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Vertex Table

e One indirection
table per
snapshot

e Data pages
contain vertex
data, including
offsets into
edge tables
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Edge Table

e Continuation
records avoid
duplication of
IUES

o Authors tried
simply copying
the adjacency
list, but
memory size is
an issue
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Deletions
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Miscellany
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Memory Management

- LLAMA designed to provide in-memory performance for
graphs larger than memory

- Snapshots stored in files (16 snapshots per file)

- Could manage paging manually
- Reference counting
- Hazard pointers
- Automatic garbage collection

- Instead, use mmap() and allow OS to manage pages
- Almost no overhead when in memory
- madvise(), mlock() can provide more advanced support



Performance

e On commodity

machine (4 cores,
8GB RAM + SSD):

In-memory:
competitive with in-
memory
frameworks

Out-of-core:
significant
improvements over
GraphChi

System Load | PageRank BFS TC
LLAMA 7.74 6.48 0.35 9.97
GraphLab 48.80 24.30 6.60 | 21.02
GreenMarl 6.75 5.30 0.27 9.79
GraphChi | 26.00 30.54 | 38.84 | 45.81
X-Stream - 12.74 5.65 -
(a) LiveJournal (in memory, 4 cores)
System Load | PageRank BFS TC
LLAMA 311.1 607.6 233.8 | 2875.0
GraphLab - - - -
GreenMarl - - - -
GraphChi 760.5 1260.9 | 13349 | 39752
X-Stream - 19429 | 1124.7 -

(b) Twitter (larger than memory, 4 cores)




Performance

e LLAMA is CPU-
bound, while

G raphCh| is 1/0O- Time &) CPU Time Greakdown (%) 70 (GB)
System Wall CPU CPU% | PagecRank Buffer Mgmt. Other | Read  Write

bo u n d LLAMA 607.6  1088.5 179 98.0 < 0.1 2.0 | 1184 0.0
GraphChi 1260.9  3463.3 274 1.9 86.6 1.5 3R8.7 0.2
X-Stream 19429  7746.2 398 248 27.0 48.2 | 3063 121.0

TABLE I1I: PageRank on Twitter: Performance Breakdown on the Commodity platform.
Note: comparison

with X-Stream is
flawed, as LLAMA’s
time does not
include load phase
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- Difficult to use; standalone C++ library with open

programming model
- Can use GAS-like models, but very underspecified

- Missing components necessary for real-world use

- Garbage collection not specified; no automatic GC in C++, need
way of detecting when old snapshots are no longer being
accessed

- Parallel algorithms left mostly up to programmer (OpenMP)

- Project is dead
- Code available on GitHub (https://github.com/goatdb/llama),
but no commits since 2014
- RAM cheaper than programmers



https://github.com/goatdb/llama

Questions?

Thanks!



