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Parallel Programming is Important for ML

End of frequency scaling -> Need parallelism to scale
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Existing Frameworks are Unsuitable for ML

High-Level Framework: MapReduce

cLimited Scope: Targets “embarrasingly parallel”
applications

»Many ML algorithms have data dependences (Belief
propagation, gradient descent, ...)

cCannot express Iterative algorithms effectively
»Many ML algorithms are iterative
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Existing Frameworks are Unsuitable for ML
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Existing Frameworks are Unsuitable for ML

Low-level frameworks: Pthreads, MPI

°DAG abstraction: nodes are computations, edges are
data flow

cExpressive, but hard to program
»Reason about synchronization
»Load balancing
»wDeadlock, Livelock, ...




Graphlab

A vertex-centric, asynchronous, shared memory
abstraction for graph processing

cUpdates are vertex-centric

°No barrier synchronization

°No message passing abstraction




GraphlLab Overview

Graph Based Update Functions
Data Representation User Computation
*
Scheduler Consistency Model
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Data Model

Data modeled as a graph with arbitrary data
associated with each vertex and edge
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Local Updates

Update function: defines local computation on a
scope of a vertex
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Sync Mechanisms

Much like fold/reduce
°Fold: aggregate data sequentially
°Merge: parallel tree reduction of folded data

°cApply: apply updated data to global shared data
table(SDT)

Either periodic, or triggered by an update
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Data Consistency

Need to resolve race conditions
ce.g. simultaneous updates on the same vertex

Provides 3 levels of consistency
°Full consistency

cEdge consistency

°Vertex consistency

Each model guarantees the scope of vertices and
edges that can be modified by the Update function
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Data Consistency
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Scheduling

A collection of basic schedulers
°Synchronous
cRound-robin

Tasks schedulers that allow task creation/reordering
°FIFO
°Prioritized

Provides users to create their own scheduler through a
Set Scheduler
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Set Scheduler

fori=1---kdo
Execute f; on all vertices in S; in parallel.

Wait for all updates to complete
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Case Study: Loopy Belief Propagation

Iteratively estimates “beliefs” about vertices
°Read in messages

cUpdates marginal
estimate (belief)

°Send updated
out messages

Repeat for all variables
until convergence
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Case Study: Loopy Belief Propagation

Application: 3D retinal image denoising

cRepresent as a 256x64x64 with each vertex as a voxel in
the original image

3D retinal image denoising




Case Study: Loopy Belief Propagation

Algorithm 2: BP update function

BPUpdate(D,,, Dy, Dy—. € Sy) begin
Compute the local belief b(x,, ) using { D«—., Dy }
foreach (v — t) € (v — %) do
Update my—¢(2¢) using { Dx—v, Dy } and Agis(ovt)
from the SDT.
residual «— ‘ |mv_>t () — mOL, (x¢) | ‘1
if residual > Termination Bound then
|  AddTask(t, residual)
end

end
end




Case Studies: Loopy Belief Propagation
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Case Studies

Other examples (Gibbs sampling, CO-EM, ...)
°Check the paper!




Limitations

Reports self-scaling numbers, but comparison with
other frameworks or a serial baseline are missing.

Implicitly shared-memory model, how does it work
for distributed systems?

Do ML algorithms really operate on large graphs?
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Conclusion

Prior parallel frameworks unsuitable for ML
°High-level: not expressive enough
cLow-level: difficult to program

GraphLab provides a vertex-centric framework on
data graphs

Scalability up to 16 cores on a wide range of ML
applications

FRACTAL: AN EXECUTION MODEL FOR FINE-GRAIN NESTED SPECULATIVE PARALLELISM



