KickStarter

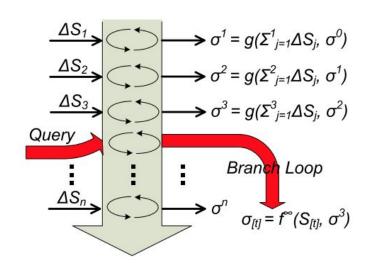
Edward Park

Background

- Streaming Graphs
 - o Super common social networks, real-time traffic info, Web graph
- Processed via incremental algorithms
 - Tornado, Kineograph, Stinger, Naiad
- Why do we need KickStarter?

Other Streaming Graph Frameworks

- Does batch updates
- Maintains intermediate approximate results
- When a query arrives, start at the most recent intermediate result and do the rest of the calculations needed (in a branch loop)
- Makes sense: the values right before the updates are a better approximation of the actual results



Problems?

- Is that true? Will values right before an update actually be a good approximation of the actual results?
- Not necessarily especially for edge deletions
- We deal with monotonic computations
 - Calculating some data to a vertex that only ever increases / only ever decreases
 - SSSP, BFS, Clique, Label Propogation
- Edge deletions break monotonicity invalidate intermediate values

(Edge deletions are common in real world graphs!)

Problems?

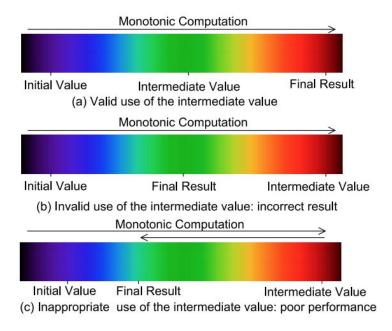
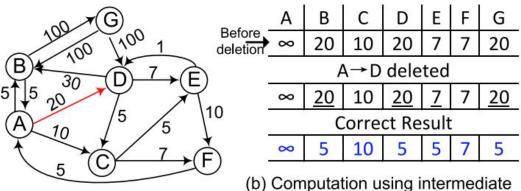


Figure 1: Three different scenarios w.r.t. the use of intermediate values after an edge update.

- Breaking monotonicity can have two results:
 - Incorrect results
 - Poor performance

Let's try it out!

Problem 1: Incorrectness with SSWP



(a) A simple graph.

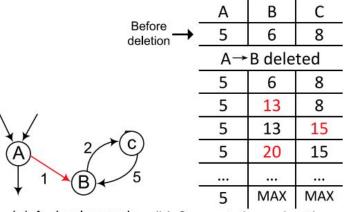
 (b) Computation using intermediate values after the deletion of A→D;
 shown in blue are the correct result.

Α	В	С	D	Ε	F	G	
~	20	10	20	7	7	20	
	A→D deleted						
~	20	10	0	7	7	20	
∞	20	10	0	5	7	20	
8	20	10	20	5	7	20	
∞	20	10	20	<u>7</u>	7	20	

- (c) Computation using the initial value for D; values changed are in red.
- (b) After deleting the edge, the values are clearly incorrect
- (c) After deleting the edge, try setting the value for D back to the initial value however, still incorrect

Problem 2: Slowness with SSSP

- The deletion of the edge renders
 B and C disconnected from the
 rest of the graph
- Each iteration will bump up the values of B and C - takes forever to reach the (correct) value of MAX



(a) A simple graph. (b) Computation using the approximation after the deletion of A→B.

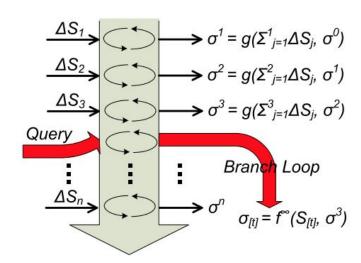
Figure 6: While using the intermediate value for vertex B yields the correct result, the computation can be very slow; the initial value at each vertex is a large number MAX.

When Incorrect? When Slow?

- Key difference is vertex update function
- In the first type, the update function only performs value selection
 - No computation is done
 - A value is propagated along a cycle
 - Incorrect result
- In the second type, the update function does some computation
 - Disallows cyclic propagation
 - Algorithm will eventually stabilize at the right value

KickStarter - How do we fix this problem?

- Edge additions are fine edge deletions are dangerous
- Right after an execution is forked for an edge deletion, we add a trimming phase
- Unsafe vertex values are adjusted before feeding it into the forked execution
 - What is unsafe? Values that were dependent on the deleted edge



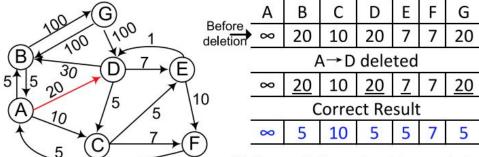
Two Trimming Methods

- Method 1 Tagging + Resetting
 - Identifies the set of vertices possibly affected by an edge deletion
 - These vertices are resetted back to the initial value
 - Guarantees safety with conservative trimming however, slow
- Method 2 Active Value Dependence Tracking
 - Tracks dynamic dependencies among vertices online
 - Leads to a much smaller set of affected vertices
 - The vertices are reset to a closer (safe) approximation instead of the initial value

Method 1 - Tagging + Resetting

- Upon a deletion, the target vertex of the deleted edge is tagged using a set bit
- This tag is iteratively propagated when an edge is processed where the source is tagged, the target is also tagged
- To reduce # of tagged vertices, rely on algorithmic insight tag a vertex only if any of its in-neighbors that actually contributes to its current value is tagged
 - In a typical monotonic algorithm, the value of a vertex is typically only computed from a single incoming edge
- "Passive" technique tagging is only performed upon edge deletion

Method 1 - Tagging + Resetting



(a) A simple graph.

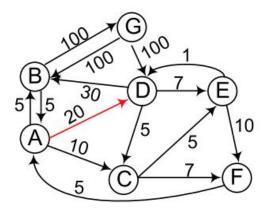
(b) Computation using intermediate values after the deletion of A→D;shown in blue are the correct result.

- Tagging conservatively tags every single vertex
- Tagging only the edges that actually contribute no longer tags A and C

- Define a transitive, non-cyclic relation → that captures value dependencies
 - \circ Say that $u \rightarrow v$ if there is an edge from u to v and u actually contributes to v
 - Transitive: if $u \rightarrow v$ and $v \rightarrow w$, then $u \rightarrow w$
 - Non-cyclic: if $u \rightarrow v$, then v does NOT $\rightarrow u$
- Why non-cyclic? Need to guarantee safety if we need a safe approximate value for v, we can't rely on any neighbor that was dependent on a past value of v
- This contributes-to relation needs to be defined by the developer (simple in practice)

- Create a dependence tree
 - Acyclic
 - Every vertex has at most one incoming edge
- Non-accumulative if a new value for a vertex is computed, that dependence replaces the old one

Now, KickStarter needs to compute new approximate values for the vertices affected by the deletion.



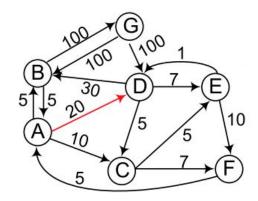
$$A = \infty$$

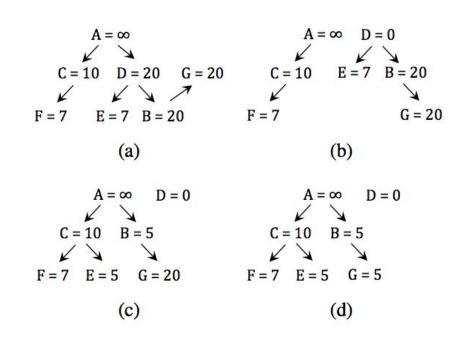
$$C = 10 \quad D = 20 \quad G = 20$$

$$E = 7 \quad E = 7 \quad B = 20$$

- 1) Identify the set of vertices affected
 - a) This is the subtree rooted at the target vertex of the deleted edge
 - b) Ignore all other vertices
- 2) For each affected vertex v, compute a safe alternative value
 - a) Resetting to the initial value also OK but slower
 - b) Re-execute the update function on v however, CANNOT use any edge that was reliant on past values of v (i.e. any vertex lower than v in the dependence tree)
 - c) How to quickly determine this? Use the level (depth) information in the dependence tree. Only consider edges that come from vertices whose level is <= level of v
- 3) Keep trimming if this safe alternative value disrupts monotonicity
 - a) What direction is the monotonicity? Depends on the algorithm in SSWP, values are monotonically increasing, in SSSP they are monotonically decreasing
 - b) If the alternative value disrupts monotonicity, there might be something wrong with the children have to trim those too

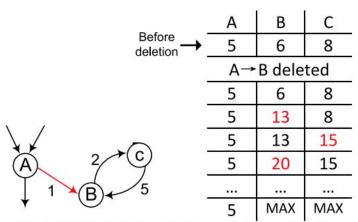
- (b) There are no safe incoming edges into D thus, new value is 0. Monotonicity is disrupted.
- (c) E gets incoming edges from C and D. B gets incoming edges from A and D
- (d) Trimming continues to G





- Good for performance too
- Look at previous SSSP problem after edge is deleted, B's value is immediately set to MAX (and C soon follows)

 Easy to parallelize too computations are confined to a vertex and its neighbors



(a) A simple graph. (b) Computation using the approximation after the deletion of A→B.

Experimental Results

Graphs	#Edges	#Vertices	
Friendster (FT) [13]	2.5B	68.3M	
Twitter (TT) [6]	2.0B	52.6M	
Twitter (TTW) [20]	1.5B	41.7M	
UKDomain (UK) [5]	1.0B	39.5M	
LiveJournal (LJ) [3]	69M	4.8M	

Table 2: Real world input graphs.

- TAG = tagging + resetting
- VAD = value dependence trimming
- TOR = Tornado. Is not always correct.
- RST = no trimming, only resetting. Is always correct.
- 10% of edge updates are deletions

Algorithm	Issue	VERTEXFUNCTION	SHOULDPROPAGATE
SSWP	Correctness	$v.path \leftarrow \max_{e \in inEdges(v)}(\min(e.source.path, e.weight))$	newValue < oldValue
CC	Correctness	$v.component \leftarrow \min(v.component, \min_{e \in edges(v)}(e.other.component))$	newValue > oldValue
BFS	Performance	$v.dist \leftarrow \min_{e \in inEdges(v)}(e.source.dist + 1)$	newValue > oldValue
SSSP	Performance	$v.path \leftarrow \min_{e \in inEdges(v)} (e.weight + e.source.path)$	newValue > oldValue

Table 3: Various vertex-centric graph algorithms.

Trimming for Correctness

		LJ	UK	TTW	TT	FT
	RST	7.48-10.16 (8.59)	81.22-112.01 (90.75)	94.18-102.27 (99.28)	170.76-183.11 (176.87)	424.46-542.47 (487.04)
SSWP	TAG	11.57-14.71 (13.00)	1.73-62.1 (21.42)	27.38-125.91 (71.26)	262.88-278.42 (270.29)	474.64-550.25 (510.52)
	VAD	3.51-5.5 (4.48)	1.17-1.18 (1.17)	21.54-34.38 (27.55)	66.85-130.84 (75.88)	113.3-413.51 (143.72)
	RST	6.43-7.93 (7.19)	133.92-166.33 (148.80)	105.16-111.46 (107.54)	113.92-126.35 (126.35)	212.43-230.26 (221.05)
CC	TAG	10.98-12.81 (11.86)	170.91-203.54 (183.93)	176.91-201.12 (185.84)	193.77-249.93 (208.90)	331.79-386 (360.34)
	VAD	4.89-5.85 (5.30)	1.81-7.75 (4.37)	31.78-33.24 (32.54)	21.98-22.58 (22.29)	38-39.36 (38.56)

Table 4: Trimming for correctness: query processing time (in sec) for SSWP and CC, shown in the form of min-max (average).

		LJ	UK	TTW	TT	FT
SSWP	TAG	3.1M-3.2M (3.1M)	8.9K-9.7M (4.1M)	1.1K-29.5M (13.4M)	28.5M-28.6M (28.6M)	49.5M-49.5M (49.5M)
SSWP	VAD	20.1K-90.8K (60.8K)	2.9K-93.0K (33.4K)	1.0K-4.5K (2.3K)	2.4K-1.1M (106.4K)	20.7K-13.6M (1.3M)
CC	TAG	3.2M-3.2M (3.2M)	25.9M-25.9M (25.9M)	31.3M-31.3M (31.3M)	32.2M-32.2M (32.2M)	52.1M-52.1M (52.1M)
cc	VAD	1.1K-3.1K (1.9K)	320-1.6K (1.0K)	116-463 (212)	241-463 (344)	294-478 (374)

Table 5: Trimming for correctness: # reset vertices for SSWP and CC (the lower the better) in the form of min-max (average).

Trimming for Correctness

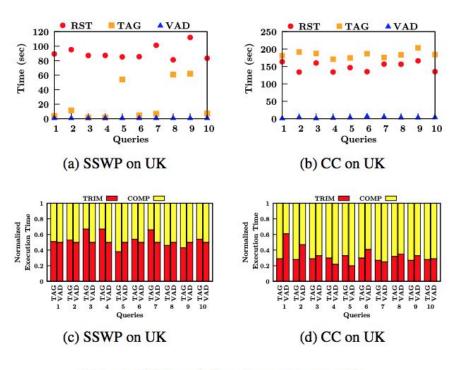


Figure 8: Time taken to answer queries.

Trimming for Performance

73		LJ	UK	TTW	TT	FT
2000	TOR	1.27-102.88 (39.10)	2.84-119.03 (24.90)	17.62-131.9 (112.57)	42.13-584.64 (190.78)	90.59-179.83 (163.99)
SSSP	TAG	3.25-4.49 (3.97)	2.03-2.94 (2.19)	46.06-52.5 (48.96)	98.59-118.23 (105.73)	131.22-150.16 (142.60)
	VAD	2.12-3.22 (2.55)	1.33-1.5 (1.41)	28.68-32.33 (30.21)	41.35-48.65 (44.19)	93.74-101.67 (97.22)
	TOR	1.17-77.05 (7.17)	1.24-588.09 (142.55)	23.94-1015.76 (199.23)	55-283.71 (120.45)	190.52-2032.38 (881.17)
BFS	TAG	3.47-4.43 (3.88)	1.81-5.14 (1.97)	51.08-58.3 (54.36)	110.75-192.71 (127.54)	143.21-334.07 (166.60)
	VAD	1.96-3.37 (2.59)	1.21-3.88 (1.42)	32.02-34.86 (32.96)	69.43-91.88 (74.27)	107.4-136.73 (114.56)

Table 6: Trimming for performance: query processing times (in sec) for SSSP and BFS in the form: min-max (average).

		LJ	UK	TTW	TT	FT
SSSP	TAG	8.2K-59.8K (25.9K)	4.1K-193.4K (36.4K)	19.7K-183.7K (89.4K)	6.2K-196.7K (51.5K)	19.8K-31.2K (25.4K)
3331	VAD	1.7K-40.1K (7.0K)	2.9K-52.2K (16.6K)	2.1K-77.7K (19.6K)	836-110.9K (11.1K)	4.5K-12.5K (8.0K)
BFS	TAG	10.8K-354.5K (79.0K)	1.3K-483.0K (35.5K)	20.9K-1.2M (457.6K)	44.2K-8.6M (1.1M)	19.1K-4.5M (469.8K)
Drs	VAD	5.5K-116.6K (36.4K)	3.2K-469.9K (41.2K)	860-3.1K (1.6K)	742-1.4K (1.1K)	2.7K-5.2K (3.4K)

Table 7: Trimming for performance: number of reset vertices for SSSP and BFS in the form: min-max (average).

Trimming for Performance

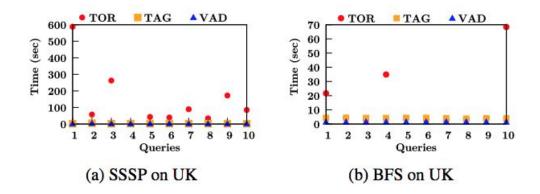


Figure 9: Trimming for performance: time taken to compute answer queries by **TAG** and **VAD**.

Experimental Results

- KickStarter always produces correct results
- Much faster speedup of 8.5 23.7
- Computing new approximate values in VAD drastically reduces # of reset vertices
- TAG is typically slower than VAD because it resets more vertices
- Dependence tracking overhead is only 13%