
LLAMA: Efficient Graph Analytics Using Large Multiversioned
Arrays

Macko, Marathe, Margo, Seltzer (2015)

Presented by Edward Fan

Compressed Sparse Row (CSR)

- Space efficient
- Performant, especially for

vertex-centric computation
- Authors find it to be much

faster than adjacency lists or
bitmaps

- Excellent cache behavior;
sorting leads to sequential
access

- Problem: immutability
- Can cache updates via delta

map or use as log, but both
require rebuilds

LLAMA

● Like CSR, but
split across
snapshots for
mutability  

● One vertex
table, split edge
table

Vertex Table

● One indirection
table per
snapshot 

● Data pages
contain vertex
data, including
offsets into
edge tables

Edge Table

● Continuation
records avoid
duplication of
entries

○ Authors tried
simply copying
the adjacency
list, but
memory size is
an issue

Deletions

● Option 1: Use
deletion vectors to
logically mark
edges as deleted

○ Can use upper bits or
parallel array

● Option 2: Make
copy of adjacency
list with null
continuation record

Miscellany

● Merging snapshots:
simple traversal
and formation of
new LLAMA

● Incoming updates:
buffered in write-
optimized delta
map, but not used
for computation

Memory Management

- LLAMA designed to provide in-memory performance for
graphs larger than memory

- Snapshots stored in files (16 snapshots per file)

- Could manage paging manually
- Reference counting

- Hazard pointers

- Automatic garbage collection

- Instead, use mmap() and allow OS to manage pages

- Almost no overhead when in memory

- madvise(), mlock() can provide more advanced support

Performance

● On commodity
machine (4 cores,
8GB RAM + SSD):

● In-memory:
competitive with in-
memory
frameworks

● Out-of-core:
significant
improvements over
GraphChi

Performance

● LLAMA is CPU-
bound, while
GraphChi is I/O-
bound

● Note: comparison
with X-Stream is
flawed, as LLAMA’s
time does not
include load phase

Performance

● Good scalability
with more cores

● More snapshots
have small effect
on runtime, but
take up more
memory

○ Need to garbage
collect and merge
often

Performance

● Varying vertex
count and
degree does
not change
results

Limitations

- Difficult to use; standalone C++ library with open
programming model

- Can use GAS-like models, but very underspecified

- Missing components necessary for real-world use
- Garbage collection not specified; no automatic GC in C++, need

way of detecting when old snapshots are no longer being
accessed

- Parallel algorithms left mostly up to programmer (OpenMP)

- Project is dead
- Code available on GitHub (https://github.com/goatdb/llama),

but no commits since 2014

- RAM cheaper than programmers

https://github.com/goatdb/llama

Questions?  
 
 
Thanks!

