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What is it
Efficient, scalable, fault tolerant, graph processing

Small amount of programming effort for scalable graph analysis

Distribution details hidden from user

Think like a vertex



Challenges
Little work per vertex

Changing parallelism over the course of the algorithm

Poor locality



Other options
Make your own infrastructure

◦ Substantial implementation effort 

MapReduce
◦ Suboptimal performance
◦ Entire state is transmitted between steps

Single node compute
◦ Limits scale

Existing graph systems
◦ Not fault tolerant



Compute model
Think like a vertex

Directed edges associated with source vertex

Supersteps
◦ Modify its own state
◦ Modify its edges
◦ Review and send messages

Edges do not have associated compute



API
Have to write a new compute function for the vertex class

Each vertex has a single value associated with it
◦ The value can be a large complex type if needed

No remote reads

Message Passing
◦ Any number can be sent
◦ Viewable in the next superstep
◦ Can send to any node, not just neighbors



Combiners
Messages can be combined

◦ Reduce number of messages
◦ Reduce size of buffers
◦ Examples

◦ Sum
◦ Min
◦ Max



Aggregators
For global communication

Each vertex provides a value that are globally combined

Can be used for information about the graph and statistics 
◦ Finding the number of edges

◦ Each vertex outputs its out degree and sum them

◦ Can also make histograms

Global coordination
◦ When a condition is satisfied and can start the next phase



Topology Mutation
Vertices can add and remove edges

This can cause conflicts
◦ Two different vertices trying to add the same new vertex

Conflict resolution
◦ Removals before additions
◦ Edge removals before vertex removals
◦ Vertex additions before edge additions
◦ User-defined handlers deal with the rest



Examples
PageRank

Shortest Paths



PageRank



SSSP



SSSP Combiner



Disadvantages
All computation are synchronous

◦ Asynchronous operations can lead to faster convergence 

Does not take into account known information on graphs
◦ Such as small world or power law.

Lost single node performance
◦ GraphChi found they could get ¼ the performance with 1/30th of the cores
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Implementation
On top of Google cluster architecture

◦ 1000s of commodity machines 
◦ Name service

◦ Instances are described by name independent of hardware

◦ Distributed storage system
◦ GFS
◦ BigTable

Partitions
◦ Either just hash(node ID) or user defined function

◦ It is known where every vertex is stored by every machine



Worker
Maintains state of its partitions in memory

Queues for incoming messages and outgoing messages
◦ Buffering messages limits internode traffic

Calls compute for each superstep

Combiners are called in all queues



Master
Determines how many partitions the graph has

◦ Assigns one or more to each node

Maintains a list of active workers

Ensures everything proceeds in lockstep
◦ When a node fails goes to failure recover mode



Fault Tolerance
Uses a persistent distributed storage system

Check pointing 

Failure detection via pings

Outgoing messages are logged


