A faster Algorithm for

Betweeness Centrality

6.886
Joana M. F. da Trindade
Feb 16th 2018

Motivation

Centrality indicates importance of the nodes

- Indicates that a vertex can reach others on relatively short paths
However it may be expensive to compute for larger networks

- As previous 2 presentations showed, requires BFS -> O(m + n)
How can we make it more efficient?

- Can we break it into multiple single source BFS passes?
- Key intuition: count the number of shortest paths that pass by a given node

Types of centrality

closeness centrality (Sabidussi, 1966)

graph centrality (Hage and Harary, 1995)

stress centrality (Shimbel, 1953)

betweenness centrality
(Freeman, 1977; Anthonisse, 1971)

Key Contribution

“‘We introduce more efficient algorithms based on a new accumulation technique
that integrates well with traversal algorithms solving the single-source
shortest-paths problem, and thus exploiting the sparsity of typical instances”

Key Intuition

To eliminate the need for explicit summation of all pair-dependencies, we
introduce first the notion of the dependency of a vertex s € V on a single
vertex v € V, defined as

Bae(v) =) ba(v).

The crucial observation is that these partial sums obey a recursive relation.
In the following special case, this relation is particularly easy to recognize.

Counting number of shortest paths per node

e {rs)

éaitwﬂ]

Figure 1: With the assumption of Lemma 5, a vertex lies on all shortest
paths to its successors in the tree of shortest paths from the source

Counting number of shortest paths per node

Figure 2: In the general case of Theorem 6, fractions of the dependencies on
successors are propagated up along the edges of the directed acyelic graph
of shortest paths from the source

Alpgorithm 1: Betweenness centrality in unweighted graphs

. Cplv| — 0, v e V;
Algorithm
S + empty stack;
Plw] +— empty list, w € V;
ot —0,teV; o[s] —1;
dif] = =1,teV; ds 0
() « empty queue;
enqueue & — (J;
while } not empty do
dequene v+ J;
push v — §;
foreach neighbor w of v do
S w found for the first time?
if dlw] < 0 then
enqueue w — (J;
djw] « dv] +1;
end
// shartest path to w vig v¥
if dlw] =d[v] +1 then
olw) «— ofw] + olv];
append v — Plw];

end
end
end
dlv] « 0, v e V;

/8 returns vertices in order of non-increasing distance from s
while S not empty do
pop u « 5; L
for v € Plw] do d[v] +] + 5[5: (14 dw]);
if w # s then Cplw] + Cplw] + d[w];
end
end

Theoretical Results

Theorem & Betweenness centrality can be computed in O(nm + n° logn)
time and O(n + m) space for weighted graphs. For unweighted graphs, run-
ning time reduces to O{nm).

The other shortest-path based centrality measures defined in Section 2
are easily computed during the execution of single-source shortest-paths
traversals. The same holds for a recently introduced index called radiality
(Valente and Foreman, 1998)

b i G — de(v,
Crlv) = Lﬁ:y ':{i(_ 1;_ L{é{'}["—'.ﬂ)‘

Performance

1|:G|:| T T T
standand algarithm —8—
oUr SHGOrHm ——
BIO F
610 h
L)
=
&
&
400
/ g
200 F
sk] 1

1000 150D 2000
rumber af vanices

Figure 3: Seconds needed to the compute betweenness centrality index for
random undirected, unweighted graphs with 100 to 2000 wvertices and den-
sities ranging from 10% to 90%

Performance

1000
BIQ F
BI0 [
wi
o
&
]
400 [
200 [
standard algariihm —8—
our lgarithim —e—
shoriest palhs only --—-—

a 1000 Z000 3000 4000 5000 G000
rumber of verlices
Figure 4: Seconds needed to the compute betweenness centrality index for
random undirected, unweighted graphs with constant average degree 20.
The funny jumps are attributed to LEDA internals

Conclusion

Nice theoretical results on how to make centrality scale for large networks

Authors were hopeful that it could be used for networks with at least 10,000 nodes

