Graphlab: A New Framework For

Parallel Machine Learning

YUCHENG LOW, JOSEPH GONZALEZ,
AAPO KYROLA, DANNY BICKSON, CARLOS
GUESTRIN, JOSEPH HELLERSTEIN

Presented by Hyun Ryong (Ryan) Lee

__]

Parallel Programming is Important for ML

End of frequency scaling -> Need parallelism to scale

7 .
10 7. Transistors

" : (thousands)
10

5
10 |

i Single-thread

4 . Performance
10 " (SpeciNT)

3 : Frequency
10 T (MH2)

2 Typical Power
10 - (Watts)

1 Number of
10 " Cores

0

1975 1980 1985 1990 1995 2000 2005 2010 2015

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

Existing Frameworks are Unsuitable for ML

High-Level Framework: MapReduce

cLimited Scope: Targets “embarrasingly parallel”
applications

»Many ML algorithms have data dependences (Belief
propagation, gradient descent, ...)

cCannot express Iterative algorithms effectively
»Many ML algorithms are iterative

__]

Existing Frameworks are Unsuitable for ML

User
Program

1) fork .- ’ . .

(D fork (1) fork (1) fork
: ,)
N Q) assign

N . as‘sign reduce . .
oo map

split 0

(6) write

output
file O

output
file 1

worker

split 1

split 2 M‘O (4) local write
worker
split 3

(5) remote read

split 4
Input Map Intermediate files Reduce Output
files phase (on local disks) phase files

Existing Frameworks are Unsuitable for ML

Low-level frameworks: Pthreads, MPI

°DAG abstraction: nodes are computations, edges are
data flow

cExpressive, but hard to program
»Reason about synchronization
»Load balancing
»wDeadlock, Livelock, ...

Graphlab

A vertex-centric, asynchronous, shared memory
abstraction for graph processing

cUpdates are vertex-centric

°No barrier synchronization

°No message passing abstraction

GraphlLab Overview

Graph Based Update Functions
Data Representation User Computation
*
Scheduler Consistency Model

oooo>

Data Model

Data modeled as a graph with arbitrary data
associated with each vertex and edge

&=

Local Updates

Update function: defines local computation on a
scope of a vertex

/

scope

Sync Mechanisms

Much like fold/reduce
°Fold: aggregate data sequentially
°Merge: parallel tree reduction of folded data

°cApply: apply updated data to global shared data
table(SDT)

Either periodic, or triggered by an update

__]

Data Consistency

Need to resolve race conditions
ce.g. simultaneous updates on the same vertex

Provides 3 levels of consistency
°Full consistency

cEdge consistency

°Vertex consistency

Each model guarantees the scope of vertices and
edges that can be modified by the Update function

__]

Data Consistency

Full Consistency

/ dge Consistency
G @ ~@

Scheduling

A collection of basic schedulers
°Synchronous
cRound-robin

Tasks schedulers that allow task creation/reordering
°FIFO
°Prioritized

Provides users to create their own scheduler through a
Set Scheduler

__]

Set Scheduler

fori=1---kdo
Execute f; on all vertices in S; in parallel.

Wait for all updates to complete

&
X |5 [@
e: o &

Update, Update,

)

Update,

QY
\/

Data Graph Desired Execution Sequence Execution Plan

Case Study: Loopy Belief Propagation

Iteratively estimates “beliefs” about vertices
°Read in messages

cUpdates marginal
estimate (belief)

°Send updated
out messages

Repeat for all variables
until convergence

__]

Case Study: Loopy Belief Propagation

Application: 3D retinal image denoising

cRepresent as a 256x64x64 with each vertex as a voxel in
the original image

3D retinal image denoising

Case Study: Loopy Belief Propagation

Algorithm 2: BP update function

BPUpdate(D,,, Dy, Dy—. € Sy) begin
Compute the local belief b(x,,) using { D«—., Dy }
foreach (v — t) € (v — %) do
Update my—¢(2¢) using { Dx—v, Dy } and Agis(ovt)
from the SDT.
residual «— ‘ |mv_>t () — mOL, (x¢) | ‘1
if residual > Termination Bound then
| AddTask(t, residual)
end

end
end

Case Studies: Loopy Belief Propagation

16
14} Linear
Splash Schedule

12¢

10 Approx. Priority Schedul

Speedup

~ O 0

0 2 4 6 8 10 12 14 16
Number of Processors

Case Studies

Other examples (Gibbs sampling, CO-EM, ...)
°Check the paper!

Limitations

Reports self-scaling numbers, but comparison with
other frameworks or a serial baseline are missing.

Implicitly shared-memory model, how does it work
for distributed systems?

Do ML algorithms really operate on large graphs?

__]

Conclusion

Prior parallel frameworks unsuitable for ML
°High-level: not expressive enough
cLow-level: difficult to program

GraphLab provides a vertex-centric framework on
data graphs

Scalability up to 16 cores on a wide range of ML
applications

FRACTAL: AN EXECUTION MODEL FOR FINE-GRAIN NESTED SPECULATIVE PARALLELISM

