
KickStarter
Edward Park



Background
● Streaming Graphs

○ Super common - social networks, real-time traffic info, Web graph

● Processed via incremental algorithms
○ Tornado, Kineograph, Stinger, Naiad

● Why do we need KickStarter?



Other Streaming Graph Frameworks
● Does batch updates
● Maintains intermediate approximate 

results
● When a query arrives, start at the most 

recent intermediate result and do the rest 
of the calculations needed (in a branch 
loop)

● Makes sense: the values right before the 
updates are a better approximation of the 
actual results



Problems?
● Is that true? Will values right before an update actually be a good 

approximation of the actual results?
● Not necessarily - especially for edge deletions
● We deal with monotonic computations

○ Calculating some data to a vertex that only ever increases / only ever decreases
○ SSSP, BFS, Clique, Label Propogation

● Edge deletions break monotonicity - invalidate intermediate values

● (Edge deletions are common in real world graphs!) 



Problems?
● Breaking monotonicity can have 

two results:
○ Incorrect results
○ Poor performance

● Let’s try it out!



Problem 1: Incorrectness with SSWP

(b) After deleting the edge, the values are clearly incorrect

(c) After deleting the edge, try setting the value for D back to the initial value - 
however, still incorrect



Problem 2: Slowness with SSSP
● The deletion of the edge renders 

B and C disconnected from the 
rest of the graph

● Each iteration will bump up the 
values of B and C - takes forever 
to reach the (correct) value of 
MAX



When Incorrect? When Slow?
● Key difference is vertex update function
● In the first type, the update function only performs value selection

○ No computation is done
○ A value is propagated along a cycle
○ Incorrect result

● In the second type, the update function does some computation
○ Disallows cyclic propagation
○ Algorithm will eventually stabilize at the right value



KickStarter - How do we fix this problem?
● Edge additions are fine - edge 

deletions are dangerous
● Right after an execution is forked 

for an edge deletion, we add a 
trimming phase

● Unsafe vertex values are adjusted 
before feeding it into the forked 
execution
○ What is unsafe? Values that were 

dependent on the deleted edge



Two Trimming Methods
● Method 1 - Tagging + Resetting

○ Identifies the set of vertices possibly affected by an edge deletion
○ These vertices are resetted back to the initial value
○ Guarantees safety with conservative trimming - however, slow

● Method 2 - Active Value Dependence Tracking
○ Tracks dynamic dependencies among vertices online
○ Leads to a much smaller set of affected vertices
○ The vertices are reset to a closer (safe) approximation instead of the initial value



Method 1 - Tagging + Resetting
● Upon a deletion, the target vertex of the deleted edge is tagged using a 

set bit
● This tag is iteratively propagated - when an edge is processed where the 

source is tagged, the target is also tagged
● To reduce # of tagged vertices, rely on algorithmic insight - tag a vertex 

only if any of its in-neighbors that actually contributes to its current value 
is tagged
○ In a typical monotonic algorithm, the value of a vertex is typically only computed from a 

single incoming edge

● “Passive” technique - tagging is only performed upon edge deletion



Method 1 - Tagging + Resetting
● Tagging conservatively tags 

every single vertex
● Tagging only the edges that 

actually contribute no longer 
tags A and C



Method 2 - Active Value Dependence Tracking
● Define a transitive, non-cyclic relation → that captures value 

dependencies
○ Say that u → v if there is an edge from u to v and u actually contributes to v
○ Transitive: if u → v and v → w, then u → w
○ Non-cyclic: if u → v, then v does NOT → u

● Why non-cyclic? Need to guarantee safety - if we need a safe approximate 
value for v, we can’t rely on any neighbor that was dependent on a past 
value of v

● This contributes-to relation needs to be defined by the developer (simple 
in practice)



Method 2 - Active Value Dependence Tracking
● Create a dependence tree

○ Acyclic
○ Every vertex has at most one 

incoming edge

● Non-accumulative - if a new value 
for a vertex is computed, that 
dependence replaces the old one

Now, KickStarter needs to compute 
new approximate values for the 
vertices affected by the deletion.



Method 2 - Active Value Dependence Tracking
1) Identify the set of vertices affected

a) This is the subtree rooted at the target vertex of the deleted edge
b) Ignore all other vertices

2) For each affected vertex v, compute a safe alternative value
a) Resetting to the initial value also OK but slower
b) Re-execute the update function on v - however, CANNOT use any edge that was reliant on 

past values of v (i.e. any vertex lower than v in the dependence tree)
c) How to quickly determine this? Use the level (depth) information in the dependence tree. 

Only consider edges that come from vertices whose level is <= level of v

3) Keep trimming if this safe alternative value disrupts monotonicity
a) What direction is the monotonicity? Depends on the algorithm - in SSWP, values are 

monotonically increasing, in SSSP they are monotonically decreasing
b) If the alternative value disrupts monotonicity, there might be something wrong with the 

children - have to trim those too



Method 2 - Active Value Dependence Tracking
(b) There are no safe incoming edges into D - 
thus, new value is 0. Monotonicity is disrupted.

(c) E gets incoming edges from C and D. B gets 
incoming edges from A and D

(d) Trimming continues to G



Method 2 - Active Value Dependence Tracking
● Good for performance too
● Look at previous SSSP problem - 

after edge is deleted, B’s value is 
immediately set to MAX (and C 
soon follows)

● Easy to parallelize too - 
computations are confined to a 
vertex and its neighbors



Experimental Results
● TAG = tagging + resetting
● VAD = value dependence trimming
● TOR = Tornado. Is not always correct.
● RST = no trimming, only resetting. Is 

always correct.
● 10% of edge updates are deletions



Trimming for Correctness



Trimming for Correctness



Trimming for Performance



Trimming for Performance



Experimental Results
● KickStarter always produces correct results
● Much faster - speedup of 8.5 - 23.7
● Computing new approximate values in VAD drastically reduces # of reset 

vertices
● TAG is typically slower than VAD because it resets more vertices
● Dependence tracking overhead is only 13%


