Work-Efficient Parallel Union-Find

PRESENTED BY BRIAN WHEATMAN

What is Union-Find

Data structure with 2 operations

- union(u,v)
- find(v)

Used for Incremental graph connectivity on undirected graphs

Sequential approach

Maintain a union find forest with each tree representing a partition

Find(u) returns the root

Union(u,v) joins the roots of the two containing trees

Path Compression gives better performance

• Each time find is called connect that child to the root found

best approach has work $O((m+q)\alpha(m+q, n))$

Sequential Approach

```
function MakeSet(x)
if x is not already present:
   add x to the disjoint-set tree
   x.parent := x
   x.rank := 0
```

```
function Find(x)
if x.parent != x
    x.parent := Find(x.parent)
return x.parent
```

```
function Union(x, y)
xRoot := Find(x)
yRoot := Find(y)

// x and y are already in the same set
if xRoot == yRoot
    return

// x and y are not in same set, so we merge them
if xRoot.rank < yRoot.rank
    xRoot.parent := yRoot
else if xRoot.rank > yRoot.rank
    yRoot.parent := xRoot
else
    xRoot.parent := yRoot
yRoot.rank := yRoot
yRoot.rank := yRoot.rank + 1
```

Contributions of this work

Simple practical algorithm

Provably work-efficient algorithm

Simple Bulk-Parallel Data Structure

O(n) memory

- for b unions in a minibatch
- O(b log n) work
- O(log max(b,n)) depth
- For q queries in a minibatch
- O(q log n) work
- O(log n) depth

Simple approach -- queries

Queries are read-only

Algorithm 1: Simple-Bulk-Same-Set $(U, \langle (u_i, v_i) \rangle_{i=1}^q)$.

Input: U is the union find structure, and (u_i, v_i) is a pair of vertices, for i = 1, ..., q. **Output:** For each *i*, whether or not u_i and v_i are in the same set (i.e., connected in the graph). 1: **for** i = 1, 2, ..., q **do** in parallel 2: $| a_i \leftarrow (U.find(u_i) == U.find(v_i))$ 3: **return** $\langle a_1, a_2, ..., a_q \rangle$

Simple approach -- unions

Algorithm 2: Simple-Bulk-Union(U,A)

Input: U: the union find structure, A: a set of edges to add to the graph.

Relabel each (u, v) with the roots of u and v

1:
$$A' \leftarrow \langle (p_u, p_v) : (u, v) \in A \text{ where } p_u = U.\texttt{find}(u) \text{ and } p_v = U.\texttt{find}(v) \rangle$$

Remove self-loops

2:
$$A'' \leftarrow \langle (u, v) : (u, v) \in A' \text{ where } u \neq v \rangle$$

3: $\mathcal{C} \leftarrow \mathsf{CC}(A'')$

- 4: foreach $C \in C$ do in parallel
- 5: | Parallel-Join(U.C)

Algorithm 3: Parallel-Join(U, C)

Input: U: the union-find structure, C: a seq. of tree roots **Output:** The root of the tree after all of C are connected

1: **if** |C| == 1 **then**

3: else

4:
$$\ell \leftarrow \lfloor |C|/2 \rfloor$$

5: $u \leftarrow \text{Parallel-Join}(U, C[1, 2, \dots, \ell])$ in parallel with
 $v \leftarrow \text{Parallel-Join}(U, C[\ell + 1, \ell + 2, \dots, |C|])$

```
6: return U.union(u, v)
```

Work-Efficient Parallel Algorithm

Path Compression

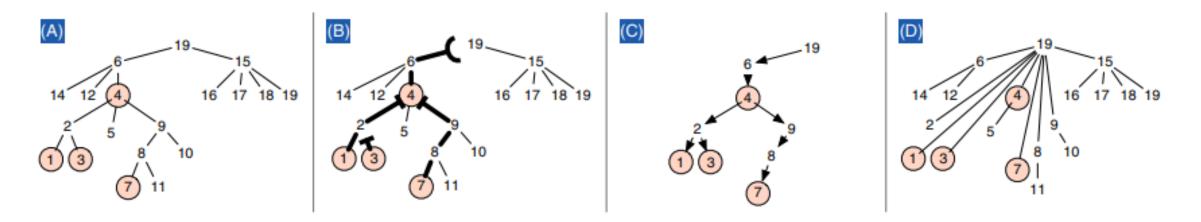


FIGURE 1 A, An example union-find tree with sample queries circled; B, bolded edges are paths, together with their stopping points that result from the traversal in Phase I; C, the traversal graph R_{\cup} recorded as a result of Phase I; and D, the union-find tree after Phase II, which updates all traversed nodes to point to their roots

Path Compression

```
Algorithm 4: Bulk-Find(U, S)—find the root in U for each s \in S with path compression.
    Input: U is the union find structure. For i = 1, ..., |S|, S[i] is a vertex in the graph
    Output: A response array res of length |S| where res [i] is the root of the tree of the vertex
                S[i] in the input.
    > Phase I: Find the roots for all queries
 1: R_0 \leftarrow \langle (S[k], \mathbf{null}) : k = 0, 1, 2, \dots, |S| - 1 \rangle
 2: F_0 \leftarrow \mathsf{mkFrontier}(R_0, \emptyset), roots \leftarrow \emptyset, visited \leftarrow \emptyset, i \leftarrow 0
3: while R_i \neq \emptyset do
                                                                                  def mkFrontier(R, visited):
        visited \leftarrow visited \cup F_i
 4:
                                                                                     // nodes to go to next
       R_{i+1} \leftarrow \langle (parent[v], v) : v \in F_i \text{ and } parent[v] \neq v \rangle
 5:
                                                                                  1: req \leftarrow \langle v : (v, \_) \in R \land
        roots \leftarrow roots \cup {v : v \in F_i where parent[v] = v}
 6:
                                                                                      not visited[v]\rangle
        F_{i+1} \leftarrow \mathsf{mkFrontier}(R_{i+1}, visited), i \leftarrow i+1
 7:
                                                                                  2: return removeDup(req)
    ▷ Set up response distribution
 8: Create an instance of RD with R_{\cup} = R_0 \oplus R_1 \oplus \cdots \oplus R_i
    Phase II: Distribute the answers and shorten the paths
 9: D_0 \leftarrow \{(r, r) : r \in roots\}, i \leftarrow 0
10: while D_i \neq \emptyset do
        For each (v, r) \in D_i, in parallel, parent [v] \leftarrow r
11:
        D_{i+1} \leftarrow \bigcup_{(v,r) \in D_i} \{(u,r) : u \in RD.allFrom(v) \text{ and } u \neq \textbf{null}\}. That is, create D_{i+1} by
12:
          expanding every (v, r) \in D_i as the entries of RD.allFrom(v) excluding null, each
          inheriting r.
        i \leftarrow i + 1
13:
14: For i = 0, 1, 2..., |S| - 1, in parallel, make res[i] \leftarrow parent[S[i]]
15: return res
```

Implementation

Only implemented simple approach

- 2 optimizations
- Path compression after each round
- Faster connected components
 - Not as good theoretical guarantees

Results – overhead

Graph	UF	UF	Bulk-Parallel using batch size					
	(no p.c.)	(p.c.)	500K	1M	5M	10M		
random	44.63	18.42	65.43	66.57	75.20	77.89		
3Dgrid	30.26	14.37	61.10	62.00	71.74	75.07		
local5	44.94	18.51	65.84	66.77	75.33	78.23		
local16	154.40	46.12	114.34	108.92	114.80	117.55		
rMat5	33.39	18.47	66.98	68.48	74.97	78.69		
rMat16	81.74	35.29	83.27	76.64	76.03	77.62		

Results – scalability

Graph	Using $b = 500$ K			Using $b = 1M$		Using $b = 5M$			Using $b = 10M$			
	T 1	T _{20c}	T_{20c}/T_{1}	T1	T _{20c}	T_{20c}/T_{1}	T ₁	T _{20c}	T_{20c}/T_{1}	T ₁	T _{20c}	T_{20c}/T_{1}
random	7.64	36.87	4.8x	7.51	46.02	6.1x	6.65	60.66	9.1x	6.42	63.90	10.0x
3Dgrid	4.91	27.97	5.7x	4.83	34.97	7.2x	4.18	44.27	10.6x	3.99	45.24	11.3x
local5	7.59	38.41	5.1x	7.49	48.32	6.5x	6.64	64.61	9.7x	6.39	64.09	10.0x
local16	13.99	78.83	5.6x	14.69	95.57	6.5x	13.94	122.69	8.8x	13.61	122.03	9.0x
rMat5	7.47	26.08	3.5x	7.30	34.19	4.7x	6.67	49.92	7.5x	6.35	50.37	7.9x
rMat16	19.21	54.94	2.9x	20.88	78.10	3.7x	21.05	143.63	6.8x	20.61	167.68	8.1x

Future Work

Fully dynamic graphs

Smaller minibatchs