
A New Parallel Algorithm for Connected
Components in Dynamic Graphs
Authored by: Robert McColl, Oded Green,
David A. Bader
Presented by: Omar Obeya

Connected
Components
Problem

Dynamic
Connected
Components
Problem

● Operations
○ Query node
○ Insert Edge
○ Delete Edge

Connected
Components
Problem

Connected
Components
Problem

Goals ● Parallel
● Exact
● Dynamic

Reformatting
the problem

Given a deletion classify
whether it is safe

- 100% True positive.
- Minimum false negative.

Approach I:
Adjacency List
Intersection A

B

C

D

E

Approach II:
Spanning Tree

Approach II:
Spanning Tree

Approach II:
Spanning Tree

Approach II:
Spanning Tree

Solution ● Maintain Neighbor-Parent
list of ThreshPN
“neighpars” only.

● At Deletion:
○ if it has a parent, or have

a neighbour that has a
parent.

○ Otherwise: recalculate.
● Use STINGER

Definitions

Initialization

Initialization ● Parallel BFS
● Put neighpars in your

list if there is room.
● Use -ve values for

neighbours and +ve
values for parents.

Insertion

● Intra-connecting edges
○ In Parallel
○ If don’t have a parent,

add s if it was a
parent.

○ If have a parent.
■ Try add s if it was

neighbour
■ Must add s if it was

parent (unless list is
full of parents).

● Inter-connecting edges
○ In Series
○ Special handle

singletons.
○ Merge the labeling of

the smaller component
with the bigger.

Deletion

● Maintain Data structure
○ In Parallel

■ Remove S from list
■ Recalc Has Parent?
■ Mark safe if possible

○ In Series
■ Mark safe if possible
■ Otherwise repair

Repair

● Parallel BFS
○ Search for a

connection back to the
s component

● Disconnected -> done.
● Relabel all vertices

discovered.
● Second Parallel BFS

○ Relabel more
undiscovered
vertices.

Quantitative Results

Unsafe
Deletions

As we store more
neighbors we get
lower false negative

Performance Results

Scaling

Scales sublinearly.

Speed up

Speed up (over
static) depends on
graph density and not
no. of threads.

Graph
Dependency

The algorithm
speedup is very graph
dependent

Weak Points ● Percentage of deletion is
6.25%

● Graph Dependent
● No probabilistic

theoretical bounds

Future Work ● Threshold can be a
function of no. of edges.

● What about adjacency
matrix intersection using
a popular node?

References ● McColl, Robert, Oded Green, and
David A. Bader. "A new parallel
algorithm for connected
components in dynamic graphs."
In High Performance Computing
(HiPC), 2013 20th International
Conference on, pp. 246-255. IEEE,
2013.

