EmptyHeaded: A Relational
Engine for Graph Processing

Jason Priest
2018-02-28
6.886

Key Contributions

e Join optimization based on generalized hypertree decomposition
e Data and algorithm optimization based on local graph skew

Traditional Relational Query

How many github organizations (groups) have a C++ developer who registered
this year?

select count(¥*)

from group
join user on group.users contains user.id
join project on project.owner 1is user.id

where user.joined after “2018-01-01"
and project.lang is “C++";

U
U
U

Group
~100

N

x

Join Order Matters

User
~5,000

(
(

Project
~10,000

Cyclic Queries

O, =R(A,B) = S(B,C) xT(A,CQC).

- Joins usually implemented pairwise, or between two sets at a time
- For cyclic queries such as above, this leads to suboptimal behavior

Pairwise Joins Insufficient

R = {ao} X {bo,...,bm} U {ao,...,am} X {bo}

§ = {b()} X {C(),...,Cm} v {bo,...,bm} X {C()}

T = {aa} % [GissnssCnd W 1805505 8w} % {ep)

Figure 2: Counter-example for join-project only plans for the triangles (left) and an illustration for m = 4
(right). The pairs connected by the red/green/blue edges form the tuples in the relations R/S/T respectively.
Note that the in this case each relation has N = 2m + 1 = 9 tuples and there are 3m + 1 = 13 output tuples in
QO,. Any pair-wise join however has size m?> + m = 20.

Hung Q. Ngo, Christopher Ré, and Atri Rudra. 2013. Skew strikes

back: New developments in the theory of join algorithms. SIGMOD
Record 42, 4 (2013), 5-16.

4
N

Worst-Case Optimal Join
Algorithm

Graph Covers

|O| = | ™Feg RF| < l—[|RF|*. (6)

Fe&

Graph Decomposition
O—EB—®

https://en.wikipedia.org/wiki/Tree _decomposition

https://en.wikipedia.org/wiki/Tree_decomposition

Worst-Case Optimal Join Algorithm

- Brute force all decompositions of relations
- Find minimum width decomposition

- Use decomposition to inform much order of
joins, order of comparing fields, etc

- Resulting plan for joins is optimal intermediate
output sizes

ALGORITHM 2: Enumerating all GHDs via Brute Force Search

1 // Input: Hypergraph H=(V,E) and a set of parent edges P.

2 // Output: A list of GHDs in the form of (GHD node, subtree) pairs
3 GHD-Enumeration (V, E, P)

4 GHDs = []

5 // Iterate over all subset combinations of edges.

6 for {C | C C E} do

7 // The remaining edges, not in C

8 R=E-C

9 // If the running intersection property is broken, the GHD is
10 // mot valid. The check makes sure that all attributes in the
11 // parent and subtree of a specified GHD node also appear

12 // within the specified GHD node. Here we use U on a set

13 // of edges to indicate the union of their attributes.

14 if not ((UP)Nn(UR) CUC) then continue

15 // Consider each subgraph of the remaining edges. For each

16 // subgraph, recursively enumerate all possible GHDs.

17 PartitionChildren = []

18 for Pr in Partition (R) do

19 PartitionChildren += [GHD-Enumeration (UPr,Pr,C)]

20 // Consider all possible combinations of subtrees by calling the
21 // method below. For each, construct a GHD with C as the root
22 for Ch in Subtree—Combinations(PartitionChildren) do

23 GHDs += [(C,Ch)]

24 return GHDs

25

26 // Input: A list of lists of GHDs: for each partition of a hypergraph
27 // (the outer list), all possible decompositions for that partition
28 // (the inner lists)

29 // Output: A list where each member of this list is a list that

30 // contains one subtree from each partition.

31 Subtree —Combinations (PartitionChildren):

32 ChildrenCombinations = []

33 if |PartitionChildren| >0 then

34 if |PartitionChildren| ==1 then

35 // If there is only one partition, for each of the possible GHDs
36 // of this partition, add a combination with just this GHD.
37 for Ch in PartitionChildren[0] do

38 ChildrenCombinations += [[Ch]]

39 else

40 // Recursively generate combinations for the partitions after
a // the first one.

42 RemainingCombinations = Subtree—Combinations (PartitionChildren(1])
43 // If there is more than one partition, each subtree in the
44 // first partition is combined with each list of subtrees in
45 // the recursively generated combinations for the remaining
16 // partitions

47 for Ch in PartitionChildren[0] do

48 for C in RemainingCombinations do

9 FinalCombination = [Ch] + C

50 ChildrenCombinations += [FinalCombination)

51 return ChildrenCombinations

Execution Engine

Skew

- Density skew

- some values are much more common

- some relations are much more selective
- Cardinality skew

- some tables are much larger

- some nodes have much greater degree

Set Layout

- bitsets: bitvectors with offsets to first element

- pshort: nearby values may have similar prefix, thus store repeated high 16 bits
- varint: difference encoding with continue bits

- uint: sorted array with binary search

Set Intersection Algorithm

- uint & uint
5 SIMD techniques, chosen based on density skew and cardinality

- bitset & bitset
Just SIMD AND comparison

Evaluation

Simplicity

Name Query Syntax

Triangle Triangle(x,y,z):-R(x,y),S(y,z),T(x,z).

4-Clique 4Clique(x,y,z,w):-R(x,y),S(y,2),T(x,z),U(x,w),V(y,w),Q(z,w).
Lollipop Lollipop(x,y,z,w):-R(x,y),S(y,z),T(x,2),U(x,w).

Barbell Barbell(xyyyzyx‘ ,y',Z'):-R(X,y),S(y,Z),T(X,Z),U(X,X'),

R'(x',y"),8"(y",2"),T"(x",2").

Count Triangle

CntTriangle(;w:long):-R(x,y),S(x,z),T(x,z); W=<<COUNT(x)>>.

4-Clique-Selection

Barbell-Selection

S4Clique(x,y,z,w):=-R(x,y),S(y,z),T(x,z),U(x,w),
V(y,w),Q(z,w),P(x, node").
SBarbell(x,y,z,X " 4" 2" Ja~Rlx.¥) ,5(¥.2), T(x,2) ,Ulx, *node"),
Vi(inodes k) RPOeYy) s SECy sz 5 T 0 3z e

PageRank

SSSP

N(;w:int):-Edge(x,y); w=<<COUNT(x)>>.
PageRank (x;y:float):-Edge(x,z); y= 1/N.
PageRank (x;y:float)*[i=5]:-Edge(x,z),PageRank(z),InvDeg(z);
y=0.15+0.85*x<<SUM(z)>>.
SSSP(x;y:int):-Edge(start',x); y=1.
SSSP(x;y:int)*:-Edge(w,x),SSSP(w); y=<<MIN(w)>>+1.

Performance

Table 9. Triangle Counting Runtime (in Seconds) for EmptyHeaded and Relative Slowdown for Other
Engines Including PowerGraph, a Commercial Graph Tool (CGT-X), Snap-Ringo, SocialLite, and LogicBlox

Low-Level High-Level
Dataset EmptyHeaded PowerGraph CGT-X Snap-Ringo SociaLite LogicBlox
Google+ 0.31 8.40% 62.19X 4.18X 1390.75X 83.74X
Higgs 0.15 3.25X 57.96X 5.84X 387.41X 29.13X
LiveJournal 0.48 5.17X 3.85X 10.72% 225.97X 23.53X
Orkut 2.36 2.94X - 4.09X% 191.84% 19.24X
Patents 0.14 10.20X 7.45X 22.14X 49.12X 27.82X
Twitter 56.81 4.40X = 2.22X t/o 30.60X

48 threads used for all engines. “-” indicates the engine does not process over 70 million edges. “t/0” indicates the engine
ran for over 30 minutes.

Performance

Table 11. SSSP Runtime (in Seconds) Using 48 Threads for All Engines

Low-Level High-Level

Dataset EmptyHeaded Galois PowerGraph CGT-X SociaLite LogicBlox
Google+ 0.024 0.008 0.22 0.51 0.27 41.81
Higgs 0.035 0.017 0.34 0.91 0.85 58.68
LiveJournal 0.19 0.062 1.80 - 3.40 102.83
Orkut 0.24 0.079 2.30 - 7.3 215.25
Patents 0.15 0.054 1.40 4.70 3.97 159.12
Twitter 7.87 2.52 36.90 - > 3 379.16

“-” indicates the engine does not process over 70 million edges. The other engines include Galois, PowerGraph, a com-
mercial graph tool (CGT-X), SociaLite, and LogicBlox. “x” indicates the engine did not compute the query properly.

