
GraphIn
ENDRIAS KAHSSAY

Motivation
◦ Real world graphs are huge.
◦ -Facebook Graph has over a billion vertices.

◦ Real world graph topologies change often.
◦ -Facebook’s graph changes 86000 objects/ second
◦ -2.5 emails are sent /sec

◦ The update usually affect small parts of the graph.

Current Approach
ØGraphs are popular -- many graph processing frameworks like GraphLab, PowerGraph, Graphchi

ØMost frameworks deal with graph updates in batches.

ØFor each batch, they do a static computation on the entire graph after applying the batch.

ØSimple for the programmer, but very slow for large graphs.

Ø -Often only a small part of the computation changes.

GraphIn
ØA high-performance incremental graph processing framework

- built on top of GraphMat to process time-varying evolving graphs.

Ø Incrementally process a continuous stream of updates (i.e., edge/vertex insertions and/or
deletions) as a sequence of batches

GraphIn
ØBased on a new framework called Incremental-Gather-ApplyScatter (or I-GAS)

Ø Allows simple expression of incremental versions of popular algorithms

ØUser has to implement 6 serial functions.

Ø -meta computation(), build inconsistency list(), check property(), activate frontier(), update -
inconsistency list() and merge state().

ØThe library will generate highly optimized parallel code.

GAS
GraphIn is based on the popular Gather-Apply-Scatter.

Gather phase: incoming messages are processed and combined (reduced) into one message.

Apply phase: vertices use the combined message to update their state.

Scatter phase: send messages to their neighbors.

Repeats until no more active vertices.

GraphIn
GraphIn uses compressed matrix format to store static version of the graph

Allowed fast static computation over the graph using GraphMat.

Uses edge list to store incremental updates.

Merges update list and static graph when needed.

Phase I
Static Graph Computation and Meta Computation to be used for later stage.

This computation follows the GAS model

à any framework supporting GAS can be used for static version

-> GraphIn uses graphmat

Meta computation: properties of graphs such as vertex parents, degree

Phase II Inconsistency Graph Builder
ØIn an evolving graph, vertex states for many vertices remain the same over time.

ØIdentify inconsistent vertices: vertices where one or more properties are affected because of
update

ØExample: BFS, addition of edge (vi, vj) can potentially make vj and all vertices that are
downstream from vj inconsistent.

Phase III: Property Check

ØFramework calls check property() to decide static or dynamic computation.

ØIf there are a lot of affected vertices because of an update, incremental computation might be
slower.

ØPredefined graph properties such as vertex degree or user can define their own.

ØIn BFS, if a vertex will a low depth is removed, it might cause a lot of vertices to be inconsistent.

Phase IV: Incremental GAS Computation
• Ensures only the inconsistent part of the graph is recomputed.

•User implements the I-GAS program as well as the activate frontier() and update inconsistency
list()

Phase V: Merge Graph States
ØMerges updates to vertex properties.

à Example: new vertex depths calculated in incremental BFS

ØMerge update batch with graph
1. All-Merge: Both inserts and deletes are merged with static graph G.

2. Partial-Merge: Either deletes or inserts are merged with G. The framework defers applying the rest of
the updates to the original graphs.

3. No-Merge: Neither inserts nor deletes from the update batch are merged with G. The framework
defers applying both inserts and deletes.

BFS Connected Components Clustering Cofficents

Benchmark setup
ØDual-socket Intel node equipped with two Intel Xeon processors with 64 GB of DDR4 RAM.

ØUpdates are provided in batches of size ranging from 10,000 up to one million with 1 % of all
updates being deletions.

Ø The endpoints of the edges used for batch updates are generated randomly.

ØAlgorithms Tested: Clustering Coefficient (CCof), Connected Components (CC) and BFS

Results:
ØGraphIn achieves maximum speedups of 407×, 40× and 82× over static computation for (CCof),
Connected Components (CC) and BFS.

ØNote: BFS is done for 50 thousand batch size while 1 million batch size is used for the others.

ØAverage Speedup: 50x, 20x, 10x.

ØGraphIn achieves up to 9.3 million updates/sec.

ØAchieved from incremental computation for only inconsistent vertices

Effect of Graph Algorithm
Maximum speedup order:

1) no-merge algorithms such as clustering coefficients

2) partial-merge algorithm such as connectivity

3) and all-merge algorithms such as BFS

Dual Path execution
ØBFS sensitive for depth threshold

-> a small increment of 10 % in inconsistent vertices below the depth of 2 results in 29x decline
in update rate

ØDual path execution achieve a maximum speedup of 60× for Facebook graph.

Comparison to Stinger
ØStinger is a competitive incremental framework.

ØGraphIn had 6.6× speedup in throughput.

ØSTINGER, uses a single edge-list based data structures for both static and incremental graph
processing.

Ø GraphIn’s hybrid data structure enables faster computation both for static and dynamic.

Limitations:
•In the worst case, still has to a full static computation.

•Its not clear how GraphIn compares to parallel version of the static or incremental algorithms.

•Paper emphasis maximum speedup instead of average speedup.

•Unclear how merging works for differed updates. Also tests don’t factor cost of merging.

Future Work
Making GraphIn work on GPU

Evaluating this for a bigger cluster

Thanks for listening!

