LLAMA: Efficient Graph Analytics Using Large Multiversioned
Arrays

Macko, Marathe, Margo, Seltzer (2015)

Presented by Edward Fan

Compressed Sparse Row (CSR)

+ Compressed sparse row (CSR)

- Space efficient » Two arrays: Offsets and Edges

- Performant especially for « Offsets[i] stores the offset of where vertex i’s
" . edges start in Edges
vertex-centric computation verexiDs 0 1 2 3
- Authors find it to be much Offcets = 0 4 | 5 1
faster than adjacency lists or | { V “"‘*Fl‘::;;i;:‘-‘f-‘h,_‘ﬂ
bitmaps Bags 2 7 9 16 0 1|6 9 12

- Exce”ent CaChe behaV|or; Adjacency Edge list Adjacency list Compressed

sorting leads to sequential e e Ll
Storage cost / 0(n?) O(m) O(m+n) O(m+n)
access scanning
. . whole graph |
- Problem: immutability Add edge o) o(1) o(1) O(m-n)
. Del d
- Can cache updates via delta pocteatse (00 O(m) O(deg(v)) O(m+n)
map or use as log, but both Finding all o) O(m) O(deg(v) O(deg(v))
.) ! neighbors of a
require rebuilds vertex v
Finding ifwis O(1) O(m) O(deg(v) O(deg(v))
a neighbor of v

LLAMA

i S hot 0 S hot 1
* LikeCSR but g A i
. ° Indirection
split across 2 Tables
Page 1'
snapshots for g, tabages Page 1
L S per page) 1,0 -
mutability |
= Edge Tables
=S (adjacencies) 1/C:0,3
e One vertex ué: Deleton Veators | (T 0T 0 | Tl

table, split edge
table

(b) LLAMA Representation

Vertex Table

e One indirection
table per
snapshot

e Data pages
contain vertex
data, including
offsets into
edge tables

(adjacencies)

Deletion Vectors
(optional)

‘L Indirection
=t Tables
=
% Data Pages
£ (2™ =2 elements
“T’ per page)
2 Edge Tables
s
[
(]
[=]
©
w

Snapshot 0 Snapshot 1
0-1__2-3 0-1__2-3
Page 1'
2 3
1,0 -
1]1C:0,83

R

(b) LLAMA Representation

Edge Table

e Continuation
records avoid
duplication of
IUES

o Authors tried
simply copying
the adjacency
list, but
memory size is
an issue

‘L Indirection
=t Tables
=

% Data Pages
£ (2™ =2 elements
2 per page)
l

= Edge Tables
= (adjacencies)
& Deletion Vectors
B (optional)

Snapshot 0 Snapshot 1
0-1__2-3 0-1__2-3
Page 1'
2 3
1,0 -
1]1C:0,83

R

(b) LLAMA Representation

Deletions

(adjacencies)

e Option 1: Use Snapshot 0 Snapshot 1
. | Indirection — i e
?elgtlc)l:v vectokrs to % o
ogically mar - .
9 y x Data Pages Page 1
edges as deleted £ (2™ =2 elements 2__3
;’ per page) 1,0 -
o Can use upper bits or L
parallel array 5 Edge Tables
© 1(C:0,3
-
(]
[=]
©
w

Deletion Vectors T -1 - 117 - ;;;
(optional) 'U-lﬂ-lﬁ-lﬂ#

Option 2: Make

copy of adjacency
list with null
continuation record

(b) LLAMA Representation

Miscellany

(adjacencies)

buffered in write-
optimized delta

A Merging snapshots: Snapshot 0 Snapshot 1
; | Indirection — —
simple travgrsal 2 Tablos
and formation of S —
% Data Pages age
new LLAMA £ (2™ =2 elements 2 3
2 per page) 1,0 -
l
Incoming updates: £ Edge Tables
IE 1 C: 0, 3
(]
[=]
©
w

Deletion Vectors T -1 - 117 - ;;;
(optional) 'U-lﬂ-lﬁ-lﬂ#

map, but not used

. (b) LLAMA Representation
for computation

Memory Management

- LLAMA designed to provide in-memory performance for
graphs larger than memory

- Snapshots stored in files (16 snapshots per file)

- Could manage paging manually
- Reference counting
- Hazard pointers
- Automatic garbage collection

- Instead, use mmap() and allow OS to manage pages
- Almost no overhead when in memory
- madvise(), mlock() can provide more advanced support

Performance

e On commodity

machine (4 cores,
8GB RAM + SSD):

In-memory:
competitive with in-
memory
frameworks

Out-of-core:
significant
improvements over
GraphChi

System Load | PageRank BFS TC
LLAMA 7.74 6.48 0.35 9.97
GraphLab 48.80 24.30 6.60 | 21.02
GreenMarl 6.75 5.30 0.27 9.79
GraphChi | 26.00 30.54 | 38.84 | 45.81
X-Stream - 12.74 5.65 -
(a) LiveJournal (in memory, 4 cores)
System Load | PageRank BFS TC
LLAMA 311.1 607.6 233.8 | 2875.0
GraphLab - - - -
GreenMarl - - - -
GraphChi 760.5 1260.9 | 13349 | 39752
X-Stream - 19429 | 1124.7 -

(b) Twitter (larger than memory, 4 cores)

Performance

e LLAMA is CPU-
bound, while

G raphCh| is 1/0O- Time &) CPU Time Greakdown (%) 70 (GB)
System Wall CPU CPU% | PagecRank Buffer Mgmt. Other | Read Write

bo u n d LLAMA 607.6 1088.5 179 98.0 < 0.1 2.0 | 1184 0.0
GraphChi 1260.9 3463.3 274 1.9 86.6 1.5 3R8.7 0.2
X-Stream 19429 7746.2 398 248 27.0 48.2 | 3063 121.0

TABLE I1I: PageRank on Twitter: Performance Breakdown on the Commodity platform.
Note: comparison

with X-Stream is
flawed, as LLAMA’s
time does not
include load phase

LLAMA-1 ——
2000 LLAMA-11 —+—
GraphLab —=—
1000 | GreenMarl —s—
. GraphChi —e—
Performance 2 500 X Stream —
-
- ;§L 200
e Good scalability o
. i= 100
with more cores
50
e More snhapshots 20 PR
1 2 4 8 16 32 64
have small effect Cores
on runtime, but (b) PageRank
take up more 2000 . : 200 : :
memory i~ 1000 + | — 100 |
g | 8%l
o Need to garbage g > ! g .
collect and merge 2 ol LS
often . 10}
100 : - 5 - '
1 10 100 1 10 100
Snapshots Snapshots

(b) PageRank (Time) (b) Database Size

} LLAMA-1
1 LLAMA-11
o GraphChi
§ X-Stream -
Performance §
£
[
e Varying vertex ol
25 26 27 28 29
count and Scale (log of the #nodes)
degree does (c) PageRank
not change
results LA

GraphChi
X-Stream

Time (sec.)

0 1 L 1
20 30 40 50 60
Degree

(c) PageRank

- Difficult to use; standalone C++ library with open

programming model
- Can use GAS-like models, but very underspecified

- Missing components necessary for real-world use

- Garbage collection not specified; no automatic GC in C++, need
way of detecting when old snapshots are no longer being
accessed

- Parallel algorithms left mostly up to programmer (OpenMP)

- Project is dead
- Code available on GitHub (https://github.com/goatdb/llama),
but no commits since 2014
- RAM cheaper than programmers

https://github.com/goatdb/llama

Questions?

Thanks!

