
Work-Efficient Parallel 
Union-Find
PRESENTED BY BRIAN WHEATMAN



What is Union-Find
Data structure with 2 operations

◦ union(u,v)
◦ find(v)

Used for Incremental graph connectivity on undirected graphs



Sequential approach
Maintain a union find forest with each tree representing a partition

Find(u) returns the root

Union(u,v) joins the roots of the two containing trees

Path Compression gives better performance
◦ Each time find is called connect that child to the root found

best approach has work O((m+q)α(m+q, n))



Sequential Approach



Contributions of this work
Simple practical algorithm

Provably work-efficient algorithm 



Simple Bulk-Parallel Data Structure
O(n) memory

for b unions in a minibatch
◦ O(b log n) work
◦ O(log max(b,n)) depth

For q queries in a minibatch
◦ O(q log n) work
◦ O(log n ) depth



Simple approach -- queries
Queries are read-only



Simple approach -- unions



Work-Efficient Parallel Algorithm
Path Compression 



Path Compression



Implementation
Only implemented simple approach

◦ 2 optimizations
◦ Path compression after each round
◦ Faster connected components

◦ Not as good theoretical guarantees



Results – overhead 



Results – scalability 



Future Work 
Fully dynamic graphs

Smaller minibatchs


