do
if n € frontier then
parents[v] <— n
next < next U {v}

Easy to parallelize by
partitioning vertices, no
longer requires atomic
operations

Requires inverse graph,

with large memory bl‘f!ak
overhead, in case of end if
directed graphs end for
end if
end for

Fig. 5. Single Step of Bottom-Up Approach

Hybrid Approach

Bottom-up is most
effective with large frontier
Bottom-up requires
checking all vertices to see
if they remain unvisited, so
a lot of unnecessary work if
the graph is multiple
components

Best to switch techniques

7 T T
6 Top-down ||
5 Bottom-up | _

0

e '

e 3]
2 =
1 - =
0 o M

0 1 2 3 4 5 6
Step
Fig. 6. Sample search on kron27 (Kronecker 128M vertices with 2B

undirected edges) on the 16-core system.

Heuristic
Thresholds

- switch to Bottom-Up
- switch to Top-down

m_f = edges adjacent to frontier

m_u = edges adjacent to
unvisited nodes

n_f = vertices in frontier

n = total vertices

alpha compensates for
bottom-up finishing before
examining all of m_u

Beta compensates for

ez
mys > —
! (84

n
Ny < 5=

Optimizing Alpha

Chose alpha = 14
Much larger does not
impact which step
transition occurs on

100%

Y 80% .
c
(0]
£
£
g 60% o kron25 hollywood |
= erdos25 #— ljournal
[0
A i rmat25 " orkut
A i
O O facebook wikipedia
®—@ flickr < twitter
200/ | 1 1 L | 1
° 5 10 15 20 25 30
o

Fig. 8. Performance of hybrid-heuristic on each graph relative to its best on
that graph for the range of o examined.

Optimizing Beta

Chose beta = 24

Minor variance has little
effect because switching
back to Top-Down at the
very end is inconsequential
because majority of work
has already been done

100% 1
Y 80%p_ .
C
©
£
=
ko 60% kron25 hollywood \ il
= ©—0 erdos25 #— ljournal
]
o A6k O—0 rmat25 »—x orkut
o il
G O facebook wikipedia
—® flickr > twitter
20% L gl PR R e | L gyl L TR | L e a sl L EEETEE |
10° 10" 10° 10° 10* 10° 10°
B

Fig. 9. Performance of hybrid-heuristic on each graph relative to its best on
that graph for the range of 3 examined.

sk P 1 Top-down |
1 Top-down-check

LL R 1 Bottom-up |

O | N Hybrid-heuristic [
Sst B 1 Hybrid-oracle |
9| | I R | [T _
n

]

kron25 erdos25 rmat25 facebook flickr hollywood ljournal orkut wikipedia twitter

Fig. 10. Speedups on the 16-core machine relative to Top-down-check.

Effect of Degree

Measured in terms of
effective number of edges
traversed per second
Dense graphs benefit
greatly

6000

5000

4000

3000

Search Rate (MTEPS)

2000

1

1000

0 1 10 20 40 80

Threads

Fig. 14. Parallel scaling of Hybrid-heuristic on the 40-core system for an
RMAT graph with 16M vertices and varied degree.

Related Works

e Efficient Breadth-First Search on the Cell/BE Processor[1]

e A Scalable Distributed Parallel Breadth-First Search Algorithm on
BlueGene/L[2]

e Designing Multithreaded Algorithms for Breadth-First Search and
st-connectivity on the Cray MTA-2[3]

e Topologically adaptive parallel breadth-first search on multicore
processors|[4]

