Multicore Triangle Computations
Without Tuning

Julian Shun and Kanat Tangwongsan

Presentation is based on paper published in International
Conference on Data Engineering (ICDE), 2015

Triangle Computations

- Triangle Counting Carol P David
Count =3 \ /s/\
. Alice Bob Eve
- Other variants:
- Triangle listing \
- Local triangle counting/clustering coefficients Fred Greg

- Triangle enumeration \t’/

- Approximate counting
- Analogs on directed graphs

- Numerous applications...

- Social network analysis, Web structure, spam detection, outlier
detection, dense subgraph mining, 3-way database joins, etc.

Need fast triangle computation algorithms!

3
Sequential Triangle Computation

AlgOrIth ms V = # vertices E = # edges

- Sequential algorithms for exact counting/listing
- Naive algorithm of trying all triplets
O(V3) work
- Node-iterator algorithm [Schank]
O(VE) work

- Edge-iterator algorithm [ltai-Rodeh]
O(VE) work

- Tree-lister [ltal-Rodeh], forward/compact-forward [Schank-\Wagner,
Lapaty]

O(E">) work
- Sequential algorithms via matrix multiplication

- O(V?%37) work compute A3, where A is the adjacency matrix
- O(E'4") work [Alon-Yuster-Zwick]
- These require superlinear space

. S
Sequential Triangle Computation

Algorlthl | lS Source: “Algorithmic Aspects of Triangle-Based Network

Analysis”, Dissertation by Thomas Schank

core forward-hashed
ayz using fast /‘
O (mw) ~ multiplication T (compact) 5
p listing-ayz forward /ashe d
| fast matrix- node-iterator +—— edge-iterator dmax m)
O (n7) multiplication

counting algorithms listing algorithms

What about parallel algorithms?

. 5
Parallel Triangle Computation Algorithms

- Most designed for distributed memory

- MapReduce algorithms [Cohen 09, Suri-Vassilvitskii “11, Park-
Chung ‘13, Park et al. “14]

- MPI algorithms [Arifuzzaman et al. “13, Graphlab]

- What about shared-memory multicore?
- Multicores are everywhere!
- Node-iterator algorithm [Green et al. "14]
- O(VE) work in worst case

- Can we obtain an O(E'-°) work shared-memory multicore
algorithm?

- 5
Triangle Computation:

Challenges for Shared Memory Machines

c Irreqular

Deep memory

computation hierarchy
Memory: upto 1 TB
4 of these >
10° b
24 MB L3 24 MB
P «—>
10° F . 8 of these 8 of these
128 KB 128 KB | L2 | 128 KB 128 KB
10 y I I I I
) 32 KB 32KB| L1 [32KB 32 KB
| | I |

(1]
90 100 107 10 10° 10° 10° 100 10° 10° @ @ @ @

Cache Complexity Model

External Memory Model
Main Memory Disk
Unit cost for transferring
line of size B
Main

SizeM Cache SizeM Memory

t ~

CPU CPU

Complexity = # eache-misses- disk accesses

Cache-aware (external-memory) algorithms: have
knowledge of M and B
Cache-oblivious algorithms: no knowledge of parameters

Cache Oblivious Model [Frigo et al. "99]

- Algorithm works well regardless of
cache parameters

- Works well on multi-level hierarchies

- Parallel Cache Oblivious Model for
hierarchies of shared and private
caches [Blelloch et al. "11]

Primitive Cache Complexity
Scanlffilter/merge O(n) O(logn) O(n/B)
Sort O(nlog n) O(log?n) O((n/B)logs)(n/B))

Memory: upto 1 TB

4 of these
24 MB L3 24 MB
P E— P E—
8 of these 8 of these

|128KB| |128KB|L2 | 128KB| |128KB|

Main Memory

Block size B;
Block size B

L3 Cache Size M;

e Size M
Block size B,

C

L2 he Size M,

(* Block size B,

L1 Cache Size M,

t

CPU

External-Memory and Cache-Oblivious
Triangle Computation

- All previous algorithms are sequential
- External-memory (cache-aware) algorithms

- Natural-join O(E3/(M2B)) I/O’s
- Node-iterator [Dementiev '06] O((E">/B) logy,g(E/B)) I/0O’s
- Compact-forward [Menegola “10] O(E + E'5/B) I/O’s
. [Chu-Cheng ’11, Hu et al. ‘13] O(E?/(MB) + #triangles/B) 1/O’s
- External-memory and cache-oblivious
- [Pagh-Silvestri ‘“14] O(E"5/(M%> B)) I/O’s or cache misses

- Parallel cache-oblivious algorithms?

2
Our Contributions

0 Parallel Cache-Oblivious Triangle Counting Algs

Algorithm Te~he Complexity
< TC-Merge O(E!5) O(log? E) O(E + E'5/B) =~
= TC-Hash O(VlogV +aE) O(log?E O(sort(V) + -
TC:Ha S (09_0(_) (log)_(SO(),GE)—
Par. Pagh-Silvestri O{E™YT “O({6g%E) =~ O(E'5/(M°5 B))
V = # vertices E = # edges a = arboricity (at most E%-°)
M = cache size B = line size sort(n) = (n/B) logy,g(n/B)

Extensions to Other Triangle Computations:

Enumeration, Listing, Local Counting/Clustering Coefficients,
Approx. Counting, Variants on Directed Graphs

e Extensive Experimental Study

Sequential Triangle Counting (Exact)

(Forward/compact-forward algorithm)

Rank vertices by degree (sorting) c
O Return A[v] for all v storing higher

; ranked neighbors
O)—(D—3

' for each vertex v: a

(4) for each w in A|v]:
count += intersect(A[v], A[w])

Gives all triangles (v, w, x) where
rank(v) < rank(w) < rank(x)

Work = O(E')
[Schank-Wagner ‘05, Latapy ‘08]

Proof of O(E'°) work bound when intersect

uses merging Rank vertices by degree (sorting) c
' Return Alv] for all v storing higher

ranked neighbors

(2)—(1)—3)
' for each vertex v:
(4) for each w in A|v]: @

count += intersect(A[v], A[w])

« Step 1: O(E+V log V) work
« Step 2:
 For each edge (v,w), intersect does O(d*(v) + d*(w)) work
« Forallv, d*(v) < E®S
« Ifd*(v) > E®S, each of its higher degree neighbors also
have degree > E%-° and total number of directed edges > E,

a contradiction
« Total work = E * O(E®°) = O(E"?)

Parallel Triangle Counting (Exact)

Step 1

Work = O(E+V log V)

Depth = O(log? V)

Cache = O(E+sort(V)) | Rank vertices by degree (sorting) c
Parallel sort ‘ Return A[v] for all v storing higher

and filter ranked neighbors

parallel_for each w in A[v]:
count += intersect(A[v], A[w])

parallel for each vertex v: @

Parallel reduction

parforve V
v=0 \
v=1 v=4
parfor w € A[0] v=2" parfor w € A[4]
parfor w € A[1] parfor w € A[3] arallel merge (TC-Merge)

_ parfor w € A[2] intersect(A'4], A1) Gdte to
intersect(A0],AT1]) intersect(A"2].AT[1]) interfaet AN By wbk"(TC Hash)

intersect(A70], A'[3]) intersect(A73], A1) parallel

.
TC-Merge and TC-Hash Details

parallel_for each vertex v:

parallel_for each w in A[v]: g
Parallel reduction ‘ count += intersect(A[v], Alw])

Step 2: TC-Merge Step 2: TC-Hash t

Work = O(E™®) Work = O(aE) Parallel merge (TC-Merge)
Depth = O(log? E) Depth = O(log E) or

— 1.5 —
Cache = O(E+E"%/B) || Cache = O(aE) |p 16l hash table (TC-Hash)
. TC-Merge (a = arboricity (at most E%-°))
- Preprocessing: sort adjacency lists

- Intersect: use a parallel and cache-oblivious merge based on divide-
and-conquer [Blelloch et al. “11]

- TC-Hash

- Preprocessing: for each vertex, create parallel hash table storing
edges [Shun-Blelloch “14]

- Intersect: scan smaller list, querying hash table of larger list in parallel

Algorithm

17

Comparison of Complexity Bounds

Depth Cache Complexity

TC-Merge O(E™9) O(log? E) | O(E + E"-°/B) (oblivious)
TC-Hash O(VlogV +aE) O(log?E) | O(sort(V) + aE) (oblivious)
Par. Pagh-Silvestri O(E"9) O(log3 E) | O(E"5/(M°-> B)) (oblivious)
Chu-Cheng ‘11, O(E log E + E?/M I O(E?/(MB) + #triangles/B)
Hu et al. ‘13 + aE) (aware)
Pagh-Silvestri ‘14 O(E"5) \O(E"5/(M°5 B)) (oblivious) ,
Green et al. 14 O(VE) O(logE) ~ — — — — —

V = # vertices E = # edges a = arboricity (at most E%-°)

M = cache size B = line size sort(n) = (n/B) logy,g(n/B)

Our Contributions

0 Parallel Cache-Oblivious Triangle Counting Algs

Algorithm 171 Uepii Te~he Complexity
< TC-Merge O(E!5) O(log? E) O(E + E'5/B) =~
= TC-Hash O(ViogV +aE) Of(log?E O(sort(V) + -
TC:Ha S (09_0(_) (log)_(SO(),GE)—
Par. Pagh-Silvestri O{E™YT “O({6g%E) =~ O(E'5/(M°5 B))
V = # vertices E = # edges a = arboricity (at most E%-°)
M = cache size B = line size sort(n) = (n/B) logy,g(n/B)

Enumeration, Listing, Local Counting/Clustering Coeﬁfzcze\%
~Approx. Countzng, Variants on Directed Graphs -

—_
— —

?Extmswns to Other-Trinngle-Compuwtations:

—_'———————_‘—

6 Extensive Experimental Study

-
Extensions of Exact Counting Algorithms

- Triangle enumeration
- Call emit function whenever triangle is found
- Listing: add to hash table to list; return contents at the end
- Local counting/clustering coefficients: atomically increment
count of three triangle endpoints
- Directed triangle counting/enumeration
- Keep separate counts for different types of triangles

- Approximate counting

- Use colorful triangle sampling scheme to create smaller sub-graph
[Pagh-Tsourakakis ‘12]

- Run TC-Merge or TC-Hash on sub-graph with pE edges (0 <p <1)
and return #triangles/p? as estimate

. R
Approximate Counting

- Colorful triangle counting [Pagh-Tsourakakis "12]

Sampling rate: 0 <p <1
Assign random color in {1, ..., 1/p} a

Parallel scan ‘ to each vertex
| Sampling: Keep edges whose !
Parallel filter ‘ endpoints have the same color 6

Use TC-Merge Run exact triangle counting on
‘ sampled graph, return A, jcq/P?

Expected # edges = pE

or TC-Hash

Steps 1 & 2 Step 3: TC-Merge Step 3: TC-Hash

Work = O(E) Work = O((pE)'°) Work = O(V log V + apE)
Depth = O(log E) Depth = O(log? E) Depth = O(log E)

Cache = O(E/B) Cache = O(pE+(pE)'-°/B) Cache = O(sort(V)+paE)

Our Contributions

0 Parallel Cache-Oblivious Triangle Counting Algs

Algorithm Work Depth Cache Complexity
TC-Merge O(E™®) O(log? E) O(E + E'-%/B)
TC-Hash O(VlogV +aE) O(log?E) O (sort(V) + aE)
Par. Pagh-Silvestri O(E'-%) O(log® E) O(E'S/(M%> B))

V = # vertices E = # edges a = arboricity (at most E%-°)
M = cache size B = line size sort(n) = (n/B) logy,g(n/B)

) Exteusions-to-Othrer Frmrgle-Computatians,
“Enumeration, Listing, Local Counting/Clustering Coeﬁ%czeﬁ’s)
ABPLX. Countzng Variants on Directed GmEhs__ ——

[———-— e
" ‘.

Q Extensive Experimental Study ™

”

‘
'_'—'——__———_‘_

-z
Experimental Setup

- Implementations using Intel Cilk Plus

- 40-core Intel Nehalem machine (with 2-way hyper-threading)
- 4 sockets, each with 30MB shared L3 cache, 256KB private L2 caches

- Sequential TC-Merge as baseline (faster than existing
sequential implementations)

- Other multicore implementations: Green et al. and GraphLab
- Our parallel Pagh-Silvestri algorithm was not competitive
- Variety of real-world and artificial graphs

Both TC-Merge and TC-Hash scale well
with # of cores:

1m 3 | 1 L) L ! 1 1 1000
100

10 F

LivedJournal Orkut
AM vitxes, 34.6M edges SM vixes, 117M edges

. S
40-core (with hyper-threading) Performance

50

45

40

35

30 -
25 -

20 -

15 -

10 -

Speedup over

sequential TC-Merge

m TC-Merge
m TC-Hash

m Green et al.
m GraphLab

- TC-Merge always faster than Green et al. or GraphLab

(by 2.1—5.2x)

B
Why is TC-Merge faster than TC-Hash??

soc-LJ
o 2 2
0 1.8 1.8
o m TC-Merge
s 1.6 1.6
\ 1.4 1.4
S :
= 1.2 mTC-Hash 1.2
S 1
wid
e,
S 0.8
N 0.6
®©
g 04
o 0.2
Z 0

Running L3 Cache L2 Cache # Ops for
Time Misses Missses Intersect

Orkut

1
0.8 -
0.6 -
0.4 -
0.2 -

0 -

Running L3 Cache L2 Cache # Ops for
Time Misses Misses Intersect

- TC-Hash less cache-efficient than TC-Merge
- Running time more correlated with cache misses than work

N
Comparison to existing counting algs.

Twitter graph (41M vertices, 1.2B undirected edges, 34.8B triangles)

Suri and Vassilvitskii (MapReduce, 1636 nodes) I < Es

Park and Chung (MapReduce, 47 nodes) [

i (213 minutes)
PATRIC (MPI, 1200 cores) s

GraphLab (MPI, 64 nodes, 1024 cores) [l

GraphLab (40 cores)

TC-Merge (40 cores) P

0 2 LII EIS é 1I0 1I2 1I4 1I6 1I8 2I0
Minutes
 Yahoo graph (1.4B vertices, 6.4B edges, 85.8B triangles)
on 40 cores: TC-Merge takes 78 seconds

— Approximate counting algorithm achieves 99.6% accuracy in 9.1
seconds

Approximate counting

0-5 ! ! ! |

ok

0.3

Tapproxl Texact
0.2
0.1
0
0 0.1 0.2 0.3 0.4 0.5
p

p=1/25 Accuracy | T, pr0x Talc,pmxlTexact
Orkut (V=3M, E=117M) 99.8% 0.067sec 0.035
Twitter (V=41M, E=1.2B) | 99.9% 2.4sec 0.043
Yahoo (V=1.4B, E=6.4B) | 99.6% 9.1sec 0.117

Conclusion

Algorithm Work Depth Cache Complexity
TC-Merge O(E™®) O(log? E) O(E + E'-%/B)
TC-Hash O(VlogV +aE) O(log?E) O(sort(V) + aE)
Par. Pagh-Silvestri O(E'-%) O(log3 E) O(E'®/(M°> B))

- Simple multicore algorithms for triangle computations are
provably work-efficient, low-depth and cache-friendly

- Implementations require no load-balancing or tuning for
cache

- Experimentally outperforms existing multicore and
distributed algorithms

- Future work: Design a practical parallel algorithm
achieving O(E"-%/(M°%> B)) cache complexity

