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Parallel Programming is Important for ML
End of frequency scaling -> Need parallelism to scale
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Existing Frameworks are Unsuitable for ML
High-Level Framework: MapReduce
◦Limited Scope: Targets “embarrasingly parallel” 
applications
»Many ML algorithms have data dependences (Belief 
propagation, gradient descent, ...)

◦Cannot express Iterative algorithms effectively
»Many ML algorithms are iterative
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Existing Frameworks are Unsuitable for ML
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Figure 1: Execution overview

Inverted Index: The map function parses each docu-
ment, and emits a sequence of ⟨word,document ID⟩
pairs. The reduce function accepts all pairs for a given
word, sorts the corresponding document IDs and emits a
⟨word, list(document ID)⟩ pair. The set of all output
pairs forms a simple inverted index. It is easy to augment
this computation to keep track of word positions.

Distributed Sort: The map function extracts the key
from each record, and emits a ⟨key,record⟩ pair. The
reduce function emits all pairs unchanged. This compu-
tation depends on the partitioning facilities described in
Section 4.1 and the ordering properties described in Sec-
tion 4.2.

3 Implementation

Many different implementations of the MapReduce in-
terface are possible. The right choice depends on the
environment. For example, one implementation may be
suitable for a small shared-memory machine, another for
a large NUMA multi-processor, and yet another for an
even larger collection of networked machines.
This section describes an implementation targeted
to the computing environment in wide use at Google:

large clusters of commodity PCs connected together with
switched Ethernet [4]. In our environment:

(1)Machines are typically dual-processor x86 processors
running Linux, with 2-4 GB of memory per machine.

(2) Commodity networking hardware is used – typically
either 100 megabits/second or 1 gigabit/second at the
machine level, but averaging considerably less in over-
all bisection bandwidth.

(3) A cluster consists of hundreds or thousands of ma-
chines, and therefore machine failures are common.

(4) Storage is provided by inexpensive IDE disks at-
tached directly to individual machines. A distributed file
system [8] developed in-house is used to manage the data
stored on these disks. The file system uses replication to
provide availability and reliability on top of unreliable
hardware.

(5) Users submit jobs to a scheduling system. Each job
consists of a set of tasks, and is mapped by the scheduler
to a set of available machines within a cluster.

3.1 Execution Overview

The Map invocations are distributed across multiple
machines by automatically partitioning the input data
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Existing Frameworks are Unsuitable for ML
Low-level frameworks: Pthreads, MPI
◦DAG abstraction: nodes are computations, edges are 
data flow

◦Expressive, but hard to program
»Reason about synchronization
»Load balancing
»Deadlock, Livelock, ...
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GraphLab
A vertex-centric, asynchronous, shared memory 
abstraction for graph processing
◦Updates are vertex-centric
◦No barrier synchronization
◦No message passing abstraction
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GraphLab Overview

7

Scheduler Consistency Model

Graph Based
Data Representation

Update Functions
User Computation
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Data Model
Data modeled as a graph with arbitrary data 
associated with each vertex and edge
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Local Updates
Update function: defines local computation on a 
scope of a vertex
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Sync Mechanisms
Much like fold/reduce
◦Fold: aggregate data sequentially
◦Merge: parallel tree reduction of folded data
◦Apply: apply updated data to global shared data 
table(SDT)

Either periodic, or triggered by an update
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Data Consistency
Need to resolve race conditions 
◦e.g. simultaneous updates on the same vertex

Provides 3 levels of consistency
◦Full consistency
◦Edge consistency
◦Vertex consistency

Each model guarantees the scope of vertices and 
edges that can be modified by the Update function
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Data Consistency
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Scheduling

A collection of basic schedulers
◦Synchronous
◦Round-robin

Tasks schedulers that allow task creation/reordering
◦FIFO
◦Prioritized

Provides users to create their own scheduler through a 
Set Scheduler
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Set Scheduler
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GraphLab framework provides a collection of base sched-
ules. To represent Jacobi style algorithms (e.g., gradi-
ent descent) GraphLab provides a synchronous sched-
uler which ensures that all vertices are updated simulta-
neously. To represent Gauss-Seidel style algorithms (e.g.,
Gibbs sampling, coordinate descent), GraphLab provides a
round-robin scheduler which updates all vertices sequen-
tially using the most recently available data.

Many ML algorithms (e.g., Lasso, CoEM, Residual BP) re-
quire more control over the tasks that are created and the
order in which they are executed. Therefore, GraphLab
provides a collection of task schedulers which permit up-
date functions to add and reorder tasks. GraphLab pro-
vides two classes of task schedulers. The FIFO sched-
ulers only permit task creation but do not permit task re-
ordering. The prioritized schedules permit task reordering
at the cost of increased overhead. For both types of task
scheduler GraphLab also provide relaxed versions which
increase performance at the expense of reduced control:

Strict Order Relaxed Order
FIFO Single Queue Multi Queue / Partitioned
Prioritized Priority Queue Approx. Priority Queue

In addition GraphLab provides the splash scheduler based
on the loopy BP schedule proposed by Gonzalez et al.
[2009a] which executes tasks along spanning trees.

In the Loopy BP example, different choices of scheduling
leads to different BP algorithms. Using the Synchronous
scheduler corresponds to the classical implementation of
BP and using priority scheduler corresponds to Residual
BP [Elidan et al., 2006].

3.4.1 Set Scheduler

Because scheduling is important to parallel algorithm de-
sign, GraphLab provides a scheduler construction frame-
work called the set scheduler which enables users to safely
and easily compose custom update schedules. To use the
set scheduler the user specifies a sequence of vertex set
and update function pairs ((S1, f1), (S2, f2) · · · (Sk, fk)),
where Si ✓ V and fi is an update function. This sequence
implies the following execution semantics:

for i = 1 · · · k do
Execute fi on all vertices in Si in parallel.
Wait for all updates to complete

The amount of parallelism depends on the size of each set;
the procedure is highly sequential if the set sizes are small.
Executing the schedule in the manner described above can
lead to the majority of the processors waiting for a few pro-
cessors to complete the current set. However, by leveraging
the causal data dependencies encoded in the graph structure
we are able to construct an execution plan which identifies
tasks in future sets that can be executed early while still
producing an equivalent result.
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Figure 2: A simple example of the set scheduler planning pro-
cess. Given the data graph, and a desired sequence of execution
where v1, v2 and v5 are first run in parallel, then followed by v3

and v4. If the edge consistency model is used, we observe that the
execution of v3 depends on the state of v1, v2 and v5, but the v4

only depends on the state of v5. The dependencies are encoded in
the execution plan on the right. The resulting plan allows v4 to be
immediately executed after v5 without waiting for v1 and v2.
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Figure 3: A summary of the GraphLab framework. The user pro-
vides a graph representing the computational data dependencies,
as well as a SDT containing read only data. The user also picks a
scheduling method or defines a custom schedule, which provides
a stream of update tasks in the form of (vertex, function) pairs to
the processors.

The set scheduler compiles an execution plan by rewrit-
ing the execution sequence as a Directed Acyclic Graph
(DAG), where each vertex in the DAG represents an update
task in the execution sequence and edges represent execu-
tion dependencies. Fig. 2 provides an example of this pro-
cess. The DAG imposes a partial ordering over tasks which
can be compiled into a parallel execution schedule using
the greedy algorithm described by Graham [1966].

3.5 TERMINATION ASSESSMENT
Efficient parallel termination assessment can be challeng-
ing. The standard termination conditions used in many it-
erative ML algorithms require reasoning about the global
state. The GraphLab framework provides two methods
for termination assessment. The first method relies on
the scheduler which signals termination when there are no
remaining tasks. This method works for algorithms like
Residual BP, which use task schedulers and stop produc-
ing new tasks when they converge. The second termination
method relies on user provided termination functions which
examine the SDT and signal when the algorithm has con-
verged. Algorithms, like parameter learning, which rely on
global statistics use this method.
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3.5 TERMINATION ASSESSMENT
Efficient parallel termination assessment can be challeng-
ing. The standard termination conditions used in many it-
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state. The GraphLab framework provides two methods
for termination assessment. The first method relies on
the scheduler which signals termination when there are no
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ing new tasks when they converge. The second termination
method relies on user provided termination functions which
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Case Study: Loopy Belief Propagation

Iteratively estimates ”beliefs” about vertices
◦Read in messages
◦Updates marginal
estimate (belief)

◦Send updated
out messages

Repeat for all variables
until convergence
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Case Study: Loopy Belief Propagation

Application: 3D retinal image denoising
◦Represent as a 256x64x64 with each vertex as a voxel in 
the original image
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3D retinal image denoising



Case Study: Loopy Belief Propagation
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3.6 SUMMARY AND IMPLEMENTATION
A GraphLab program is composed of the following parts:

1. A data graph which represents the data and compu-
tational dependencies.

2. Update functions which describe local computation
3. A Sync mechanism for aggregating global state.
4. A data consistency model (i.e., Fully Consistent,

Edge Consistent or Vertex Consistent), which deter-
mines the extent to which computation can overlap.

5. Scheduling primitives which express the order of
computation and may depend dynamically on the data.

We implemented an optimized version of the GraphLab
framework in C++ using PThreads. The resulting
GraphLab API is available under the LGPL license at
http://select.cs.cmu.edu/code. The data con-
sistency models were implemented using race-free and
deadlock-free ordered locking protocols. To attain max-
imum performance we addressed issues related to paral-
lel memory allocation, concurrent random number gener-
ation, and cache efficiency. Since mutex collisions can be
costly, lock-free data structures and atomic operations were
used whenever possible. To achieve the same level of per-
formance for parallel learning system, the ML community
would have to repeatedly overcome many of the same time
consuming systems challenges needed to build GraphLab.

The GraphLab API has the opportunity to be an interface
between the ML and systems communities. Parallel ML
algorithms built around the GraphLab API automatically
benefit from developments in parallel data structures. As
new locking protocols and parallel scheduling primitives
are incorporated into the GraphLab API, they become im-
mediately available to the ML community. Systems experts
can more easily port ML algorithms to new parallel hard-
ware by porting the GraphLab API.

4 CASE STUDIES
To demonstrate the expressiveness of the GraphLab ab-
straction and illustrate the parallel performance gains it
provides, we implement four popular ML algorithms and
evaluate these algorithms on large real-world problems us-
ing a 16-core computer with 4 AMD Opteron 8384 proces-
sors and 64GB of RAM.

4.1 MRF PARAMETER LEARNING
To demonstrate how the various components of the
GraphLab framework can be assembled to build a com-
plete ML “pipeline,” we use GraphLab to solve a novel
three-dimensional retinal image denoising task. In this task
we begin with raw three-dimensional laser density esti-
mates, then use GraphLab to generate composite statistics,
learn parameters for a large three-dimensional grid pair-
wise MRF, and then finally compute expectations for each
voxel using Loopy BP. Each of these tasks requires both

Algorithm 2: BP update function
BPUpdate(Dv, D⇤!v, Dv!⇤ 2 Sv) begin

Compute the local belief b(xv) using {D⇤!vDv}
foreach (v ! t) 2 (v ! ⇤) do

Update mv!t(xt) using {D⇤!v, Dv} and �axis(vt)

from the SDT.
residual 

˛̨˛̨
mv!t(xt)�m

old
v!t(xt)

˛̨˛̨
1

if residual > Termination Bound then
AddTask(t, residual)

end
end

end

Algorithm 3: Parameter Learning Sync
Fold(acc, vertex) begin

Return acc + image statistics on vertex
end
Apply(acc) begin

Apply gradient step to � using acc and return �

end

local iterative computation and global aggregation as well
as several different computation schedules.

We begin by using the GraphLab data-graph to build a large
(256x64x64) three dimensional MRF in which each ver-
tex corresponds to a voxel in the original image. We con-
nect neighboring voxels in the 6 axis aligned directions.
We store the density observations and beliefs in the vertex
data and the BP messages in the directed edge data. As
shared data we store three global edge parameters which
determine the smoothing (accomplished using a Laplace
similarity potentials) in each dimension. Prior to learn-
ing the model parameters, we first use the GraphLab sync
mechanism to compute axis-aligned averages as a proxy
for “ground-truth” smoothed images along each dimension.
We then performed simultaneous learning and inference
in GraphLab by using the background sync mechanism
(Alg. 3) to aggregate inferred model statistics and apply a
gradient descent procedure. To the best of our knowledge,
this is the first time graphical model parameter learning and
BP inference have been done concurrently.

Results: In Fig. 4(a) we plot the speedup of the parame-
ter learning algorithm, executing inference and learning se-
quentially. We found that the Splash scheduler outperforms
other scheduling techniques enabling a factor 15 speedup
on 16 cores. We then evaluated simultaneous parameter
learning and inference by allowing the sync mechanism to
run concurrently with inference (Fig. 4(b) and Fig. 4(c)).
By running a background sync at the right frequency, we
found that we can further accelerate parameter learning
while only marginally affecting the learned parameters. In
Fig. 4(d) and Fig. 4(e) we plot examples of noisy and de-
noised cross sections respectively.



Case Studies: Loopy Belief Propagation
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Figure 4: Retinal Scan Denoising (a) Speedup relative to the best single processor runtime of parameter learning using priority, approx
priority, and Splash schedules. (b) The total runtime in seconds of parameter learning and (c) the average percent deviation in learned
parameters plotted against the time between gradient steps using the Splash schedule on 16 processors. (d,e) A slice of the original noisy
image and the corresponding expected pixel values after parameter learning and denoising.

4.2 GIBBS SAMPLING
The Gibbs sampling algorithm is inherently sequential and
has frustrated efforts to build asymptotically consistent par-
allel samplers. However, a standard result in parallel al-
gorithms [Bertsekas and Tsitsiklis, 1989] is that for any
fixed length Gauss-Seidel schedule there exists an equiv-
alent parallel execution which can be derived from a col-
oring of the dependency graph. We can extract this form
of parallelism using the GraphLab framework. We first use
GraphLab to construct a greedy graph coloring on the MRF
and then to execute an exact parallel Gibbs sampler.

We implement the standard greedy graph coloring algo-
rithm in GraphLab by writing an update function which
examines the colors of the neighboring vertices of v, and
sets v to the first unused color. We use the edge consis-
tency model with the parallel coloring algorithm to ensure
that the parallel execution retains the same guarantees as
the sequential version. The parallel Gauss-Seidel schedule
is then built using the GraphLab set scheduler (Sec. 3.4.1)
and the coloring of the MRF. The resulting schedule con-
sists of a sequence of vertex sets S1 to SC such that Si

contains all the vertices with color i. The vertex consis-
tency model is sufficient since the coloring ensures full se-
quential consistency.

To evaluate the GraphLab parallel Gibbs sampler we con-
sider the challenging task of marginal estimation on a fac-
tor graph representing a protein-protein interaction network
obtained from Elidan et al. [2006] by generating 10, 000
samples. The resulting MRF has roughly 100K edges and
14K vertices. As a baseline for comparison we also ran
a GraphLab version of the highly optimized Splash Loopy
BP [Gonzalez et al., 2009b] algorithm.

Results: In Fig. 5 we present the speedup and efficiency
results for Gibbs sampling and Loopy BP. Using the set
schedule in conjunction with the planning optimization en-
ables the Gibbs sampler to achieve a factor of 10 speedup
on 16 processors. The execution plan takes 0.05 seconds
to compute, an immaterial fraction of the 16 processor run-
ning time. Because of the structure of the MRF, a large

number of colors (20) is needed and the vertex distribu-
tion over colors is heavily skewed. Consequently there is
a strong sequential component to running the Gibbs sam-
pler on this model. In contrast the Loopy BP speedup
demonstrates considerably better scaling with factor of 15
speedup on 16 processor. The larger cost per BP update
in conjunction with the ability to run a fully asynchronous
schedule enables Loopy BP to achieve relatively uniform
update efficiency compared to Gibbs sampling.

4.3 CO-EM
To illustrate how GraphLab scales in settings with large
structured models we designed and implemented a parallel
version of Co-EM [Jones, Nigam and Ghani, 2000], a semi-
supervised learning algorithm for named entity recognition
(NER). Given a list of noun phrases (NP) (e.g., “big ap-
ple”), contexts (CT) (e.g., “citizen of ”), and co-occurence
counts for each NP-CT pair in a training corpus, CoEM
tries to estimate the probability (belief) that each entity (NP
or CT) belongs to a particular class (e.g., “country” or “per-
son”). The CoEM update function is relatively fast, requir-
ing only a few floating operations, and therefore stresses
the GraphLab implementation by requiring GraphLab to
manage massive amounts of fine-grained parallelism.

The GraphLab graph for the CoEM algorithm is a bipar-
tite graph with each NP and CT represented as a vertex,
connected by edges with weights corresponding to the co-
occurence counts. Each vertex stores the current estimate
of the belief for the corresponding entity. The update func-
tion for CoEM recomputes the local belief by taking a
weighted average of the adjacent vertex beliefs. The adja-
cent vertices are rescheduled if the belief changes by more
than some predefined threshold (10�5).

We experimented with the following two NER datasets ob-
tained from web-crawling data.

Name Classes Verts. Edges 1 CPU Runtime
small 1 0.2 mil. 20 mil. 40 min
large 135 2 mil. 200 mil. 8 hours

We plot in Fig. 6(a) and Fig. 6(b) the speedup obtained by



Case Studies

Other examples (Gibbs sampling, CO-EM, ...)
◦Check the paper!
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Limitations

Reports self-scaling numbers, but comparison with 
other frameworks or a serial baseline are missing.

Implicitly shared-memory model, how does it work 
for distributed systems?

Do ML algorithms really operate on large graphs?
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Conclusion
Prior parallel frameworks unsuitable for ML
◦High-level: not expressive enough
◦Low-level: difficult to program

GraphLab provides a vertex-centric framework on 
data graphs

Scalability up to 16 cores on a wide range of ML 
applications

FRACTAL: AN EXECUTION MODEL FOR FINE-GRAIN NESTED SPECULATIVE PARALLELISM 21


